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Abstract
A rational B-spline curve or surface is a collection of points associated with a mass (weight) distribution. These
mass distributions can be used to exert local control over the morph between two rational B-spline curves or sur-
faces. Here we propose a technique for designing customized morphs by attaching appropriate mass distributions
to target B-spline curves and surfaces. We also develop a user interface for this morphing method that is easy to
use and requires no knowledge of B-splines on the part of the designer.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Hierarchy and geometric
transformations

1. Introduction

Morphing transforms one target shape into another. Besides
being popular in movies and TV commercials, morphing
has also found applications in various aspects of computer
graphics, visualization, and design. Research on morphing
techniques has centered around two tasks: establishing a
proper mapping between target shapes, and creating a path
between corresponding vertices.

While solutions to these problems have been proposed in the
domain of polygonal meshes (Alexa2 gives an excellent re-
view), here we consider morphing between target shapes that
are represented by rational curves or surfaces. The advan-
tage of using a parametric representation is that the mapping
between two targets is established by the given parameteri-
zations. Hence in our discussion we assume the existence of
a correspondence between the targets. We are particularly
interested in rational B-splines, which are widely used in
computer-aided design and computer graphics for modelling
smooth geometry7. We will focus on the problem of interpo-
lation between pairs of points with the same parameter on
two rational B-spline curves or surfaces, although our tech-
nique is suitable for any rational representation.

One simple way to perform this interpolation is by linear av-
eraging between the spacial locations of the two points12, 18.
Unfortunately, direct application of linear averaging of-
ten produces unsatisfactory results, such as self-intersection

or undesirable shrinking, and alternatives have been ex-
plored in the domain of solid representations11, polygonal
meshes16, 17, 3, 10 and polynomial forms15.

The unique property of a rational representation, unlike dis-
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Figure 1: The morph between two rational B-spline curves
by linear averaging (left) and weighted averaging (right).
Red regions on the targets have greater mass and blue re-
gions have smaller mass. Notice the flattening and the small
wriggles in the middle transition curve on the left.
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crete meshes or polynomial representations, is that each
point on the curve or surface is associated with a weight (or
mass). The variation of masses in a rational representation
acts as an additional control on the shape of the curve or
surface. Linear averaging of spatial locations alone ignores
the relative mass distributions on the targets, and may incur
artifacts such as unnatural flattening or wriggles on the tran-
sitions (see figure1 left and figure2 top). Therefore interpo-
lation in affine space is inappropriate for morphing between
rational representations.

In our work, we propose to perform interpolation inGrass-
mann space, a vector space in which operators such as addi-
tion and scalar multiplication model physical properties by
considering the mass associated with each point. The ver-
tex path between two points is computed as the non-linear
weighted averageof their spatial locations, often resulting
in a more natural transition between two rational curves or
surfaces (see figure1 right and figure2 bottom).

Although attempts have been made to quantify the quality of
a morph3, 6, we have found it difficult to measure the “natu-
ralness” of a transition sequence, which in any event is often
subject to user interpretation. Instead, we let the user judge
the quality of the morph and improve it interactively by ad-
justing unsatisfactory regions on the targets. In this way, a
designer can produce special effects such as in the two se-
quences at the bottom of figure6.

This idea of gradual improvement of the morph through in-
teraction, rather than one-step optimization, is relatively un-
explored. In fact, most existing morphing methods do not al-
low local adjustment of the morph once the vertex paths are
computed from the target shapes. Rossignac et al.14 suggest
using additional polyhedra as the control points of a Bezier
curve to adjust the transition shapes. Since the Minkowski
sum is used in place of vector addition, their method does not
extend to morphing between non-solid representations, such
as curves and surfaces. Recently, Alexa1 proposed using a
relative representation of vertices in a polygonal mesh in
place of absolute coordinates, and then exerting local morph
control by linear averaging using different transition states
at each vertex. However, the computation of the vertex po-
sitions on each transition shape involves solving a large sys-
tem of linear equations; therefore this method is not suitable
for editing smooth morphing sequences in real-time.

In our method, each rational B-spline curve or surface can be
augmented with a user-defined mass distribution. Designers
can conveniently adjust the morphing behavior of local re-
gions on the targets interactively by varying the masses on
the targets; the entire morphing sequence is updated at trivial
computational cost. Best of all, the user can accomplish the
design with no knowledge of the mass distributions and no
understanding of B-splines.

We begin with a brief introduction to rational B-splines and
their mass distributions. Weighted averaging is presented

next, followed by a detailed discussion of non-uniform mod-
ification of masses under user control. A user interface is
presented that allows easy, real-time design of surface mor-
phing using the proposed method. We conclude with some
possible applications.

2. Rational B-splines and their Associated Mass
Distributions

A rational B-spline curve of degreen is typically written as

P(u) =
∑p

k=0 wkPkNn
k (u)

∑p
k=0 wkNn

k (u)
(1)

where Pk is a collection of control points,wk are scalar
weights associated with the corresponding control points,
and Nn

k (u) are the B-spline basis functions defined over
some knot vector{u0,u1, ...,up+n−1}. Similarly a rational
tensor product B-spline surface of bi-degree(m,n) can be
written as

P(u,v) =
∑p

j=0 ∑q
k=0 w jkPjkNm

j (u)Nn
k (v)

∑p
j=0 ∑q

k=0 w jkNm
j (u)Nn

k (v)
(2)

wherePjk is a two-dimensional array of control points with
scalar weightsw jk, andNm

j (u) andNn
k (u) are B-spline basis

functions defined over knot vectors{u0,u1, ...,up+m−1} and
{v0,v1, ...,vq+n−1}. The weight or masswk (w jk) associated
with each control pointPk (Pjk) acts as a tension parameter,
controlling the shape of the curve (surface) near that con-
trol point. A larger mass pulls the curve (surface) closer to
the control point; a smaller mass pushes the curve (surface)
further away from the control point.

The control structure of a rational B-spline curve or surface
consists of mass-points8. Recall that amass-pointconsists of
a non-zero scalar massm 6= 0 attached to a pointP in affine
space. These mass-points reside in a vector space, called
Grassmann Space, in which operations such as addition and
scalar multiplication model physical properties. (Grassmann
space also contains vectors, mass-points where the mass is
zero.) In the following definitions, we adopt the notation
m P/m to denote both the mass-point (i.e., the massm lo-
cated at the pointP) and the affine pointP (i.e, the quotient)9.

1. Scalar multiplication. Multiplying the mass by a scalar
leaves the position of the affine point unchanged.

c⊗ m P
m

=
c m P
c m

2. Addition. To add two mass-points, we sum their masses
and position this sum at their center of mass.

m1 P1

m1
⊕ m2 P2

m2
=

m1 P1 +m2P2

m1 +m2

Note that standard homogeneous coordinates will not work
here since projective space is not a vector space, hence op-
erations such as addition and scalar multiplication are not
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Figure 2: The morph between rational B-spline surfaces by linear averaging (top) and weighted averaging (bottom). Red
regions on the targets have greater mass and blue regions have smaller mass. Notice the flattening and the small wriggles on
the boundary of the middle vase on the top.

defined9. Using the Grassmann space operations⊗ and⊕,
we can reformulate the representations in (1) as

P(u) =
p

∑
k=0

(
wkPk

wk

)
⊗Nn

k (u)

where∑p
k=0 denotes applying the⊕ operatorp times. Sim-

ilarly, a rational tensor product B-spline surface can be rep-
resented as

P(u,v) =
p

∑
j=0

q

∑
k=0

(
w jkPjk

w jk

)
⊗Nm

j (u)Nn
k (v)

The reformulated representations suggest that each point on
a rational B-spline curve or surface is actually a mass-point.
The mass distributionmP(u) on a curveP(u) or mP(u,v)
on a surfaceP(u,v) is the denominator in the basis function
representations in (1) or (2).

3. Morphing By Averaging

Here we only consider morphing between two rational B-
spline curves or surfaces with the same degree and the same
knot vectors. This requirement can always be enforced by
applying degree elevation13 and knot insertion techniques5, 4.

3.1. Morphing by linear averaging

An easy way to morph between two pointsP andQ is simply
to average their geometric positions using a time parameter

t (0≤ t ≤ 1)

Ma f f (t) = (1− t)P + t Q

This morphing function represents a linear transition from
P to Q in affine space. The corresponding morph between
points on two degreen rational B-spline curvesP(u) and
Q(u) can be expressed as

Ma f f (u, t) = (1− t)P(u)+ tQ(u)

Similarly, the morph between two bi-degree(m,n) rational
B-spline tensor-product surfacesP(u,v) andQ(u,v) can be
written as

Ma f f (u,v, t) = (1− t)P(u,v)+ t Q(u,v)

Linear averaging is simple to understand and easy to im-
plement. However, the method often leads to undesirable
morphs. An example illustrating morphing between two ra-
tional B-spline curves by linear averaging is shown in figure
1 left. In contrast with the wavy target curves, the transi-
tional curves exhibit unexpected flattening and minute wrig-
gles towards the middle of the morph. Similar defects can
be observed on the transitional vases in the surface example
at the top of figure2. These defects occur, in part, because
linear averaging is based only on the geometric positions of
the targets, and ignores the associated mass distributions.

3.2. Morphing by weighted averaging

If the target points have mass, we can perform the lin-
ear averaging operation in Grassmann space first and then
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project onto affine space. The morph between two mass-
pointsm1P/m1 andm2Q/m2 using Grassmann operators can
be expressed as

Mmass(t) =
(

(1− t)⊗ m1P
m1

)
⊕

(
t⊗ m2Q

m2

)
(3)

=
(1− t)m1P+ tm2Q

(1− t)m1 + tm2
(4)

Unlike linear averaging in affine space, this new averaging
scheme takes into account the masses of the points. Expres-
sion (4) can be rewritten as an affine combination ofP and
Q,

Mmass(t) = (1−D(t))P + D(t)Q,

whereD(t) = t m2
(1−t)m1+t m2

. Thus the morph is now com-
puted as aweighted averageof the geometric positions of
the targets. This construction has the following notable prop-
erties:

1. D(t) is a continuous, non-negative, monotonic function
of t on the interval[0,1]. Hence the resulting vertex path
betweenP and Q is infinitely smooth, monotonic, and
bounded between the two end points. These properties
are typically difficult to achieve with other transition
functions.

2. The morphing behavior is affected locally by theratio of
the masses at the two target points. If both targets have the
same mass(m1 = m2), D(t) = t and weighted averaging
reduces to linear averaging. But, ifm1 > m2, thenD(t) <
t; henceMmass(t) always stays closer thanMa f f (t) to the
first targetP during the morph. In fact, asm1

m2
increases

(decreases),D(t) moves closer to 0 (1). Consequently, at
any time during the morph the transition point generated
by weighted averaging is always "attracted" to the target
with the larger mass. This attractive force increases as the
ratio between the target masses increases.

Morphing by weighted averaging between the mass-points
on two degreen rational B-spline curvesP(u) andQ(u) with
corresponding mass distributionsmP(u) andmQ(u) is repre-
sented as

Mmass(u, t) =
(1− t)mP(u)P(u)+ tmQ(u)Q(u)

(1− t)mP(u)+ tmQ(u)

Similarly, two bi-degree(m,n) rational B-spline surfaces
P(u,v) and Q(u,v) with mass distributionsmP(u,v) and
mQ(u,v) can be transformed by

Mmass(u,v, t) =
(1− t)mP(u,v)P(u,v)+ tmQ(u,v)Q(u,v)

(1− t)mP(u,v)+ tmQ(u,v)

As the ratio of the masses between corresponding mass-
points changes along the targets, the transitional curves (sur-
faces) will be drawn towards the first or second target at dif-
ferent rates in different regions. Note that weighted averag-
ing also keeps the degree lower than linear averaging, since

there is no need to compute a common denominator between
P(u) andQ(u) or P(u,v) andQ(u,v).

In figure1, the target curves on the left are transformed again
using weighted averaging on the right. Notice that the transi-
tional curves are drawn toP(u) in the first part of the curve,
where the mass-points onP(u) contain larger masses, and
drawn toQ(u) in the second part, where the mass-points on
Q(u) are heavier. The stretching forms a nice wavy shape
that eliminates the flattening and wriggling exhibited by lin-
ear averaging. In figure2, the target vases at the top are trans-
formed again using weighted averaging at the bottom. The
damping effect in the morphing example using linear aver-
aging disappears because the targets contain higher masses
in different regions and affect the morph accordingly.

4. Controlled Morphing Using Mass Distributions

Since the mass distributions we have been using so far are
uniquely determined by the weights associated with the con-
trol points, our power to adjust the morph is limited. In fact,
it is not hard to generate examples in which weighted averag-
ing using the inherent mass distributions performs no better
than linear averaging (for instance, when both targets exhibit
the same mass variation). We need to be able to modify the
masses without changing the shapes or positions of the asso-
ciated curves or surfaces to produce user-desired morphs.

4.1. Uniform scaling of masses

Modifying the weights associated with the control points
normally alters the shape of the corresponding rational B-
spline curve or surface. One straightforward alternative,
however, is to scale the mass associated with each control
point on one target by the same amount. The position of
each point on the curve (surface) will not change, but the
associated mass distribution will be scaled uniformly. The
weighted average between two curvesP(u) andQ(u), with
the masses ofP(u) scaled byS, can be expressed as

Mscaled(S,u, t) =
S(1− t)mP(u)P(u)+ tmQ(u)Q(u)

S(1− t)mP(u)+ tmQ(u)

=
(1− t′)mP(u)P(u)+ t′mQ(u)Q(u)

(1− t′)mP(u)+ t′mQ(u)
= Mmass(u, t′)

wheret′ = t
((1−t)S+ t) . Therefore uniform scaling has the ef-

fect of advancing (S< 1) or delaying (S> 1) the morph of
the whole curve. The same effect can be observed on rational
B-spline surfaces. However, in order to control the transfor-
mation of local regions on the target, we need to be able to
apply a non-uniform modification to the mass distribution.

c© The Eurographics Association 2003.
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Figure 3: Two morphs between lettersE and G after non-uniform modification of masses. Red regions on the targets have
greater masses and blue regions have smaller masses.

4.2. Non-uniform modification of masses

We can modify the representations of the target degreen ra-
tional B-spline curvesP(u) andQ(u) by setting

P(u) =
mP(u) ·P(u)

mP(u)
and Q(u) =

mQ(u) ·Q(u)
mQ(u)

wheremP(u) andmQ(u) are new mass distribution functions
defined by

mP(u) =
p

∑
k=0

wkNn
k (u) and mQ(u) =

p

∑
k=0

vkNn
k (u) (5)

Here wk and vk are additional positive masses attached to
each control point ofP(u) andQ(u). The modified curves
P(u) and Q(u) maintain the same shapes and positions as
the original curvesP(u) andQ(u), but exhibit new mass dis-
tributions controlled bywk andvk. The weighted averaging
betweenP(u) andQ(u) is now expressed as

Mnew(u, t) =
(1− t)mP(u)P(u)+ tmQ(u)Q(u)

(1− t)mP(u)+ tmQ(u)
(6)

Notice that by choosing different control weightswk andvk,
we can reproduce our previous morphs betweenP(u) and
Q(u) using weighted averages ofP(u) and Q(u). For in-
stance, if the control weights are set to unit mass, (6) re-
duces to linear averaging. If instead we use the weights as-
sociated with the control points ofP(u) and Q(u), we get
the same morph induced by weighted averages ofP(u) and
Q(u). Also, the morph generated by uniformly scaling the
masses ofP(u) can be reproduced by settingwk equal to the
scaled weights associated with the control points ofP(u).

This new representation allows us to manipulate the mor-
phing behavior of different regions on the targets through
a small set of scalar parameters. The B-spline form of the
new mass distribution also guarantees smooth variation of

masses, so that no abrupt changes in the attracting forces
will occur during the morph.

Similarly, we can now represent two bi-degree(m,n) ratio-
nal B-spline surfacesP(u,v) andQ(u,v) as

P(u,v) =
mP(u,v) ·P(u,v)

mP(u,v)
and Q(u,v) =

mQ(u,v) ·Q(u,v)
mQ(u,v)

wheremP(u,v) andmQ(u,v) are new mass distribution func-
tions defined by

mP(u,v) =
p

∑
j=0

q

∑
k=0

w jkNm
j (u)Nn

k (v), and

mQ(u,v) =
p

∑
j=0

q

∑
k=0

v jkNm
j (u)Nn

k (v).

Herew jk andv jk are positive weights attached to each con-
trol point ofP(u,v) andQ(u,v) that determine the new mass
distributions. The morph is then computed as the weighted
average betweenP(u,v) andQ(u,v). An example is shown
in figure 3, where new control weights are assigned to the
control points of the targets representing the lettersE andG
from the Eurographics logo. In the top sequence, the first tar-
get expresses higher masses towards the right, while the sec-
ond target expresses higher masses towards the left. Hence
the transition shape in the middle is attracted to the letterE
on its right portion and to the letterG on its left portion, cre-
ating a connectedE. In the bottom sequence, control weights
are higher at the bottom of the first target and at the top of the
second target, pulling the middle shape in a different manner
and generating a letterG with a right-angled corner.

4.3. User-controlled morphing

The freedom to choosewk and vk (w jk and v jk) certainly
gives us the power of control. However, we need an intuitive
way to compute these control weights so that the transition
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curves (surfaces) are drawn to thedesiredtarget to thede-
sired extent. We start by investigating the influence of the
control weights on the shape of the morph. In analogy with
our analysis of the effect of masses on weighted averaging,
we can rewriteMnew(u, t) in the form of an affine combina-
tion of P(u) andQ(u) by setting

Mnew(u, t) = (1−D(u, t))P(u) + D(u, t)Q(u)

where

D(u, t) =
tmQ(u)

(1− t)mP(u)+ tmQ(u)
(7)

The valueD(u, t) ∈ [0,1] describes thenormalizeddistance
of a point on the transition curve from the first target at time
t. Substituting (5) into (7), we get

D(u, t) =
∑p

k=0WkRkNn
k (u)

∑p
k=0WkNn

k (u)

where

Rk =
tvk

Wk
and Wk = (1− t)wk + tvk

Therefore the normalized distances at a given time form a
rational B-spline curve controlled by the scalarsRk with
weightsWk, both determined by the control weights on the
targets. Conversely, we can expresswk andvk in terms of the
scalarsRk and weightsWk at timet as

wk =
Wk(1−Rk)

1− t
and vk =

WkRk

t
(8)

SinceRk andWk act as B-spline control points and weights
on the shape of the transition curve (with respect to the two
targets), users can specify these values in a way similar to
modelling a rational B-spline curve. The control weights on
the targets can be computed by equation (8) to produce a
morph that interpolates the desired transition curve at any
time.

Now morph design is an interactive process as illustrated
in figure 4. On the left, we start with an existing morph
with pre-chosenwk and vk (such as the original weights
associated with the control points). Then we select a tran-
sition curve at some timet, shown in the middle, and ad-
just the corresponding normalized distance curve (by mov-
ing the scalarsRk between 0 and 1 or changing the asso-
ciated weightsWk). The new control weights are computed
automatically so that the transition curve at timet follows
the new normalized distances, as seen on the right. This pro-
cess can be repeated at different values oft until a desirable
morph is generated.

Notice from (8) that for anyRk ∈ (0,1) and positiveWk at
time t ∈ (0,1), the control weightswk and vk are always
uniquely determined. The modified morph using weighted
averaging always represents a smooth, monotonic transfor-
mation from the first target to the second.

We can customize the morph between two rational B-spline

surfacesP(u,v) andQ(u,v) in a similar fashion. The normal-
ized distances of the points on the transition surface at time
t can be expressed by

D(u,v, t) =
∑p

j=0 ∑q
k=0WjkRjkNm

j (u)Nn
k (v)

∑p
j=0 ∑q

k=0WjkNm
j (u)Nn

k (v)

where

Rjk =
tv jk

Wjk
and Wjk = (1− t)w jk + tv jk

These normalized distances describe a rational B-spline sur-
face defined by the scalarsRjk with weightsWjk. The control
weightsw jk andv jk on the targets can be expressed in terms
of Rjk andWjk at timet by

w jk =
Wjk(1−Rjk)

1− t
and v jk =

WjkRjk

t
(9)

Users can design the control weights (and thus the resulting
morph) by manipulating the scalars and weights that control
the normalized distances of a transition surface. An example
is shown in figure6, where different morphs between two
target faces are generated using this design paradigm. For
comparison, the targets are first morphed using linear aver-
aging, as shown at the top. In the next two morphs, weighted
averaging is used with different control weights attached to
the targets. These control weights are computed from the
user-definedRjk andWjk that generate the normalized dis-
tancesD(u,v, t) at t = 0.5, shown on the left of figure5.
The green regions on the normalized distance surfaces in-
dicate where the attracting force from the second target is
stronger, as reflected in the bulging nose (figure5 top-right)
and cheeks (figure5 bottom-right) of the corresponding tran-
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0

1

t=0.5

0
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0
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0

1

Figure 4: Designing a morph (right) from an existing morph
(left). The normalized distances are plotted as solid lines for
the first morph and dotted lines for the second morph.
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Figure 6: Morph between two faces using linear averaging (top) and weighted averaging after applying different non-uniform
mass modifications (middle and bottom).

sition surfaces att = 0.5. The resulting morphs thus produce
the effect that either the nose comes out faster (figure6 mid-
dle) or the cheeks bulge first (figure6 bottom).

Figure 5: Normalized distances (left) and corresponding
transition surfaces (right) att = 0.5 in the second and third
morphs from figure6.

4.4. User interface design

Our morphing examples were created using a graphical in-
terface (shown in figure7) that we implemented to facili-
tate the design of surface morphs. The interface consists of a
main windowW1 for viewing the transition surfaces, a sub
windowW2 showing the corresponding normalized distance
plane, and a panelW3 for selecting control scalars.

W1 B1 W2

W3

B2

Figure 7: The user interface for designing surface morphs.
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The user can pick a transition surface at any time parame-
ter t (by sliding barB1), and modify the corresponding nor-
malized distance plane by selecting control scalarsRjk (in
W3) and moving them between 0 and 1 (using barB2); the
weightsWjk are left unchanged. The regions affected by the
selected control scalars are colored green on both the transi-
tion surface and the normalized distance plane. To facilitate
dealing with a large number of control scalars, the interface
allows the user to define an area of impact in the parameter
space (shown at the top ofW3). The user moves the control
scalars only at the center of the selected area; the remaining
scalars will be modified automatically according to a user-
designed falloff function (shown at the bottom ofW3).

As the normalized distances are being modified inW2, the
changes are reflected immediately on the transition surface
in W1, and the entire morphing sequence is updated on the
fly by computing the new control weightsw jk andv jk as in
(9). Once a desirable morph is generated, the result can be
conveniently stored by these control weights on the targets.

Although the morph is represented internally by weighted
averages using mass distributions, the user requires no
knowledge of masses or B-splines to accomplish morph de-
sign using this interface.

5. Applications

Computer animation: Morphing by weighted averaging
can be applied directly to computer animations involving
rational parametric curves and surfaces. As seen in figure
6, by varying the mass distributions on the targets, we can
produce a variety of animations in which different regions
on the surface animate at different rates. The power of local
control offered by the mass distributions can also augment
existing techniques, such as key-frame interpolation, to
produce more vivacious animations.

Model design: Weighted averaging is also useful for
designing models from existing samples. By choosing
appropriate mass variations on the samples (i.e., target
shapes), the model (i.e., transition shape) will resemble
the samples at regions with larger mass. Therefore we can
exert local control over the similarity of the new model to
existing samples at different regions. This technique can be
extended without difficulty to morphing multiple targets,
which allows this design paradigm to be performed on more
than two sample models.

6. Conclusion

We have presented a framework for smooth, non-uniform
morphing of rational B-spline curves and surfaces by
weighted averaging using associated mass distributions.
Weighted averaging reduces undesired flatness and wiggles,

and has the added advantage over linear averaging that it
gives the user local control over the morph in different re-
gions on the targets. We also provide the user with an intu-
itive way to execute this control by manipulating the tran-
sition curves (surfaces); no knowledge of B-splines is re-
quired. The only computations involved in calculating the
mass changes and the resulting vertex paths from user in-
puts are simple algebraic operations, which makes possible
a real-time, locally controlled morph editing environment.
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