
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

Evolutionary Design of BRDFs

J. Meyer-Spradow

Fachbereich Informatik, FG Graphische Datenverarbeitung, Universität Hannover, Hannover, Germany

J. Loviscach

Fachbereich Elektrotechnik und Informatik, Hochschule Bremen, Bremen, Germany

Abstract

The look of a non-transparent material is determined by its bidirectional reflection distribution function (BRDF).
To design 3-D objects for example for games or animation films thus includes to design BRDFs. However, as func-
tions defined on a four-dimensional domain, these form a vast space that is very difficult to explore interactively.
Typically, the infinite number of degrees of freedom is reduced to a tractable handful of parameters by introducing
simplified physical models or heuristic approximations such as Phong’s. As the complexity of such approaches
increases, they become difficult to master for a human operator. Even if many parameters are made accessible,
an infinite variety of useful and/or interesting BRDFs remains hidden and inaccessible. We therefore propose a
method of constructing BRDFs through genetic programming with a human operator making choices based on his
or her preferences. With the pixel shader programmability of modern graphics cards this can be performed in real
time.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

For adjusting the materials of the objects to be rendered,
typical 3-D design software offers a basic choice of shaders
such as Phong or Blinn. As they contain only a small number
of control parameters they are quite easy to understand, but
make the user stuck with established lighting models, often
creating a clean or stereotyped look.

While some advanced shaders such as bhodiNut for
Maxon Cinema 4D or the water shader of Alias|Wavefront
MayaTM achieve more complex results, this comes at the cost
of either having to adjust dozens of parameters or being lim-
ited to one special kind of material modeled with large pre-
cision. In summary this means that today’s software hardly
allows exploring the space of materials.

A similar problem arises already with two-dimensional
texture images. However, here software such as CorelTM

(Ex-MetaCreations) KPT Texture ExplorerR© has long been
used to design textures by evolution. The user looks at a

small set of genetic mutations and chooses from them a sin-
gle base genotype for the next round of mutations. This cor-
responds to genetic programming; however, the fitness of an
individual (in this case a texture) is not determined algorith-
mically but by the user judging aesthetically. This allows to
steer the search through the space of textures—a space with
virtually infinite degrees of freedom.

Thanks to the programmability of modern graphics hard-
ware, a similar solution becomes feasible now for BRDFs.
Our prototype implementation (see Fig.1) loads an poly-
gonal 3-D object including texture coordinates from an stan-
dard .OBJ file. The generated materials (i. e., BRDFs) are
displayed in real time on this model. Following the estab-
lished user interface of KPT Texture ExplorerR©, the soft-
ware shows in 20 smaller frames around a large central dis-
play genetic variations (mutations) of the material shown in
large. A point light source automatically circles around the
displayed objects; for clarity it is marked by a white dot.

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

Meyer-Spradow and Loviscach / Evolutionary Design of BRDFs

Figure 1: Genetically programmed BRDFs composed of ap-
proximately 100 shader instructions are displayed in real
time under a moving light source. The user steers the genetic
evolution by aesthetic selection.

Clicking with the left mouse button on any of the frames
displays the respective material in the center and produces
the variations shown around of it.

As an extension of the well-known user interface of KPT
Texture ExplorerR©, one can click with the right mouse but-
ton onto a frame and then with the left mouse button onto an-
other to produce genetic mixtures (recombinations) of both.
With help of the middle mouse button, the 3-D object can be

rotated; using the CTRL key together with the middle mouse
button, it can be scaled. The implementation prototype saves
and loads generated materials in a proprietary format. The
amount of randomness used for mutation and recombination
and the rotation speed of the light source can be controlled
by the user. Additionally, one can restrict the generated ma-
terials to be homogeneous (BRDF not depending on the po-
sition on the surface) and/or isotropic (unchanged by rota-
tions about the surface normal).

The software has been implemented in C++ using
OpenGLTM . Using BRDFs consisting of 100 assembler in-
structions in the genetically programmed part of the pixel
shader, the prototype achieves a speed of approximately 25
frames per second under MicrosoftR© Windows XPR© on a
PC equipped with an IntelR© PentiumR© 4 running at 2.4 GHz
and a graphics card nVidiaR© GeForceTM FX 5800.

The main contributions of this work are the methods em-
ployed to generate and to genetically program BRDFs via
pixel shaders. The paper is organized as follows: In Sec-
tion 2 we outline related work in the field of evolutionary
design and parametrization of BRDFs. Section3 introduces
our representation of BRDFs by programs. How these pro-
grams are implement by pixel shaders and how genetic op-
erations can be defined on them is described in Section4.
We discuss our results and give an outlook on future work in
Section5.

2. Related Work

Sims20 proposed to employ genetic programming10 not with
automatic evaluation of the fitness but with aesthetic selec-
tion by a human. This idea has found many applications2, 3

to art and to graphic design, even in such areas as the cre-
ation of music and 3-D characters. An similar approach14

aims at designing video textures in real time, employing
the vertex shader programmability already found in the last
but one generation of graphics cards. Abraham’s Genshade7

evolves RenderMan shaders either with or without human
supervision. Some recent works such as Gentropy by Wiens
and Ross22 use genetic programming to generate images, but
evaluate the results automatically. In the same spirit, Hewgill
and Ross6 evolve 3-D textures, feeding position coordinates,
normal vector and surface gradient into LISP programs.

Genetic operations acting directly on machine code typ-
ically need strong restrictions5 and/or measures against
errors11. However, the pixel shaders of the class of 3-D chips
employed here only consist of linear code, without loops
or branches. No error conditions are possible if only syn-
tactically correct opcodes are given. Therefore, such pro-
grams can easily be mutated and recombined as instruc-
tion lists. Their overall structure resembles Cartesian Ge-
netic Programming17.

The seminal work of Phong18 may be viewed as a fore-
runner to modern research into compact representations and

c© The Eurographics Association 2003.

Meyer-Spradow and Loviscach / Evolutionary Design of BRDFs

handy simulations of reflective properties of materials. For
instance, Ashikhmin1 and co-workers propose a widely pa-
rameterizable microfacet model.

Another strand of research started with Fournier’s4

singluar value decomposition of directional dependence.
Kautz8, McCool16 and co-workers use similar factorizations
to parametrize BRDFs for real-time rendering. Latta and
Kolb12 extend this approach to include global lighting ef-
fects. Kautz9 and coworkers as well as Ramamoorthi and
Hanrahan19 use a small number of spherical harmonics to
efficiently convolve a lighting distribution with the BRDFs.
In a different approach, Malzbender15 and co-workers use
biquadratic functions to approximate direction-dependent
terms in an extended version of Phong’s lighting model.

3. Parameters for BRDFs

The BRDF f of a material at a single wavelength and a sin-
gle point on a surface maps the incoming distributionLI of
radiance to the outgoingLO via

LO(ωO) =
∫

Ω
f (ωO,ωI)LI(ωI)cos(θI)dσ(ωI)

where the integral runs over the half sphereΩ pointing out-
side and whereθI measures the angle between the surface
normal and the incoming direction (see Fig.2). For a point-
like light source at directionωI this expression simplifies to

LO(ωO) = f (ωO,ωI)I (cos(θI))+

with I denoting the irradiance due to the light source and
(x)+ := x if x > 0 and(x)+ := 0 otherwise. A physically re-
alizable BRDF can only have non-negative values and must
be reciprocal, which means

f (ωO,ωI) = f (ωI ,ωO)≥ 0

for all incoming and outgoing directions. Additionally, it
must not lead to energy production:

1≥
∫

Ω
f (ωO,ωI)cos(θO)dσ(ωO) (1)

for all incoming directionsωI .

Our objective is to convert an arbitrary pixel shaderg to
a BRDF. Its input consists of data about ingoing and outgo-
ing directions (more on that below); its output is a triple of
floating point values(r,s, t):

(r,s, t) = g(ωI ,ωO)

The pixel shader constructed will be manifestly reciprocal:

g(ωI ,ωO) = g(ωO,ωI)

for all directions. To achieve non-negativity, we form

h(ωI ,ωO) := g(ωI ,ωO)2,

where·2 denotes component-wise squaring.

As input to the pixel shader we have to provide data about

v̂l
^

hT
^

û

n̂

lT
^ vT

^

θO

φO

φI

θI

v = const

u = const

Figure 2: Geometric parameters of the BRDF.

ingoing and outgoing directions. This is mainly calculated
in an additional initial stage prefixed to the pixel shader. We
use the following scalar quantities:

p1 := cos(θO)+cos(θI)

p2 := cos(θO)−cos(θI)

p3 := cos(φO−φI)

p4 := sin(φO−φI)

p5 := cos(φO +φI)

p6 := sin(φO +φI),

where we measure all azimuthal anglesφ relatively to the
u-direction of the texture coordinates.

These six parameters are sufficient to specify ingoing and
outgoing directions for the BRDF. Any isotropic BRDF can
be evaluated completely using onlyp1 to p4. There is some
redundancy in these parameters, for instancep2

3 + p2
4 = 1.

However, this helps to avoid artificial discontinuities in the
basic parameters such as at 360◦ → 0◦ in φO. In order that
the generated BRDF behaves continuously, we only use con-
tinuously varying parameters as inputs.

In addition, this symmetric choice of parameters makes
it simple to construct an arbitraryreciprocalBRDF: As one
switches the roles of ingoing and outgoing directions, the
parametersp1, p3, p5, p6 stay constant andp2, p4 only
change sign. Therefore, reciprocity can be guaranteed if the
BRDF remains unchanged if bothp2 and p4 are multiplied
by−1. But any functionf that for allxandy fulfills f (x,y) =
f (−x,−y) must only depend on the complex square(x+ iy)2

and can thus be writtenf (x,y) = g(x2−y2,2xy) with an ap-
propriate functiong. We can thus achieve manifestly reci-

c© The Eurographics Association 2003.

Meyer-Spradow and Loviscach / Evolutionary Design of BRDFs

procity by using as inputs for the main part of the pixel
shader:p1, p3, p5, p6, p2

2− p2
4, 2p2p4, u, andv. Vice versa,

any reciprocal BRDF can be generated from these param-
eters. To optionally constrain the generated BRDFs to the
case of isotropic and/or homogeneous materials, the param-
etersp5, p6 or u, v, respectively, can be ignored.

Given the geometry of the 3-D scene, the parametersp1,
. . . , p6 are computed as follows: Per vertex the following
vectors are determined in world coordinates and sent to the
graphics card: normal direction̂n, direction to light̂l, direc-
tion to viewerv̂, u-direction of texturêu, and optionally tex-
ture coordinates(u,v) for position-dependent BRDFs. (Here
and in the following, boldface letters denote vectors and hats
denote normalized vectors.)

The vectorû pointing in the local direction of the texture
coordinateu is determined per vertex as follows: Consider
the verticesxk, k = 1,2, . . ., connected via a single edge to a
given vertexx0. Let their texture coordinates be(uk,vk) and
(u0,v0), respectively. Then we seek (unnormalized) vectors
u andb in the local tangent plane (u · n̂ = 0 andb · n̂ = 0)
yielding an optimal linear approximation in the sense that

∑
k

∣∣∣x0 +(uk−u0)u+(vk−v0)b−xk

∣∣∣2
attains a minimum. Through variation with Lagrange multi-
pliers,u can be found as∣∣∣∣ ∑k(uk−u0)πT(xk−x0) ∑k(uk−u0)(vk−v0)

∑k(vk−v0)πT(xk−x0) ∑k(vk−v0)2

∣∣∣∣∣∣∣∣ ∑k(uk−u0)2 ∑k(uk−u0)(vk−v0)
∑k(uk−u0)(vk−v0) ∑k(vk−v0)2

∣∣∣∣ ,

whereπT(x) := x− (x · n̂)n̂ denotes the projection onto the
tangent plane and where the determinant in the numera-
tor has to be computed separately for each component of
πT(xk − x0) yielding the corresponding component ofu.
From normalization ofu resultsû. The other vectorb is nei-
ther used nor computed.

The graphics card interpolates the vectorsn̂, l̂, v̂, û, and
the scalars(u,v), which are given per vertex, to form corre-
sponding vectors and scalars per pixel. In the initial phase
of the pixel shader we compute a set of inputs for the main
part of the pixel shader from these per-pixel values. While
the texture coordinates(u,v) can be used directly, the vec-
tor quantities are no longer normalized after interpolation.
Therefore, we divide them by their length to form pixel-wise
vectorsn̂, l̂, v̂, andû.

As auxiliary unit vectors in the tangent plane we introduce

l̂T := π̂T(l̂) andv̂T := π̂T(v̂). Now the parametersp1, . . . , p4
can be computed:

p1 = cos(θO)+cos(θI) = (v̂+ l̂) · n̂
p2 = cos(θO)−cos(θI) = (v̂− l̂) · n̂
p3 = cos(φO−φI) = v̂T · l̂T

p4 = sin(φO−φI) = v̂T · (n̂∧ l̂T)

We define the tangent half vector byĥT :=
(
v̂T + l̂T

)∧
.

The vectorsv̂T and l̂T possess azimuthal angles ofφI and
φO ∈ [0◦,360◦) so that their normalized averagêhT has
an azimuthal angle of(φI + φO)/2 if |φI − φO| < 180◦ and
(φI + φO)/2±180◦ else. Noting that an offset of 180◦ can-
cels from the following equations, we can compute

p5 = cos(φO +φI)

= cos((φO +φI)/2)2−sin((φO +φI)/2)2

=
(
ĥT · û

)2−
(
ĥT · (n̂∧ û)

)2

and

p6 = sin(φO +φI)

= 2cos((φO +φI)/2)sin((φO +φI)/2)

= 2
(
ĥT · û

)(
ĥT · (n̂∧ û)

)
.

4. Pixel Shader BRDFs and Genetic Programming

Via OpenGLTM extensions, the nVidiaR© GeForceTM FX
5800 offers per-pixel programmability through fragment
programs (colloquially called pixel shaders). These are as-
sembler programs called for every pixel fragment produced;
their intended uses are complex lighting and texture compu-
tations. On the GeForceTM FX, a fragment program com-
prises up to 1024 instructions acting on registers stor-
ing four-component vectors. A “color fragment program”,
which is the type of pixel shader employed in this work, re-
ceives its input via twelve read-only attribute registers and
writes its results into one or both of two result registers
(color, depth).

For use as workspace, the chip offers a set of tempo-
rary registers, which are automatically initialized to zero.
The number of temporary registers depends on the number
of output registers used and the precision chosen: 16 bit or
32 bit floating point. Using only the color output register
but not depth output, up to 63 temporary registers of 16 bit
width can be addressed. In our experiments, the 16 bit op-
erations turned out to be accurate enough and considerably
faster than 32 bit operations.

Constant parameters can be embedded literally into as-
sembler code or be written into 128 “local parameter regis-
ters” which are read-only from the pixel shader. We elected
to use the latter ones in order to lessen the workload of the
graphics driver: All programs are handed to the graphics
driver as ASCII strings for assembling. There is no docu-
mented way of directly generating binary code.

While a typical job of pixel shaders consists of texture
lookup, in our framework this is not necessary, so none of the
texture lookup instructions are used in our prototype. For the

c© The Eurographics Association 2003.

Meyer-Spradow and Loviscach / Evolutionary Design of BRDFs

generated BRDFs to look plausible, we only employ instruc-
tions acting mathematically differentiably, see Table1. We
leave out instructions such asMAX(maximum),SGE(set on
greater or equal) andRCP(reciprocal) because of the bends
or discontinuities they can generate. The graphics chip of-
fers to skip or execute instructions according to condition
flags; for similar reasons, we make no use of this feature.
On the fly, operands can be inverted or converted to absolute
value and their components may be permuted at will (“swiz-
zling”). Likewise, a result can be masked so that only some
of the components of the targeted register are written into.
To ensure mathematical differentiability, we use inversion,
swizzling, and write masking, but not absolute value.

Opcode Description
ADD add two vectors
COS cosine of a scalar
DP3 dot product using three components
DP4 dot product using four components
DST auxiliary operation for light attenuation
EX2 the number 2 raised to a power given by a scalar
LRP linear interpolation of two vectors
MAD multiply and add vectors
MOV copy vector to another register
MUL multiply two vectors component-wise
SIN sine of a scalar
SUB subtract one vector from another
X2D affine 2-D transform using two vectors

Table 1: The instructions used in the genetically evolved
part of the pixel shader.

In summary, a pixel shader is a sequence of assembler
instructions acting on certain registers and using fixed val-
ues stored in constant parameter registers. To program pixel
shaders genetically, we encode an instruction by an opcode
number, numbers for result and operand registers, and bit
patterns for swizzling, inverting, and masking. Only one lim-
itation of the hardware has to be taken into account: Each
single instruction must not access more than one attribute or
parameter register.

In the binary representation an instruction can be mutated
for example by changing the opcode number. A program can
be mutated by mutating randomly selected instructions in it.
Using only programs of fixed length, it becomes simple to
model genetic recombination: Just take two programs side
by side and exchange random blocks at corresponding po-
sitions. For an example of pixel shader code generated by
these operations acting together see Table2.

To achieve a rate of 25 frames per second, we use pixel
shaders whose genetic part is composed of 100 instructions.
40 additional pixel shader instructions are needed to prepare
the parameters and compute the final color. We use no other
temporary registers than those in which the parameters are
prepared according to Section3. If one uses more tempo-

ADDH H5.xyz, -H1.yzyy, -H6.zyyx;
SUBH H4.xw, -H6.xyxy, H2.xxxy;
COSH H5.xy, H4.w;
MADH H6.xy, -H1.zzxx, H5.xzzz, p[10].xxyy;
MOVH H6.zw, -H3.xxxx;
DP4H H5.xw, -p[35].xzzz, H6.yyxy;
COSH H1.xw, -H5.x;
SINH H3.xyw, p[35].z;
ADDH H6.xyw, H1.yyyy, -H2.yyzz;
EX2H H0.xyz, -H2.z;
EX2H H5.xz, -H6.w;
MOVH H3.yz, -H6.yzxy;
SINH H0.yzw, p[11].z;
ADDH H0.z, H1.zyyx, -H3.yyzx;
COSH H4.xyz, H5.y;
MADH H6.xyw, p[5].yxyx, -H2.yxzz, -H3.xzxx;
DSTH H5.xyw, H4.xyyy, -H4.yyzy;
LRPH H4.xyw, H6.zyyx, -H3.xzzy, H1.xyxy;
EX2H H3.yz, -H5.z;
DP4H H4.xz, p[33].yzxz, H0.zyyz;
MULH H0.xw, -H0.yxxz, H4.xyyz;
SUBH H5.xyz, -H0.zzyx, H5.zyyz;
DSTH H0.xw, -H5.yyyy, p[5].zzzx;
DP3H H0.w, p[10].yzzx, H3.xxzz;

Table 2: Excerpt from a genetically generated pixel shader.
The “H” designates a precision of 16 bit.

raries, the visual complexity drops because too few interme-
diate results are used in later steps.

Genetic Programming tends to bloat programs by com-
putationally irrelevant code21. This may protect other code
against the destructive actions of genetic operations. How-
ever, code bloat takes up valuable rendering time. There-
fore, we use an optimization already implemented for ver-
tex shaders14: Before converting the instruction sequence to
an ASCII string to be sent to the graphics driver, a spe-
cial routine hides all obviously superfluous instructions, i. e.,
such ones that only write into register components not used
at a later stage. For programs consisting of 100 genetically
evolved instructions we typically see 30 to 60 instructions
being discarded this way. The speedup in rendering is nearly
proportional to this figure.

5. Results, Outlook

We have designed and implemented a tool for interactive de-
sign of BRDFs via genetic programming of pixel shaders.
Using the computing power of modern graphics cards, the
system delivers even highly complex results in real time.

One may optimize the image quality using prefiltering
to suppress aliasing artifacts and using gamma-curve pre-
distortion to display the colors physically correct. To limit
the outgoing energy to physically possible values according
to Eqn. (1) did not prove to be visually important. How-
ever, one may simply include this constraint by computing

c© The Eurographics Association 2003.

Meyer-Spradow and Loviscach / Evolutionary Design of BRDFs

the maximum value of Eqn. (1) and dividing the generated
BRDF by it. The maximum value can be approximated by
repeatedly rendering a half sphere illuminated by a direc-
tional light source into an offscreen buffer.

In order to use the evolutionary designed BRDFs in stan-
dard 3-D animation and rendering software, we plan to
implement an export feature. This will translate the pixel
shaders into Cg or other shading languages which can be
read by appropriate plug-ins. To facilitate such a scheme,
each of the the computational steps done per vertex has to be
implemented as an appropriate vertex shader or to be done
in advance with its result stored as part of the model data. In
particular, the vector ˆu has to be part of the model because a
vertex shader cannot process different vertices at once.

Our system already addresses spatially dependent
BRDFs, i. e., BTFs (bidirectional texture functions). A re-
alistic bump mapping could be achieved by generating
meso-scale structures13. An automatic, not manual evolution
may be guided by given BRDFs or even—as an “inverse
rendering”—by given images. This mode could work sim-
ilar as existing solutions searching for algorithms producing
given 2-D textures6 14.

References

1. M. Ashikhmin, S. Premože, and P. Shirley. A
Microfacet-Based BRDF Generator.ACM Computer
Graphics (Proc. of SIGGRAPH 2000), pp. 65–74, 2000.
3

2. P. Bentley (ed.).Evolutionary Design by Computers.
Morgan Kaufmann, 1999.2

3. P. Bentley and D. W. Corne (ed.).Creative Evolution-
ary Systems.Morgan Kaufmann, 2002.2

4. A. Fournier. Separating Radiosity Functions for Lin-
ear Radiosity.Rendering Techniques ’95 (Eurographics
Workshop on Rendering), pp. 383–392, 19953

5. B. Harvey, J. Foster, and D. Frincke. Towards Byte
Code Genetic Programming.Proc. of the Genetic and
Evolutionary Computation Conf. (Orlando), pp. 1234–
1241, 1999.2

6. A. Hewgill and B. J. Ross.Procedural 3D Texture Syn-
thesis Using Genetic Programming.Technical Report
CS-03-06, Brock University, Dept. of Computer Sci-
ence, 2003.2, 6

7. A. E. Ibrahim.Genshade: an Evolutionary Approach to
Automatic and Interactive Procedural Texture Genera-
tion. Doctoral Thesis, College of Architecture, A&M
University, 1998. 2

8. J. Kautz and M. McCool. Interactive Rendering
with Arbitrary BRDFs Using Separable Approxima-
tions. Rendering Techniques ’99 (Proc. of Eurograph-
ics Workshop on Rendering), pp. 281–292, 1999.3

9. J. Kautz, P.-P. Sloan, and J. Snyder. Fast, Arbitrary
BRDF Shading for Low-Frequency Lighting Using
Spherical Harmonics.Proc. of the 12th Eurographics
Workshop on Rendering, pp. 301–308, 2002.3

10. J. R. Koza. Hierarchical Genetic Algorithms Operat-
ing on Populations of Computer Programs.Proc. of
the 11th Int. Conf. on Genetic Algorithms (San Mateo),
pp. 768–774, 1989.2

11. F. Kühling, K. Wolff, and P. Nordin. Brute-Force Ap-
proach to Automatic Induction of Machine Code on
CISC Architectures. Genetic Programming, Proc. of
the 5th European Conf. (Kinsale), pp. 288–297, 2002.
2

12. L. Latta and A. Kolb. Homomorphic Factoriza-
tion of BRDF-based Lighting Computation.ACM
Transactions on Graphics (Proc. SIGGRAPH 2002),
21(3):509–516, 20023

13. X. Liu, Y. Yu, and H.-Y. Shum. Synthesizing Bidi-
rectional Texture Functions for Real-World Surfaces.
ACM Computer Graphics (Proc. of SIGGRAPH 2001),
pp. 97–106, 2001.6

14. J. Loviscach and J. Meyer-Spradow. Genetic Program-
ming of Vertex Shaders.Proc. of EuroMedia 2003 (Ply-
mouth), pp. 29–31, 2003.2, 5, 6

15. T. Malzbender, D. Gelb, and H. Wolters. Polynomial
Texture Maps.ACM Computer Graphics (Proc. of SIG-
GRAPH 2001), pp. 519–528, 2001.3

16. M. D. McCool, J. Ang, and A. Ahmad. Homomorphic
Factorization of BRDFs for High-Performance Render-
ing. ACM Computer Graphics (Proc. of SIGGRAPH
2001), pp. 171–178, 20013

17. J. F. Miller and P. Thomson. Cartesian Genetic Pro-
gramming. Genetic Programming, Proc. of EuroGP
2000 (Edinburgh), pp. 121–132, 2000.2

18. B.-T. Phong. Illumination for Computer-Generated Pic-
tures. Communications of the ACM, 18(6):311–317,
1975. 2

19. R. Ramamoorthi and P. Hanrahan. Frequency Space
Environment Map Rendering.ACM Transactions on
Graphics (Proc. of SIGGRAPH 2002), 21(3):517–525,
2002. 3

20. K. Sims. Artificial Evolution for Computer Graphics.
Computer Graphics, 25(4):319–328, 1991.2

21. T. Soule and R. B. Heckendorn. An Analysis of the
Causes of Code Growth in Genetic Programming.Ge-
netic Programming and Evolvable Machines, 3:283–
309, 2002. 5

22. A. L. Wiens and B. J. Ross. Gentropy: Evolving 2D
Textures.Computers & Graphics, 26:75–88, 2002.2

c© The Eurographics Association 2003.

