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Abstract
One of the main problems in the radiosity method is how to discretise the surfaces of a scene into mesh elements
that allow us to accurately represent illumination. In this paper we present a robust information-theoretic refine-
ment criterion (oracle) based on kernel smoothness for hierarchical radiosity. This oracle improves on previous
ones in that at equal cost it gives a better discretisation, approaching the optimal one from an information theory
point of view, and also needs less visibility computations for a similar image quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Radiosity.

1. Introduction

In the radiosity method, scene meshing has to accurately
represent illumination variations. At the same time, it has
to avoid unnecessary subdivisions that would increase the
computation time. A correct strategy should try to balance
accuracy and computational cost.

Hierarchical techniques 10 
 2 aim at this target. They intro-
duce an oracle upon which a decision to subdivide is made.
The oracle should be intelligent enough to ask for more sub-
division where more precision is needed. On the other hand,
its cost should not make the method prohibitive.

The cheapest and most used oracle has been the power-
based oracle 10. However, it leads to unnecessary subdivi-
sions in smoothly illuminated unoccluded regions receiv-
ing a lot of power. As an alternative, oracles based on
the smoothness of the geometrical kernel (point-to-point
form factors) and the received radiosity have been pro-
posed 16 
 8 
 13 
 14 
 12 
 3 
 17 
 11. However, oracles based on kernel
smoothness have also the problem of unnecessary subdivi-
sions where the kernel is unbounded, and the ones based on
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received radiosity rely on a costly accurate computation of
form factors. All in all, the additional cost invested in both
smoothness-based oracles, mainly through visibility compu-
tations, may not be balanced by the obtained improvements.

In this paper we present a kernel smoothness based ora-
cle which has a robust behaviour, i.e., we can decrease the
needed additional visibility tests to just a few and still get
an accurate decision. This oracle comes from the previous
results obtained by the authors on information theory appli-
cations to radiosity, and differs from a previous oracle pro-
posal 6, based on the estimated increase of discrete radiosity
mutual information, in the sense that here we use the knowl-
edge of how far we are from the perfect discretisation from
an information-theoretic perspective. Specifically, the differ-
ence between continuous and discrete element-to-element
mutual information will make the basis for our oracle.

The paper is organised as follows: First (section 2), we
review different refinement oracles used in the hierarchi-
cal radiosity setting, and also information theory tools for
scene discretisation. In section 3, we introduce the continu-
ous radiosity mutual information and we propose a new ora-
cle based on the difference between continuous and discrete
element-to-element mutual information. In section 4, some
experiments show the better discretisation and robustness of
our method in comparison with a classic smoothness-based
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oracle. And finally, in section 5, we present our conclusions
and future work.

2. Previous Work

In this section we give an overview of different refinement
oracles used in the hierarchical radiosity setting 1, and also
some information theory tools for scene discretisation intro-
duced in 5 
 6.

2.1. Refinement Criteria

The application of a good refinement criterion and strategy
is fundamental for the efficiency of the hierarchical refine-
ment algorithm. Next we review some criteria proposed in
the past.

Refinement based on transported power

Hierarchical refinement radiosity was initially presented for
constant radiosity approximations by Hanrahan et al. 10. A
cheap form factor estimate F̃i j ignoring visibility was used
to measure the accuracy of a candidate interaction from an
element j to an element i. If max � F̃i j � F̃ji � exceeds a given
threshold ε, the larger of the two elements i and j is subdi-
vided using regular quadtree subdivision. In the other case,
the candidate link is considered admissible.

Hanrahan et al. 10 also observed that the number of form
factors can be reduced considerably without affecting im-
age quality by weighting the link error estimates F̃i j with the
source element radiosity B j and receiver element area Ai.
Weighting with receiver reflectance ρi also further reduces
the number of links without deteriorating image quality. The
power-based oracle used in our comparisons is given by

ρiAiF̃i jB j � ε (1)

Other strategies 18 
 7 can be used to reduce the number of
form factors by taking visibility information about candi-
date interactions into account. Let us observe that form-
factor and power-based refinement criteria use no informa-
tion about the variation of the received radiosity across the
receiver element. This results for instance in sub-optimal
shadow boundaries and too fine refinement in smooth areas.
The main advantage of this criterion is its very low compu-
tational cost while yielding a fair image quality.

Refinement based on kernel smoothness

In order to improve on power-based refinement, the variation
of the radiosity kernel G � x � y � between a pair of elements is
taken into account. G � x � y � is equal to F � x � y � vis � x � y � , where
F � x � y � is the point-to-point form factor without occlusion
and vis � x � y � takes the value 1 if x and y are mutually visible
and 0 otherwise.

In 16, the refinement criterion is given by ρi � Gmax
i j �

Gmin
i j � A jB j � ε where Gmax

i j � maxx ��� i 	 y ��� j G � x � y � and

Gmin
i j � minx ��� i 	 y ��� j G � x � y � are the maximum and minimum

radiosity kernel values and are estimated by taking the max-
imum and minimum value computed between pairs of ran-
dom points on both elements, 
 i and 
 j are the surfaces of
the elements, ε is a predefined threshold, A j , B j, ρi are re-
spectively the source area, source radiosity, and receiver re-
flectivity.

A similar approach was used in 8 in order to drive hierar-
chical refinement with higher-order approximations. When
applied to constant approximations, the refinement criterion
is given by

ρimax � Gmax
i j � Gav

i j � Gav
i j � Gmin

i j � A jB j � ε (2)

where Gav
i j is the average radiosity kernel value, Gav

i j �
Fi j � A j , and Fi j is the form factor between patches i and j.
Kernel variation is a sufficient condition for received radios-
ity variation, but not a necessary condition 1.

Refinement based on smoothness of received radiosity

Because bounding kernel variation is not a necessary condi-
tion for bounding received radiosity variation, we can expect
that hierarchical refinement based on kernel smoothness will
yield hierarchical meshes with more elements and links than
required. Optimal refinement can be expected by directly es-
timating how well the radiosity B j � x � received at x � Si from
S j is approximated by a linear combination of the basis func-
tions on Si, i.e. by estimating the discretisation error directly.

This approach was first proposed by Lischinski et al. 13

for constant approximations and Pattanaik and Bouatouch 14

proposed a similar strategy for linear basis functions. Other
approaches are given in 12 
 3 
 17 
 11. The computation cost of
kernel and radiosity smoothness-based oracles was not yet
found to compensate for the gain in mesh quality 1.

2.2. Information Theory Tools

In 5, discrete (Id
v ) and continuous (Ic

v ) visibility mutual infor-
mation have been introduced as scene complexity measures,
and also discrete mutual information was generalized to the
radiosity setting (Id

r ). These complexity measures represent
the visibility information transfer in a scene and express the
difficulty of discretising it: the higher the continuous mutual
information, the more difficult it is to obtain an accurate dis-
cretisation and probably more refinements are necessary to
achieve a predefined precision.

In 5 
 6, the following results and proposals concerning vis-
ibility and radiosity were presented:

 Continuous mutual information Ic is the least upper bound

to discrete mutual information Id .
 Ic, independent of any discretisation, expresses with max-
imum accuracy the information transfer or dependence in
a scene.
 By refining the patches, Id must increase (or remain the
same).
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 Among different discretisations of a scene the most accu-
rate one is the one with the highest discrete mutual infor-
mation, i.e. with minimum loss of information transfer.
 A global discretisation error can be given by

∆ � Ic � Id

Ic

Discrete scene radiosity mutual information, introduced
in 5, is given by

Id
r �

np

∑
i � 1

np

∑
j � 1

�
i � i j�

T
log

� � i j
�

T�
j � (3)

where logarithms are in base 2, np is the number of patches,�
i � Ai � Bi � Ei �

ρi
Bi,

�
T � ∑i

�
i, � i j � ρiFi jB j

Bi � Ei
, Fi j is the form

factor between patches i and j, and Ei, Bi, ρi, and Ai are
respectively the emission, radiosity, reflectivity, and area of
patch i.

From (3), the term

Id
ri j �

�
i � i j�

T
log

� � i j
�

T�
j � (4)

can be considered as an element of a mutual information ma-
trix, and it is easy to see that Id

ri j � Id
r ji . Each element rep-

resents the radiosity information transfer between patches i
and j. Also, we can consider that

Id
ri �

np

∑
j � 1

�
i � i j�

T
log

� � i j
�

T�
j � (5)

expresses the information transfer from patch i. Thus,

Id
r �

np

∑
i � 1

Id
ri �

np

∑
i � 1

np

∑
j � 1

Id
ri j (6)

If we analyze the terms Id
ri j we observe that negative val-

ues appear when � i j � �
j . This situation reflects a very

low interaction between the two patches involved. On the
other hand, using the concavity property of the logarithm
function4

n

∑
k � 1

ak log
� ak

bk �	�

 n

∑
k � 1

ak � log
� ∑n

k � 1 ak

∑n
k � 1 bk � (7)

it is easy to see that Id
ri � 0 (substituting ak, bk, and n by � i j ,�

j , and np, respectively). From this result, we deduce that
Id
r � 0.

In 6, we show that for the constant radiosity case the in-
crease in mutual information between two planar patches i
and j when subdividing i into m sub-patches is given by

� ∆Id
r � i j � 2BiB j

�
� m

∑
k � 1

Aik Fik j log � Fik j ��� � AiFi j log � Fi j � � (8)

From the analysis of this formula, an oracle proposal for hi-
erarchical radiosity refinement was presented. While this or-
acle was based on the increase of discrete mutual informa-
tion, the smoothness-based oracle which we will present in

the next section is based on the difference between continu-
ous and discrete mutual information.

3. Mutual Information Smoothness-Based Oracle

3.1. Continuous Radiosity Mutual Information

In 5, we obtained continuous visibility mutual information
Ic
v from discrete visibility mutual information Id

v . In a simi-
lar way, continuous radiosity mutual information Ic

r can be
obtained from Id

r with the following substitutions:


 �
i by B � x ��� E � x �ρ � x � B � x �


 �
T � ∑i Ai

Bi � Ei
ρi

Bi by
� c

T ��� � B � x ��� E � x �ρ � x � B � x � dx

 � i j by � � x � y � � ρ � x � F � x 	 y � B � y �B � x ��� E � x �
where 
 represents the surfaces of the scene, F � x � y � is the
point-to-point form factor, B � x � , E � x � , and ρ � x � are respec-
tively the radiosity, self-emitted radiosity, and reflectivity at
x � 
 .

Thus, we obtain

Ic
r ��� � � � F � x � y � B � x � B � y �� c

T
log

� � c
T F � x � y �

B � x � inB � y � in � dxdy (9)

where B � x � in � B � x ��� E � x �ρ � x � represents the incoming radios-
ity at point x. Expression (9) could be computed using
the same approach as for the visibility continuous mutual
information5 whenever we know the exact radiosity distri-
bution over the scene and the value of

� c
T . Generally we

know neither, so we have to make do with approximate val-
ues, computed using a piecewise constant function over all
patches. The accuracy of the value found for Ic

r will depend
on the quality of this distribution. Applying the following
substitutions:

� c
T by

�
T , B � x � by Bi, B � y � by B j, E � x � by

Ei, E � y � by E j, and R � x � by Ri, R � y � by R j , and proceeding
as in the visibility case 5, we obtain for N global lines15

Ic
r � AT

N

N

∑
k � 1

BiB j�
T

log
� �

T cosθxcosθy

πd � x � y � 2Bin
i Bin

j � (10)

where Bin
i � Bi � Ei

ρi
represents the incoming radiosity on

patch i, AT is the total area of the scene, θx and θy are the an-
gles which the normals at x and y form with the line joining
them, and d � x � y � is the distance between x and y.

3.2. Smoothness-Based Oracle

We introduce in this section our information-theoretic oracle
based on the radiosity kernel smoothness, to be used in the
hierarchical refinement algorithm. As the refinement strat-
egy in hierarchical radiosity deals with a pair of elements at
a time, we have to search in our information theory frame-
work for a similar interaction. From the decomposition of
expression (9) into a sum over element pairs 
 i and 
 j, this
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searched for interaction can be expressed by continuous ra-
diosity element-to-element mutual information Ic

ri j :

Ic
ri j � � � i

� � j

F � x � y � B � x � B � y �� c
T

log
� � c

T F � x � y �
B � x � inB � y � in � dxdy(11)

This continuous measure expresses with maximum precision
the radiosity information transfer between two elements.

The computation of expression (11) will be done with
lines joining both elements i and j, cast by selecting pairs
of random points on both elements (i.e. using pd f � 1

AiA j
).

Assuming constant approximations for the radiosity over the
elements, we obtain for Ni j lines:

Ic
ri j � AiA jBiB j�

T

1
Ni j

Ni j

∑
k � 1

F � xk � yk � log
� F � xk � yk � � T

Bin
i Bin

j � (12)

where xk and yk are respectively the end-points on path i and
j of k-th line. The fundamental idea in our approach is the
following: the difference between continuous and discrete
element-to-element mutual information gives us a loss of in-
formation transfer between two elements due to the discreti-
sation, and at the same time the maximum potential gain of
information between them. Thus this difference can be inter-
preted as a measure for the benefit to be gained by refining
and can be used as a decision criterion. Below is an expres-
sion showing this difference.

From (4), Id
ri j can be expressed as

Id
ri j �

AiFi jBiB j�
T

log
� Fi j

�
T

A jBin
i Bin

j �
� AiA jBiB j�

T

Fi j

A j
log

� Fi j

A j

�
T

Bin
i Bin

j � (13)

Therefore, taking Fi j
A j � 1

Ni j
∑

Ni j

k � 1 F � xk � yk � , we obtain

Ic
ri j � Id

ri j

� AiA jBiB j�
T � 1

Ni j


 Ni j

∑
k � 1

F � xk � yk � log
�
F � xk � yk �

�
T

Bin
i Bin

j � �
�

Fi j

A j
log

� Fi j

A j

�
T

Bin
i Bin

j ���
� AiA jBiB j�

T



1

Ni j

� Ni j

∑
k � 1

F � xk � yk � log � F � xk � yk � � �
�

Fi j

A j
log

� Fi j

A j � �
�

AiA jBiB j�
T



1

Ni j

� Ni j

∑
k � 1

F � xk � yk � log � F � xk � yk � � �
�
� 1

Ni j

Ni j

∑
k � 1

F � xk � yk � � log
� 1

Ni j

Ni j

∑
k � 1

F � xk � yk � � �
(14)

Using the concavity property (7), it is easy to see that

Ic
ri j � Id

ri j � 0. This difference gives us the discretisation er-
ror between two elements and it is used as the basis for our
mutual information (MI) oracle.

Using the above expression as oracle has some inconve-
niences. First, the value

�
T should be recomputed after each

interaction. Second, at the beginning of the radiosity compu-
tation most of the receiver Bi values are null. We deal with
both problems by dropping

�
T as it does not change much

from interaction to interaction and by substituting Bi by ρi
value as, for a non-source patch, Bi is proportional to ρi.

Finally, the expression used in the oracle is given by

δ � AiρiA jB j



1

Ni j

� Ni j

∑
k � 1

F � xk � yk � log � F � xk � yk � � �
�
� 1

Ni j

Ni j

∑
k � 1

F � xk � yk � � log
� 1

Ni j

Ni j

∑
k � 1

F � xk � yk � � �
(15)

Observe that the receiver area appears weighting the oracle
in expression (15), avoiding a too small receiver subdivision.

4. Results

We have implemented the classic smoothness–based ora-
cle 2 and our MI one on top of the hierarchical Monte
Carlo radiosity 2 method of RenderPark9 system (www.
renderpark.be). It shall be noted that our oracle can be
used with any hierarchical radiosity method.

The performance of the MI oracle we use two scenes, the
Cornell box (figures 1 and 4) and the cube room (figures 2,
3 and 5). Six different discretisations have been generated
for the Cornell box: three coarse (figure 1(I)) and three finer
ones (figure 1(II)). These discretisations have been obtained
from three meshing strategies based respectively on trans-
ported power (formula 1) (figures 1(a.I) and 1(a.II)), classic
kernel smoothness (formula 2) (figures 1(b.I) and 1(b.II)),
and MI kernel smoothness (formula 15) (figures 1(c.I) and
1(c.II)). In a similar way, we compare our strategy with the
classic smoothness-based one with two different views of
the cube room scene (figures 2 and 3). The classic and MI
oracles have been evaluated for each discretisation decision
with 10 additional point-to-point form factor computation
between a pair of elements (except in figures 4 and 5, where
4 rays are used). The power-based oracle has used cheap
point–to–polygon form factor estimates.

In figures 1(I) and 1(II) we see the behaviour of the three
oracles for two different levels of discretisation. Only in the
finer one the shadow of the small cube gets an accurate rep-
resentation using the power-based and classic smoothness-
based oracle, while in the MI one it has already a good
representation in the coarse mesh. The power-based oracle
overdiscretises the rear wall and the top of the prism, as ex-
pected, while the smooth ones correct this effect. However,
the MI oracle supports the pass from a coarse to a finer mesh
much better (see again the rear wall).
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(a.I) Power-based mesh (b.I) Classic smoothness-based mesh (c.I) MI-based mesh

(a.II) Power-based mesh (b.II) Classic smoothness-based mesh (c.II) MI-based mesh

(a.III) Power-based (b.III) Classic smoothness-based (c.III) MI-based

Figure 1: Power-based (a), classic smoothness-based (b) and MI-based (c) methods with the Cornell box scene. A coarse mesh
is shown in (I) with 1051 (a.I), 1039 (b.I), and 1047 (c.I) patches, with 19472 rays for the radiosity computation. A fine mesh
is shown in (II) with 1979 (a.II), 1955 (b.II), and 1995 (c.II) patches, with 116780 rays for the radiosity computation. The
Gouraud shaded solution of (II) is shown in (III). For images (b) and (c), 10 rays are cast for each oracle evaluation.

Figures 2 and 3 show the behaviour of the classic
smoothness-based and MI oracle for the cube room scene.
Observe the accurate representation of the shadow of the
chair near the right wall (figure 2(b)) and front wall (figure
3(b)) obtained by the MI oracle. Observe also the much bet-
ter discrimination in the mesh, seen for instance on the floor
and walls, and also the much better represented shadows on
the table in figure 3(b).

In figures 4 and 5 the robustness of the classic

smoothness-based and MI oracle are tested against a de-
crease from 10 to 4 point-to-point form factor computation
for each oracle evaluation. Classic oracle degenerates to a
behaviour similar to the one by power-based oracle, see for
instance the rear wall in figure 4(a) (compare with figures
1(b.I)) and the same happens with figure 5(a) (compare with
figures 2(a)). On the other hand, the MI oracle keeps most of
its good behaviour (compare figure 4(b) with figures 1(c.II)).
See also the shadow of the chair near the right wall in figures
5(b) and 2(b).
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(a.I) Classic smoothness-based mesh (b.I) MI-based mesh

((a.II) Classic smoothness-based (b.II) MI-based

Figure 2: Classic smoothness-based (a) and MI-based (b) methods with the cube room scene showing the mesh (I) and Gouraud
shaded solution (II). The number of patches is 13902 and 13878 respectively. For each one we cast 402650 rays for radiosity
computation and 10 rays for each oracle evaluation.

5. Conclusions

We have introduced in this paper a new smoothness-based
refinement oracle for hierarchical radiosity based on the dif-
ference between continuous and discrete element-to-element
mutual information. This oracle has been compared with the
two classic refinement oracles based on transported power
and kernel smoothness using a hierarchical Monte Carlo ra-
diosity implementation. Experiments suggest that the newly
proposed oracle better preserves illumination detail and
avoids overrefinement in smoothly lit areas. It also appears
considerably more robust than the classic smoothness-based
one.
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(a.I) Classic smoothness-based mesh (b.I) MI-based mesh

(a.II) Classic smoothness-based (b.II) MI-based

Figure 5: Smoothness-based (a) and MI-based (b) methods with the cube room scene showing the mesh (I) and Gouraud
shaded solution (II). the number of patches is 13690 and 13758 respectively. For each one we cast 402565 rays for radiosity
computation and 4 rays for each oracle evaluation.
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