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The Voronoi-Quadtree: construction and visualization
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Abstract

We define a quadtree-based planar Voronoi diagram codification, the Voronoi-Quadtree, valid for generalized
sites (points, line-segments, curve-arc segments, ...) and for different distance functions (Euclidean metrics, convex
distance functions, ...). We present an algorithm for constructing, at a prefixed level of detail, the Voronoi-Quadtree
associated to a Voronoi diagram determined by a set of sites and a given distance function. A second algorithm
that, taking as input a Voronoi-Quadtree, visualizes a polygonal approximation of the boundary of the Voronoi

diagram is also described.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling.

1. Introduction

The generalized Voronoi diagram 1 of a set of sites parti-
tions the plane into regions, one per site, such that all points
in a region have the same closest site according to some
given distance function. Voronoi diagrams are widely used
in many scientific fields and application areas, such as com-
puter graphics, geometric modeling, geographic information
systems, visualization of medical datasets, pattern recogni-
tion, robotics, shape analysis or crystal and cell growing, just
to name a few (see 9).

Algorithms for computing the Voronoi diagram, when
sites are points, have been extensively developed in compu-
tational geometry and related areas 1. These algorithms have
a low computational complexity. On the contrary the com-
putation of exact generalized Voronoi diagrams (i.e. when
sites are points, line-segments, curve-arc segments, ...) use
to be complicated. The algorithms that have to be applied
suffer from numerical robustness problems and are time-
consuming due to the numerous high precision calculations
that are required. However in some applications (motion
planning, geographical maps, ...) the computation of an ap-
proximate generalized Voronoi diagram within a predeter-
mined precision is sufficient. Several algorithms have been
proposed for approximating generalized Voronoi diagrams.
Lavender et al.3 use an octree representation of objects and
performs spatial decomposition to compute the approxima-
tion. Vleugels et al. 8 present an algorithm for a set of disjoint
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convex sites and Euclidean distance in any dimension. The
algorithm adaptively subdivides the space into axial cells of
fixed size and computes the Voronoi diagram up to a given
precision. Teichmann et al. 7 compute a polygonal approxi-
mation of Voronoi diagrams of triangles by subdividing the
space into tetrahedral cells. Hoff et al. 2 visualize general-
ized Voronoi diagrams in the plane using interpolation-based
polygon rasterization hardware.

In this paper we present an approach to visualize ap-
proximate planar Voronoi diagrams for different site shapes
(points, line-segments, curve-arc segments, ...) and differ-
ent distance functions (Euclidean metrics, convex distance
functions, ...). Not all the sites must have associated the
same distance function. The restrictions are: the Voronoi
regions must be connected, the degree of a Voronoi ver-
tex must be lower than four, and the bisectors can not
contain two-dimensional pieces. The approach is based in
a quadtree-based codification, the Voronoi-Quadtree. The
Voronoi Quadtree (VQ) maintains in its nodes information
of whether or not a Voronoi diagram is simple enough in a
rectangle. If it is, the rectangular area corresponds to a termi-
nal node. Otherwise, the rectangle is decomposed into four
children, and the same process is repeated recursively. From
the information encoded in the VQ terminal nodes approxi-
mation of the Voronoi diagram can be visualized at different
levels of detail. Moreover, by decreasing the resolution of the
VQ, the polygonal approximation tends to the exact Voronoi
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diagram. The most attractive features of this VQ approach
are its generality, robustness and easy implementation.

We also present two related algorithms. The first algo-
rithm constructs the VQ associated to a Voronoi diagram
defined by a set of sites and a given distance function. The
second algorithm visualizes, with the desired degree of ac-
curacy, the Voronoi region boundaries encoded in the nodes
of the VQ.

The outline of the paper is as follows. In Section 2 some
basic definitions are presented. Then, in Section 3 we present
the VQ. Section 4 gives a detailed description of the VQ con-
struction process, and Section 5 presents the visualization
algorithm. Some results and the conclusions are provided in
Section 6. Finally, Section 7 finishes with a list of research
topics for the future.

2. Basic definitions

We are going to represent a site Sby S =< Gg,Dg, Ps, Ls >,
where:

e Ggrepresents the geometry of the site S. For example, if S
is a circle then Ggis composed by the center and radius of
S, if S is a segment then Gg is composed by the endpoints
of S;

e Dgis the function that gives the distance from any point
p to S. This function depends on the geometry Gs and the
distance function considered (Euclidean, conve, ...). For
example, if S is the circle of center C and radius r and we
consider the Euclidean distance, then Dg(p) =|| p—C ||
—r; if S is again the circle of center C and radius r but
we consider the convex distance function determined by
S, then Ds(p) =[| p—C || /r;

e Ps is a point such that Dg(Ps) = 0. We say that Ps is a
base point of S. As we will see later, we are going to use
Ps to classify the site S with respect to a given rectangular
region;

e Lgisa label used to identify the site S.

Let S = {S1,---,Sn} be a set of sites. Each site S; €
S has associated a Voronoi region VR(S;j) = {p|ds(p) <
ds (p)forallj # i}. The bisector of two different sites
Si,Sj € S is defined as B(S;, Sj) = {p|ds (p) =ds, (p)}. The
boundary of VR(S;j) consists of pieces of bisectors B(S;, Sj)
where i # j. The generalized Voronoi diagram of S, denoted
VD(S), is defined as the decomposition of the plane into
\Voronoi regions 1.

Let R be a rectangular region and S; a site such that RN
VR(Si) # 0. We say that the S; is inside R when Pg € RN
VR(S;) and we say that S; is outside R otherwise. Figure 1
shows a Voronoi diagram V D(S) determined by six sites and
a rectangular region R. In the figure, each Voronoi region is
represented by its base point and its label. Note that the sites
labeled with C and D are inside with respect to R, the sites
labeled with A, B and E are outside, and site labeled with F
is neither inside nor outside.

Figure 1: Example with inside and outside sites.

A rectangular region R is called a basic region when R
intersects less than four Voronoi regions. In Figure 2, R1 and
R3 are basic regions, but R» is not a basic region.

Figure 2: Basic and not basic rectangular regions.

3. The Voronoi-Quadtree

A quadtree 6 is a tree that encodes the recursive subdivision
of a rectangular region in the plane. The root of the tree rep-
resents the region. This rectangular region is subdivided into
four identical rectangular regions, called quadrants. Each
quadrant is represented by one of the four nodes descendants
of the root. If the information of a quadrant can not be rep-
resented in an exact way, it is labeled as a grey node. Each
grey node is subdivided into another four identical rectan-
gular regions which are represented as descendant nodes of
the node representing the quadrant in question. This process
is repeated recursively until quadrants contain data that can
be represented exactly (named terminal nodes) or quadrants
have a minimum edge length called resolution (minimal res-
olution nodes or maximal subdivision nodes).

In our case, the quadtree data structure is used to maintain
the information required to generate a generalized Voronoi
diagram. With this purpose we have defined the \Voronoi-
Quadtree. The charaterization of terminal VVQ nodes (section
3.2) is based on the principle presented in section 3.1.
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3.1. Main idea

Let R be a rectangular region containing the sites of S. To
obtain a quadtree representation of the part of the Voronoi
diagram V D(S) contained in R we use a recursive process
that, starting with R (represented in the root node of the
quadtree), subdivides each rectangular region in four new
identical rectangular regions (denoted R0, R1, R2 and R3 and
represented in the descendants nodes of R). This subdivision
process is repeated until the actual region is a basic region
or its resolution is the minimal. This subdivision process is
composed of the following steps (see Figure 3) :

1. Labeling. At each vertex of the RO, R1, R2 and R3 regions
of the actual rectangular region R we assign the label of
the nearest site belonging to the set of sites classified as
inside or outside with respect to R;

2. Inside sites Identification. At each son node RO, R1, R2
and R3 we attach the sites classified as inside with respect
to them. In Figure 3 R3 has the sites labels A and F as
inside;

3. Propagation. For each vertex v of RO, R1, R2 and R3 con-
sider the set A of nodes that represents rectangular re-
gions whose boundary contains v. Assume that vertex v
has been labeled with label Ls in step (1). For each node
N € N, if the site S is not an inside site of N then at-
tach the site S to N as an outside site. As it is illustrated
in Figure 4 this step might involve rectangles at different
subdivision levels. Observe that the son node RO has the
site of label A as outside site after the subdivision of the
son node R3.
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Figure 3: Rectangle subdivision.

3.2. Characterization of the terminal nodes

Each node N of VQ is associated to a rectangular region.
Basic regions are associated to terminal nodes. To identify
terminal nodes we maintain for each node:

e The labels of the vertices of the rectangular region repre-
sented by N. Each vertex label corresponds to the (unique)
site of S closest to the vertex. We denote V (N) the set of
these four labels attached to N;

e The set of labels of the sites of S that are classified as
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Figure 4: Outside propagation.

inside with respect to the rectangular region represented
by N. Let INsites(N) denote this set of labels;

e The set of labels of the sites of S that are classified as
outside with respect to the rectangular region represented
by N. Let OUTsites(N) denote this set of labels.

We define L(N) as the total number of different labels in
V(N), INsites(N) and OUTsites(N). N is a terminal node if
L(N) <3.

The possible terminal configurations are characterized by
the distribution of the labels of V (N) and the number L(N).
Concretely, terminal patterns, represented in Figure 5, are:

A A A A A A A D

B B B c s c
TO T1 T1 T2 T3

Figure 5: Terminal node patterns of a Voronoi-Quadtree.

e PATTERN TO. Obtained when L(N) = 1 (i.e. all the ver-
tices of the rectangular region represented by N have
the same label). In this case N is contained in a unique
\oronoi region. Therefore no Voronoi region boundary in-
tersects the edges of the rectangular region represented by
N;

e PATTERN T1. Obtained when L(N) = 2. The rectangular
region represented by N is intersected by two Voronoi re-
gions. The boundary of these regions intersects two edges
of the region;

e PATTERN T 2. Obtained when L(N) = 3 and the rectangu-
lar region represented by N is intersected by three Voronoi
regions. In this case the region is intersected by three
\oronoi region boundaries;

e PATTERN T3. Given when L(N) > 4 and the node N is of
Maximal resolution. In this case the rectangular region is
intersected by four or more Voronoi region boundaries.

4. The VQ construction algorithm

In this section we are going to present, first, the algorithm
that has to be applied to construct a VQ. Then, we are going
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Figure 6: (a) Distribution of terminal nodes at the end of the basic algorithm. (b) Distribution of terminal nodes when a level

of refinament has been introduced.

to describe how this algorithm can be extended to obtain ap-
proximations of the Voronoi diagram at a determined degree
of accuracy, which in the extreme situation tend to the exact
solution.

4.1. The basic algorithm

The basic construction algorithm of the VQ requires as input
S. The algorithm is based on a top-down strategy. It starts as-
signing to the root of the quadtree a rectangular region con-
taining S and then computing the information to be encoded
in this node, i.e V(N), INsites(N) and OU Tsites(N). Unless
the root is terminal, its corresponding rectangular region is
subdivided into four identical rectangular regions, each one
represented by one of the four descendants of the root, and
the information to be encoded in each of them is computed
(see Section 3.1). This subdivision process is repeated recur-
sively until the nodes obtained during the subdivision pro-
cess are terminal nodes or are nodes of minimal resolution.

To carry out this subdivision process a priority queue, Q,
is used. The queue Q maintains a pointer to non-terminal
nodes. The priority of a node is the level of the node in the
quadtree. In this way, the nodes in Q with upper quadtree
level are always the first to be processed.

At the end of the process, for each terminal node of VQ we
determine the exact set of Voronoi region boundaries inter-
secting the rectangular region represented by the node. Note
that terminal nodes might be distributed at different levels
of the quadtree. See Figure6(a), where terminal nodes have
been represented as black circles.

This basic algorithm can be summarized as follows:

ALGORI THM Const ruct VQ( | NPUT: S, QUTPUT: VQ

N: =Def i neRoot Node(set of input_sites);
I Nsites: =S;

QUTsi t es: =NULL;

Set Verti ceLabel s(N);

if I'(Termnal (N)) then QIn(N,0);
while ! (Q Enpty()) do

N =Q Qut ()

if I'(Termnal (N)) then
N. Def i neSons(N_sons);
for i:=1to 4 do
Set VerticeLabel s(N.son[i]);
Conput el Nsites(N.son[i]);
Conput eQUTsites(N.son[i]);
Pr opagat eLabel s(N. son[i]);
if I'(Termnal (N.son[i])) then
QIn(N.son[i],N son[i].level);
end_i f
end_f or
end_if
end_whil e

where functions: Set Verti ceLabel s(N) computes the
label of the vertices of node N; Conput el Nsi t es(N)
computes the inside sites of node N; Conput eOUT-
si t es(N) computes the outside sites of node N; Pr opa-
gat eLabel s(N) performs the propagation step described
in section 3.1.

4.2. The improved algorithm

Once the VQ has been constructed we are able to visualize
an approximation of the Voronoi diagram visualizing the in-
formation in the terminal nodes (see Section 5). However,
in order to exploit the capabilities of the VQ hierarchical
data structure we have extended the basic construction al-
gorithm to obtain Voronoi diagrams at any level of detail.
The proposed modification consists in the introduction of a
new parameter: the level of accuracy, denoted L. This pa-
rameter needs also be introduced as input, and is used to
force the subdivision of T1, T2 and T3 terminal VQ nodes
whose level is lower than L. In Figure 6(b) the rectangle rep-
resents level L. To obtain the Voronoi diagram at accuracy
L all terminal nodes obtained during the basic algorithm are
subdivided until they reach this level. In the case that a node
corresponding to the level L is not a terminal node, the sub-
division continues until terminal nodes are reached.

5. The VQ visualization algorithm

Given a quadtree representation we define a cut on the
quadtree as a set of nodes such that, for each possible root-
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leaf path, one and only one of its nodes is contained in the
cut.

The VQ visualization algorithm, used to obtain a visualiza-
tion of the Voronoi diagram codified in the VQ, is divided
into two steps: (1) the selection of the cut; and (2) the visu-
alization of the cut using the node visualization function.

5.1. Cut selection

The first visualization step determines which nodes of VQ
compose the cut C. To select these nodes a criteria that de-
termines when a VQ node is considered or not member of
C is required. In our case we consider a node member of C
when it is a terminal node.

To select C a top-down traversal of the quadtree is per-
formed. Each node N is evaluated: if N is terminal we add
N to C; conversely, if the node is not terminal we check the
children of N. At the end of this process C is composed for
all the terminal nodes.

5.2. Node visualization

To visualize C we apply a visualization function to each one
of its nodes. This function visualizes the set of segments that
define, in an approximated manner, the part of the Voronoi
region boundaries encoded in the node.

To generate these segments the next considerations are
taken into account:

e The Voronoi region boundaries encoded in a terminal
node can be approximated by a set of segments. The num-
ber of segments required for the visualization varies with
the pattern encoded in the terminal node. Figure 5 shows
the pattern:number of segments relation T0:0, T1:1, T2:3
and T3:4;

e The segments used for the visualization of the Voronoi
region boundaries are forced to meet certain positions.
There is a limitation on the number of possible segment
incidences. This strategy is based on the isosurface recon-
struction technique, the Discretized Marching Cubes, pro-
posed by Montani et al. 5 algorithm;

The node visualization function applied to each node of C
is composed of the three following steps:

(1) Identification of intersected edges. The edges of the rect-
angular region represented by the node intersected by the
segment that approximates the Voronoi region are iden-
tified. An edge is intersected by the segment when the
labels of its vertices are different;

(2) Selection intersection point position. The position of the
intersection point is determined by the level of the node
and the level of its adjacent terminal nodes. Observe that
nodes in the cut C may belong to different levels of
the quadtree. Therefore, the selection of the intersection
point depends on the level of the processed node and on
the levels of its adjacent terminal nodes:
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e if the adjacent node is in the same or in an upper level
we select the midpoint as the intersection point;

o if the adjacent node is in a lower level, first we detect
its level and then we set the intersection point to match
with the point computed for the adjacent node (i.e. a
higher level node is forced to match with the lower
one).

This selection strategy guarantees the continuity of the
visualized Voronoi region boundaries. Note that if we se-
lect the midpoint of the edge as the intersection point in-
dependently of the level of the node, then the final visu-
alization might contain discontinuities. This undesirable
situation has been illustrated in Figure 7);

(3) Visualization of the segments. The selected intersection
points are connected, according its terminal configura-
tion, and the corresponding segment is visualized.

@ ®

Figure 7: Black circles identify terminal nodes of the
quadtree. (a) When all the nodes are at the same level the
edge/segment intersection point coincides with the midpoint
of the edge. The Voronoi region boundaries are continuous.
(b) When terminal nodes correspond to different quadtree
levels, the midpoint generates a discontinuity. The intersec-
tion point of the upper node is forced to match with the in-
tersection point position of the lower node.

The inputs used by the visualization algorithm are the VQ
and the criteria used to select the nodes of the cut, in our
case the terminal nodes. However, note that this criteria can
vary according the user or the application parameters, and
that in this manner the capabilities of a quadtree to support
multiresolution can be exploited.

6. Experimental results and conclusions

The algorithms of construction and visualization of the VQ
have been implemented. Figures 8 and 9 show some of the
results obtained with these implementations considering dif-
ferent distances and resolutions.

Figure 8 has been obtained using the point and segment
sites represented in 8(c) and the Euclidean distance. Fig-
ure 8(a) corresponds to the visualization of the VQ obtained
from the basic construction algorithm. Note that the cut used
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(b)

Figure 8: Visualization of a VQ obtained with Euclidean distance.

for the rendering is composed of nodes distributed at differ-
ent levels. To illustrate this fact we have assigned the color
of the closest site to the vertices of the rectangular region
represented by the node. Observe that the segments repre-
senting the boundary of the Voronoi regions are continous.
Figure 8(b) has been obtained using the improved algorithm
with a higher degree of accuracy.

Figure 9 has been obtained using a convex distance func-
tion (see Figure 9(c)). As in the previous case, Figures 9(a)
and 9(b) correspond to the visualization of the VQ obtained
from the basic and the improved construction algorithms re-
spectively.

As it can be seen from the previous figures, preliminary
results are very encouraging. However, we are conscious that
a more accurate analysis of the VQ has to be done. A com-
parative study (precision, run time, ...) with previous meth-
ods for visualizing generalized Voronoi diagrams remains to
be done.

(b)

Figure 9: Visualization of a VQ obtained with a convex distance determined by an square.

(©

7. Future work

We are extending the construction algorithm so that the VQ
can also be constructed in some special cases: Voronoi ver-
tices of degree greater than three, bisectors that contain two-
dimensional pieces, etc.

Among future developments, we consider of high interest
to evaluate the capabilities of the VQ to add and to delete
sites. Due to the hierarchical nature of the VQ, this data-
structure is well-suited to support multiresolution, therefore
an other promising line of research is the design of adaptive
algorithms to generate the VVQ at different chosen levels of
detail in selected regions.

Our final aim is to extend our approach to three-
dimensional space for approximating generalized Voronoi
diagrams, defining a MVoronoi-Octree structure and visual-
izing the polyhedral approximation of the corresponding
\oronoi diagram.
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