
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

Occlusion Culling for Image-Based Rendering with Warping

Soner I. Sen1, Volkan Atalay1

1 Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

Abstract
The basic idea of the proposed algorithm is to reduce the number of depth pixels in Layer Depth Images (LDI) by
culling the occluded ones before warping. The method combines the octree spatial subdivision concept with LDI
concept, using the implicit geometry stored in depth pixels. The algorithm uses an octree to group depth pixels in
a hierarchical way. The proposed algorithm is very effective when used in highly occluded scenes, and the density
of the depth pixels should be high enough to get a high performance from the algorithm

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
- Display algorithms; I.3.7 [Computer Graphics]: Three Dimensional Graphics and Realism - Hidden surface
removal; I.3.6 [Computer Graphics]: Methodology and Techniques - Graphics data structures and data types

1. Introduction

The fundamental problem of computer graphics is the desire
for photorealistic rendering. Although this problem has been
resolved for image generation, there is still a large open is-
sue in the area of interactive computer graphics. Dramatic
increases in hardware capabilities make little difference as
these increases cannot reach a level high enough to resolve
this issue via traditional methods; this is why researchers are
so interested in this problem.

The traditional methods use 3D geometry for input, and
they make approximations while creating the output image.
Unless these assumptions are removed from the algorithms,
or the error rate is reduced, the output image will not reach
the desired photorealistic quality. With traditional methods
the solution is to increase the complexity of a scene. It is
not possible to render the entire scene at an interactive frame
rate where the scene is large, such as huge city models and
highly detailed terrains.

To achieve a display of highly complex models at in-
teractive frame rates the approach taken should reduce the
scene complexity without loss in the quality perceived by hu-
man visualization system. Dividing huge scenes into smaller
parts, called portals, and rendering only visible portions is
one way of reducing the scene complexity; this method re-
quires a static environment and preprocessing. Another way
is to simplify the objects in the scene; this depends on an

error metric calculation with respect to the current point-
of-view and the objects location. Mesh simplification can
be done by storing different levels of details, or on the fly
by mesh simplification algorithms 1. Another method to
simplify the complexity of a scene is by eliminating un-
seen primitives before the rendering pipeline, this is known
as "culling techniques" 2. Back-face culling, view-frustum
culling and occlusion culling techniques are the most widely
used ones.

Another solution to obtain the desired photorealistic view
is via developing new methods for rendering which can re-
move the approximation steps in traditional rendering meth-
ods. The first attempt is to use real photographs with the in-
put models, namely texture mapping. It is the remapping of
an image onto a surface residing in the three dimensional
scene. Texture mapping still uses some approximations in
the rendering stage, wherein lies the aliasing problem. The
other problem with this approach is that the rendering speed
still depends on the surface the texture is applied to.

Another solution called Image-Based Rendering with
Warping (IBRW) is proposed by Leonard McMillan 3.
IBRW produces photorealistic views since it uses real pho-
tographs with depth values as input. Images used here are
called depth images and each pixel has a color and a depth
value associated with it. This technique is independent of
scene complexity; but there is a dependency on the resolu-
tion of the rendering view itself. McMillan uses a single pho-

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org


S.I.Sen, V.Atalay / Occlusion Culling for IBRW

tograph and IBRW has problems depending on the occluded
parts of the scene in the reference image.

A solution to the gaps in the desired image due to the
change in visibility is given by Shade et. al 4, by introducing
a new concept Layered Depth Images (LDI). LDI can con-
tain multiple depth pixels in each discrete location in the im-
age. A layered depth pixel stores a set of depth pixels along
one line of sight in front-to-back order. They can be created
artificially by modifying a ray tracer or composing more than
one images with depth.

The IBRW has three main stages according to Voicu
Popescu 5. The first stage is finding depth pixels that are vis-
ible from the desired view, then the second one is the projec-
tion of these depth pixels into the desired view, and the last
stage is the reconstruction of the desired view. The first and
last stages have no or unsatisfactory solutions, whereas the
second stage has an elegant solution proposed by McMillan
3, 18. The rendering speed of IBRW depends on the number
of depth pixels that are input to the second and third stages.
In order to obtain interactive frame rates this number should
be as small as possible, while being large enough to provide
a photorealistic display.

This paper introduces a method to increase the speed in
IBRW by reducing the number of depth pixels. The proposed
algorithm is a potential solution to the first stage of IBRW.
The algorithm uses an octree spatial subdivision of the type
commonly used to accelerate ray tracing to create hierarchi-
cal groups of classified depth pixels. The bounding values
of octree nodes are then checked to see whether the inside
depth pixels are visible or not from the desired view.

The remaining part of this paper organized as follows:
section 2 is a brief review of previous work done on visi-
bility culling and IBRW, section 3 is a detailed description
and outline of the proposed algorithm, section 4 describes
the work in progress and section 5 discusses the proposed
algorithm.

2. Previous Work

There have been many attempts to obtain the interactivity on
highly complex scenes. The common idea of each work is
reducing the scene complexity. In this section we first give
works done to reduce the primitive count by eliminating the
invisible before pipeline, and then we give works done on
Image-Based Rendering technique.

The basic idea of reducing the complexity of large scenes
is to model the objects of the scene with different levels of
detail (LOD). During rendering, the appropriate LOD of the
objects of the scene is chosen according to a view-dependent
error metric. These methods depend on the limitation of the
perception ability of the human visualization system to de-
tails. Different LODs can be stored or they can be generated
at runtime by mesh simplification algorithms 1.

Another way of reducing the scene complexity is to cull
the primitives that cannot be seen from the current view-
point before the rendering pipeline. Visibility culling meth-
ods classify the space into several groups and they use the
classification property of each group to determine whether it
is appropriate for rendering or not. Backface culling meth-
ods 6, 7, 8 avoid rendering of primitives that are not facing to
point-of-view. The primitives that are outside of the view-
frustum are eliminated by view-frustum culling methods
6, 9, 10. In comparison of these two culling methods, occlu-
sion culling involves a far more challenging problem.

The optimal occlusion culling method should select only
visible primitives, kind of similar to how a z-buffer selects
and renders 2. The idea of occlusion culling methods is se-
lecting and eliminating invisible primitives before sending
to the rendering pipeline. Occlusion culling methods are
mostly defined for static environments. In static environ-
ments, in the preprocessing step, some objects are marked
as occluders and the occluded objects are the ones that are
in the shadow frustum (occlusion volume) constructed for
each of the occluders 11, 12. For handling of dynamic three
dimensional scenes, the method should consider the prop-
erties of both the image and the 3D space. Hierarchical Z-
Buffer (HZB) 10, 13, and Hierarchical Occlusion Map (HOM)
14 are two kinds of these methods. HZB uses a pyramid of Z-
buffers and an octree to classify the scene and remove large
parts of the scene with small comparisons. Octree spatial
subdivision is used for object-space coherence, Z pyramid
for image-space coherence and a list of previously visible
octree nodes for temporal coherence 13. HZB depends on a
special hardware since it requires reading back the z-buffer
data which is too slow or cannot be done with most of the
graphics accelerators. HOM works like HZB, but it is more
conservative and requires the precomputation of an occluder
database. It has a pyramid of maps like the Z pyramid which
contains opacity values instead of depth values.

Wand et. al. 15 define Randomized Z-buffer algorithm for
interactive rendering of highly complex environments. The
main idea is to reconstruct the image from dynamically cho-
sen surface sample points. They classify scene primitives
with octree spatial scene partitioning with respect to their
projection factors, generally distance is enough but for better
solutions the orientation of primitives should be considered.
For reconstruction of the image, first the occluded sample
points should be discarded then the image is obtained from
interpolation between the visible sample points. The same
process can be done by conventional z-buffer rendering in
one single step, where the sample density is high enough so
that all the pixels of the image are covered by a sample point
from a foreground object.

Image-based rendering is one of the approaches used for
reducing scene complexity in interactive applications. The
very first attempt using real images to reduce scene com-
plexity is texture mapping and sprites. Chen and Williams

c© The Eurographics Association 2003.



S.I.Sen, V.Atalay / Occlusion Culling for IBRW

�����
���

�	�
�� ����

������

����
��
�����

	�������	�����
�����	�����
���
����
������
�����
���

�	�
��
�
���
���

�	�
��
����

	
�	�
���������� �����
�

���
���������

���������� �	�	
	�	�
������ ����	������
�����������	��

Figure 1: Overview of the described algorithm

go one step further in using of real images and they present
the idea of rendering from images 16. Their method uses sim-
ilar methods of image morphing.

Leonard McMillan and Bishop define the plenoptic func-
tion as a complete spherical environmental map from a spe-
cific viewpoint at a given time 17. They introduce a new
IBR method with reprojection of depth pixels, 3D warp-
ing, Image-Based Rendering with Warping (IBRW). This
method relies on the occlusion compatible ordering of depth
pixels 17, 18. Seitz and Dyer 19 describe a simple extension to
creation of new views called view morphing, which allows
image morphing methods to easily synthesize the changes in
viewpoints and 3D effects with the help of user interaction.

IBRW uses a single depth image taken from single view-
point therefore it cannot reconstruct the parts of the scene
which can be seen from desired viewpoint but cannot be
seen from the reference viewpoint. Mark et. al. 20 describe
the use of multiple input images and creates triangulated
depth maps. Shade et. al. 4 introduces Layered Depth Im-
age (LDI) concept, which combines multiple depth images
into one data structure.

The rendering quality of the IBRW techniques depends
on the reconstruction step. The first attemp and the cheap-
est method is splatting 3, 20, 21 where the shape and the size
of the projected depth and color pixels are approximated by
splats. The problem of splatting is the loss of details when
the viewer is relatively close to depth pixels where they are
taken. A solution for this problem is to store depth images at
several levels of detail, and at render time to use the appror-
iate level to make the projected depth pixels cover only one
pixel of the desired image 22. Another technique is the use
of microtriangles. Two microtriangles connect four neigh-
boring depth pixels to make a 3D mesh. The relief textures
gives a completely different solution to the reconstruction
problem 23. This method computes an intermediate image of
the original image with the desired center of projection, then
simply texture maps this newly computed image. The gener-
ation of the intermediate image is by factoring the 3D warp
into a pre-warp.

The speed of IBRW does not depend on the scene com-
plexity; to speed up IBRW the number of depth pixels should
be reduced. Popescu et. al. 24 use a space clipping method
to eliminate the unseen columns (because of the horizontal
field of view) of the LDI before warping. To do this they
built a binary tree recursively, where the root has the maxi-
mum and minimum disparities of the entire LDI, and at each
step LDI is divided into two equal parts, with a vertical line.
While warping, the unseen columns of the LDI are elimi-
nated by a recursive clipping algorithm using the maximum
and minimum disparity values stored in the binary tree.

Chun-Fa Chang et. al. combine the hierarchical space par-
titioning with the LDI concept and introduce LDI tree 22.
LDI tree consists of multiple reference images and preserves
their sampling rate by adaptively selecting an LDI in the LDI
tree for each pixel. It is an octree which has a LDI at each
cell, where each cell has only depth pixels in the bounding
box. LDI tree speeds up the rendering time of LDI by not
warping the every pixel of a reference image taken near an
object when the object is viewed from far away and vice
versa.

Chu-Fei Chang et. al. presented a hierarchical image-
based rendering method, multi-level image-based rendering,
to achieve the progressive refinement by using different res-
olution images 25. This method depends on the limitation of
the perception ability of human visualization system to de-
tails when the object is relatively far away.

Stoev et.al. reduce the number of depth pixels in the LDI
by introducing a new image-based data structure multi LDI
consisting of several small LDIs instead of one large LDI
covering the entire range of view directions 26. The work of
Stoev et. al. differs from the approach described here by the
time of depth pixel reducing job. Multi LDI does its job in
preprocessing whereas our algorithm does its work on the
fly.

Popescu and Lastra introduce vacuum buffer algorithm
to use as a new depth pixel selection algorithm for IBRW
27. This algorithm estimates potentially missed surfaces and
depth pixels that surfaces might be located. It uses the empty

c© The Eurographics Association 2003.



S.I.Sen, V.Atalay / Occlusion Culling for IBRW

space information of depth images previously used for build-
ing polygonal based models from range data. It is not useful
for existing graphics hardware since it requires an extended
z-buffer which can store several z-spans for each location.

The algorithm presented here combines the octree spatial
subdivision concept with LDI 4 concept, using the implicit
geometry stored in depth pixels 3.

3. Our proposal in detail

The basic idea of the proposed algorithm is to reduce the
number of depth pixels in LDIs by culling the occluded ones
before warping. The algorithm uses an octree to group the
depth pixels in a hierarchical way. Then it simply uses the
inverse of McMillan’s visibility ordering 18 while creating
new views to generate the new pixels from front-to-back or-
der. It does the culling of large amount of depth pixels by
only comparing the bounding values of octree nodes.

An overview of the algorithm is given in Figure 1. The
algorithm consists of three main steps: octree construction,
visibility checking, and reconstruction of the depth pixels. In
the preprocessing step, the LDI is subdivided into a hierar-
chy of groups of depth pixels which show similar location
in LDI and generalized disparity. After creation of octree
structure, the octree is traversed in the inverse of McMil-
lan’s occlusion compatible order. Each visited octree node is
checked whether it is visible or not. If the node is visible, the
associated depth pixels are warped to desired viewpoint. For
the reconstruction step, splatting technique is used, because
of its simplicity and speed.

3.1. Octree Construction

In ray tracing and volume data rendering approaches octree
data structure is used to accelerate the process. This data
structure is very effective since it divides the space adap-
tively according to the scene properties.

In the octree construction step, in preprocessing, the algo-
rithm treats the LDI as if it is a 3D space. The resolution of
the LDI is used as x and y axis, for width and height respec-
tively. The generalized disparity values of depth pixels are z
values, since depth images encode the depth information as
generalized disparities 3. As an example, the root node has
values of width, height, the maximum generalized dispar-
ity as the greatest corner, and 0, 0, the minimum generalized
disparity as the lowest corner. Table 1 gives the pseudo code
representing the data structure:

The octree data structure construction procedure is sim-
ple and recursive. The pseudo code of the algorithm is given
in Table 2. It begins with the root node enclosing all the
LDI and the list of entire depth pixels. Then recursively the
following steps are performed starting from the root node:
if the number of depth pixels within the octree node or the
size of the node is sufficiently small, associate the location

OctreeNode =
BoundingBox[X..Z, min..max] : array of real
Children[0..7] : array of pointer to OctreeNode
Count : real
AreaInLDI[X..Y, min..max] : array of integer

Table 1: Octree Data Structure

of the area of LDI and the count of depth pixels to the node
and exit. Otherwise, associate the area and the count of depth
pixels, subdivide the octree node, and call the procedure re-
cursively for each of the eight children of the node.

Algorithm 1: Octree Construction Procedure

count = number of depth pixels
if count < COUNT_THRESHOLD or

size < SIZE_THRESHOLD then
associate depth pixels, area and the count to the node
exit

else
associate area and count to the node

end_if
compute child nodes recursively

Table 2: Pseudo code of octree construction procedure

The ordering of children nodes should be in such a way
that the first 4 nodes are the closest ones to the image plane.
The ordering can be seen in Figure 2. The reason to order
children nodes is to ease the traversal of the octree.

�
�

�
�

�
�

�
�

 �
����
!����
"#���
��#���

Figure 2: Order of the octree children nodes

c© The Eurographics Association 2003.



S.I.Sen, V.Atalay / Occlusion Culling for IBRW

 �
����
!����
"#���
��#���

$�����
��#���

%�	��������	��

Figure 3: Occlusion compatible order of warping LDIs
(adapted from [4])

3.2. Visibility Check

McMillan reduces the task of determining the visibility to
a sorting problem and describes an ordering of depth pixels
in a depth image 18. The occlusion compatible ordering of
McMillan works for LDIs if layers are warped in back-to-
front order 28, as shown in Figure 3, an informal proof of this
ordering is given in 24. The algorithm presented here uses
this ordering scheme; however the inverse of this ordering
should be considered to gain from culling.

3.2.1. Travelsal of Octree

Before the traversal, algorithm finds the epipolar point, the
projection of the desired viewpoint on to the image plane of
reference viewpoint and determines the octree node which
encloses the epipolar point, we call this node as the epipolar
node. The nodes that include any portion of the isometric
lines 18 are marked as isometric nodes. The octree nodes that
are candidate to be epipolar or isometric node are the leaf
nodes that have the minimum generalized disparity value of
the LDI as a boundary value.

The traversal of the octree nodes starts with epipolar node
and then it continues in two ways: to the direction of z axis
(generalized disparity axis), and on the xy surface, as shown
in Figure 4.

The XY surface traversal of the octree guarantees the in-
verse of McMillan’s visibility order. This traversal direction
uses the organization of the octree children ordering as a
guide. For each visited node, the next node is found by the
help of this organization. This traversal direction differs for
each of the sheet that isometric lines partition the LDI. We
start with the epipolar node, and then we check appropriate
sibling nodes. After all appropriate siblings are visited, we
go one level upper in the octree, and do the same process for
the current node until we reach to the root node. A pseudo
code of this traversal direction algorithm is given in Table 3.

After a visible node is reached while traversing the octree

&'
(��)���
*��+�����

%�	�����
��	�� !����

$����
*��+�����

,

&'

Figure 4: Traversal of the octree

in xy surface direction, the nodes that are behind the cur-
rent node need to be warped to achieve the inverse ordering
algorithm of Shade et. al. 4. To achieve this goal, we need
to traverse the octree in detph order. In occlusion compati-
ble order, depth pixels are warped from back to front order,
we go from front to back to warp front pixels of the desired
image before back pixels.

Octree nodes are organized such that we can easily find
the sibling lying behind, as shown in Figure 2. However,
after all appropriate siblings lying behind are considered we
need to find the octree node, which is exactly the first from
the ones behind. We use a ray which starts from a corner of
the current node, and has a direction parallel to z axis. The
corner of the node is chosen from the 4 corners having max-
imum generalized disparity value with respect to the sheet
we are considering. We advance on the ray by a length of the
half of the z-size of the smallest octree node. Therefore, we
guarantee that we never miss a node and we reach to the first
of the nodes lying behind.

If the level of the reached node is smaller, in other words it
is closer to the root node; we only check the visibility of the
node and mark it if it is not visible. If it is higher; we warp the
current node and traverse its siblings in z direction and then
in xy surface direction until we reach to the same level. If it
is same; we simply warp the node and continue to the depth
order traversal. We only warp the nodes that have same or
higher levels in octree, since nodes with smaller level values
occupy bigger area in LDI and the remaining parts may not
be rendered yet.

3.2.2. Culling

While we are traversing octree nodes we first check the vis-
ibility of nodes by simply warping their boundary values.

We keep a buffer, occlusion buffer, with the size of LDI

c© The Eurographics Association 2003.



S.I.Sen, V.Atalay / Occlusion Culling for IBRW

Algorithm 2: Octree XY surface traversal

find the epipolar node
mark all the isometric nodes
for each of the sheets do

current = epipolar node
while current != root node do

if current is marked then
current = getNextSibling()
if current == NULL then

current = getParent()
DepthTraverse(current)

end_if
else

if visible then
if current is leaf node then

MarkAndWarp(current)
DepthTraverse(current)
current = getNextSibling()

else
current = getFirstChild(current)

end_if
end_if

end_if
end_while

end_for

Table 3: Pseudo code of octree XY surface traversal algo-
rithm

resolution to determine whether the pixel is a background
pixel or not. Occlusion buffer has all 0s initially which shows
a background pixel. We add 1 to the exact location of the
warped depth pixel, and add a weighted value to locations of
the splats 20. To decide whether the node is occluded or not,
boundary values are warped, and a rectangular bounding box
is computed for the eight resulting points. If no value other
than 1 inside of the computed bounding box exists, then this
node is invisible and it is safe to not warp associated depth
pixels.

3.3. Warping and Reconstruction

After finding an octree node visible from the desired view-
point, we simply warp the associated depth pixels. We use
the warping equations given in 3, 5.

Splatting technique is used for reconstruction of the de-
sired image from the warped depth pixels. The exact location
of the warped depth pixel is opaque and the other parts are
semi-transparent where as going to the edges of the splats it
becomes more semi-transparent. Computing the precise size
and shape of the splat for a depth pixel is very difficult (ex-
pensive); therefore we approximate the size by comparing

the generelized disparity values in reference image and de-
sired image, and for the shape we use a rectangle. We prefer
rectangle as splat shape, since rendering of rectangles can be
accelerated by some of graphics hardware.

4. Work in Progress

In this paper, we present an algorithm of occlusion culling
for image-based rendering with warping. The method com-
bines the octree spatial subdivision concept with LDI con-
cept, using the implicit geometry stored in depth pixels.

The work on this method is in progress now. Currently,
we are implementing the visibility checking step of the algo-
rithm. The other steps are implemented. The simple IBRW
is also implemented as given in 5 for comparing the results
of our method. All the implementation of algorithm is done
on a simple PC. C++ and DirectX 8.0 are used for program-
ming language. The LDI creation is done by ray-mesh inter-
section built-in function of DirectX. We are now using LDIs
with a simple object, which is constructed by 12 depth im-
ages taken from surrounding of the object.

We are planning to test the performance of the algo-
rithm on two types of scenes: densely and coarsely occluded
scenes. Examples of these scenes are given in Figure 5.
We will check the performance of the algorithm by com-
paring how many percent of the depth pixels are eliminated
on two types of scenes. Furthermore, the percentage of the
faults, treating an invisible pixel as visible and vice versa,
will be our error metric. These faults can be results of splat-
ting; therefore the visual quality of the desired image will
be our main consideration to test the rendering quality of the
algorithm.

5. Discussion

Most of the work done on the IBRW is to make the quality
of the desired image better, however in order to get a place in
interactive computer graphics IBRW needs to be accelerated.
There has been a trade off between the speed and quality for
all of the approaches in the computer graphics area.

The proposed algorithm carries a concept used for accel-
erating the traditional geometrical rendering to the IBRW.
The simple IBRW does not consider the visibility since
McMillan gives an elegant solution to the visibility prob-
lem 18. We try to stick to this ordering while we are travers-
ing the octree structure; however there may be some faults
in the order. These faults may arise due to the structure of
the octree. The nodes of the octree need not to be the same
in size. When a bigger node lies behind the smaller node,
the occlusion compatible order of McMillan may not be pre-
served. However we think these faults are negligible, if we
keep the associated depth pixel count stop condition of the
octree construction process small enough. The faults in the

c© The Eurographics Association 2003.



S.I.Sen, V.Atalay / Occlusion Culling for IBRW

desired image will not be remarkable by human visualiza-
tion system, since we use splatting with alpha blending in
the reconstruction step.

The proposed algorithm is very effective when used in
highly occluded scenes, such as the scene given in Figure
5 (a). The density of the depth pixels should be high to get a
high performance from the algorithm.

-./ -0/

Figure 5: Sample test scenes top views (a) Highly occluded
(b) Coarsely occluded

References

1. E. Puppo and R. Scopigno. Simplification, LOD,
and multiresolution principlas and applications. Euro-
graphics’97 Turorial Notes, 1997. 1, 2

2. T. Möller and E. Haines. Real Time Rendering. A. K.
Peters Ltd., 1999 (Chapter 7). 1, 2

3. L. McMillan. An image-based approach to computer
graphics. PhD Dissertation Technical Report TR97-
013, University of North Carolina at Chapel Hill. 1, 2,
3, 4, 6

4. J. Shade, S. Gortler, L. He, and R. Szeliski. Layered
depth images. SIGGRAPH’98, (computer Graphics
Proc.), :231, 1998. 2, 3, 4, 5

5. V. Popescu. Forward rasterization: A reconstruction al-
gorithm for image-based rendering. PhD Dissertation
Technical Report TR01-019, University of North Car-
olina at Chapell Hill, 2001. 2, 6

6. F. D. Foley, A. van Dam, S. K. Reiner, and J. F. Hughes.
Computer Graphics: principles and practice. Addison-
Wesley Publishing Co., 1990. 2

7. S. Kumar, D. Manocha, B. Garett, and M. Lin. Hierar-
chical back-face computation. Eurographics’96, Work-
shop on Rendering, :67, 1996. 2

8. H. Zhang and K. E. Hoff III. Fast back-face culling
using normal masks. Symposium on Interactive 3D
Graphics ’97 :103, 1997. 2

9. U. Assarsson and T. Möller. Optimized view frus-
tum culling algorithms for bounding boxes Journal of
Graphics Tools 5(1):9-22, 2000. 2

10. Ned Greene. Occlusion culling with optimized z-
buffering. SIGGRAPH ’01 Course Notes , 2001. 2

11. T. Hudson, d. Manocha, J. Cohen, B. Garett, M. Lin,
and K. Hoff. Accelerated occlusion culling using
shadow frusta. 13th Annual ACM Symposium on Com-
putational Geometry Proc., :1, 1997. 2

12. J. Bittner, V. Havran, and P. Slavik. Hierarchical visi-
bility culling with occlusion trees. Computer Graphics
International ’98 Proc., :207, 1998. 2

13. N. Greene, M. Kass, and G. Miller. Hierarchical Z-
Buffer visibility. SIGGRAPH ’93 Proc, :231, 1993.

14. H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Vis-
ibility culling using hierarchical occlusion maps. SIG-
GRAPH ’97 Proc., :77, 1997. 2 2

15. M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and
W. Strasser. The randomized z-buffer algorithm: Inter-
active rendering of highly complex scenes. SIGGRAPH
’01 (Computer Graphics Proc), :361, 2001. 2

16. S. E. Chen and L. Williams. View Interpolation for
image synthesis. SIGGRAPH ’93 Proc., :279, 1993. 3

17. L. McMillan and G. Bishop. Plenoptic modeling: an
image-based rendering system. SIGGRAPH ’95 Proc.
:39, 1995. 3

18. L. McMillan. Computing visibility without depth.
Technical Report TR95-047, University of North Car-
olina at Chapel Hill, 1995. 2, 3, 4, 5, 6

19. S. Seitz and C. Dyer. View Morphing: synthesizing 3D
metamorphoses using image transforms. SIGGRAPH
’96 Proc., :21, 1996. 3

20. W. R. Mark, L. McMillan, and G. Bishop. Post-
rendering 3D warping. Interactive 3D Graphics ’97
Proc., :7, 1997. 3, 6

21. W. Mark. Post-rendering 3D image warping: visibility,
reconstruction, and performance for depth-image warp-
ing. PhD Dissertation. University of North Carolina at
Chapel Hill, 1999. 3

22. C. Chang, G. Bishop, and A. Lastra. LDI Tree: A Hi-
erarchical Representation for Image-based Rendering.
SIGGRAPH ’99 Proc. :291, 1999. 3

23. M.Oliveira, G. Bishop, and D. McAllister. Relief tex-
ture mapping. SIGGRAPH ’00 Proc., :359, 2000. 3

24. V. Popescu, A. Lastra, D. Aliaga, M. Oliveira. Ef-
ficient Warping for Architectural Walkthroughs using
Layered Depth Images. IEEE Visualization ’98 Proc.,
:211, 1998. 3, 5

25. C. Chang, A. Varshney, and Q. J. Ge. Hierarchical
Image-based and Polygon-based Rendering for Large-
Scale Visualizations. 3

c© The Eurographics Association 2003.



S.I.Sen, V.Atalay / Occlusion Culling for IBRW

26. S.L. Stoev, I. Peter, and W. Strasser. The multi LDI: an
image-based rendering approach for interaction, nav-
igation, and visualization in complex virtual environ-
ments. Technical Report WSI-2000-23, University of
Tuebingen, 2000. 3

27. V. Popescu, and A. Lastra. The vacuum buffer. Inter-
active 3D Graphics ’01 Proc., :73, 2001. 3

28. S. J. Gortler, L. He, and M. F. Cohen. Rendering lay-
ered depth images. Technical Report, MSTR-TR-97-09,
1997. 5

c© The Eurographics Association 2003.


