
EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek Short Presentations

A Method for Creating Mosaic Images Using Voronoi
Diagrams

Yoshinori Dobashi†, Toshiyuki Haga††, Henry Johan††, Tomoyuki Nishita††

†Hokkaido University ††The University of Tokyo

Abstract
This paper proposes a non-photorealistic rendering method that creates an artistic effect called mosaicing. The

proposed method converts images provided by the user into the mosaic images. Commercial image editing appli-
cations also provide a similar function. However, these applications often trade results for low-cost computing. It
is desirable to create high quality images even if the computational cost is increased.
We present an automatic method for mosaicing images by using Voronoi diagrams. The Voronoi diagrams are
optimized so that the error between the original image and the resulting image is as small as possible. Next, the
mosaic image is generated by using the sites and edges of the Voronoi diagram. We use graphics hardware to
efficiently generate Voronoi diagrams. Furthermore, we extend the method to mosaic animations from sequences
of images.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tionI.3.8 [Computer Graphics]: Applications

1. Introduction

As computers become more popular, non-specialists are in-
creasingly using computer graphics applications to create
synthetic images. Therefore, some commercial image edit-
ing applications are widely used. Such applications provide
a variety of functions for creating many effects. One of the
available functions converts images into mosaic images. In
some software, stained-glass-style images are created by us-
ing the mosaicing function. However, the features of the
original image are often lost with the previous methods. It
is therefore desirable to create high quality images.

In this paper, we propose a method for creating mosaic
images with a higher quality than currently available meth-
ods offer. In our method, the shapes of small regions in the
mosaic image are approximated by using Voronoi diagrams.
To create the Voronoi diagrams, we make use of graphics
hardware. Recently, computer prices have dropped and high
performance graphics hardware has become affordable and
popular. This hardware can be utilized for fast generation of
the Voronoi diagrams 2. This results in decreased computa-
tion time for the image generation processes.

Our method consists of two processes. In the first pro-
cess, the mosaic image is automatically generated by creat-
ing the optimal Voronoi diagram so that the error between
the original image and the resulting image becomes as small
as possible. The second process allows the user to add vari-
ous effects to the mosaic image created by the first step. The
second process is designed in accordance with our obseva-
tion of stained glass windows since stained glass is one of
the applications that use mosaic images. One important fea-
ture is that there are color variations in each region of the
stained glass. In previous methods, however, each tile in the
mosaic image has a single color. Moreover, contours of pic-
tures depicted in windows are expressed by using boundaries
between glass sections. The second process of our method
provides ways to add these two visual effects, that is, edge
enhancement and color variations in each tile.

Furthermore, we extend the proposed method to creating
mosaic animations. We have adopted the key frame method
to preserve coherence and to keep the computational cost
low.

The rest of the paper is organized as follows. In Section
2, previous work relating to our method is described. In Sec-

c© The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org

Dobashi, Haga, Johan, Nishita / Mosaic Images Using Voronoi Diagrams

tions 3, 4 and 5, our method for converting a single image
into a mosaic image is presented. Next, Section 6 describes
how the method is applied to creating the mosaic animations.
Example images generated by our method are presented in
Section 7. Finally, conclusions are discussed in Section 8.

2. Related Work

Recently, many researchers have focused on the field of non-
photorealistic rendering, and many methods for creating a
wide range of image styles have been proposed 5. Some of
them represent a picture by laying out small tiles. The result-
ing image is called a mosaic image. Mosaic images can be
represented by tiling particular shapes such as squares. An
interesting artistic effect is created by mosaic images. So,
much research focusing on creaing mosaic images has been
done 7, 2. These methods use Voronoi diagrams to represent
small regions in the mosaic images. Many software packages
also have the ability to create mosaic images (e.g. Adobe
Photoshop9 and GIMP10). These compute the shape of each
region automatically. However, the resulting images lose im-
portant features of the input image. To address this problem,
Hausner proposed a method for simulating decorative mo-
saics by using Voronoi diagrams. Especially, in the mosaic
images created by this method the edges in the original im-
age are very well preserved. However, this method does not
take into account the difference in color between the original
and the resulting image. Furthermore, their method requires
users to specify curves that correspond to the edges to be
preserved. Our method creates the mosaic images automat-
ically by optimizing the Voronoi diagrams so that the color
difference is as small as possible. Therefore, our method can
create mosaic images that preserve the features of the origi-
nal such as edges and color variations. This makes it possible
to faithfully reflect the features of the input image

Voronoi diagrams have been used in several methods that
do not focus on non-photorealistic rendering. Although these
methods are similar to ours, their purposes are different.
Darsa and Costa proposed a method that is suitable for ray
tracing and data transfer on the web 8. In this method, the
Voronoi diagrams are used for progressive sampling of im-
ages. Hierarchical structures for the images are also con-
structed by this method. In this method, however, the differ-
ences between coarse and dense parts of the site densities are
wide, and contours are not depicted in the resulting image.
Miyata et al. proposed an automatic method for modeling or-
ganic surface textures (for example, reptile scales) by using
Voronoi diagrams6.

3. Creation of Mosaic Images

3.1. Definition of Voronoi Diagrams

As shown in Figure 1, a Voronoi diagram of a set of "sites"
(points) is a collection of regions that divide up the plane.
Each region ("Voronoi region") corresponds to one of the

Figure 1: Voronoi diagrams.

sites, and all the points in one region are closer to the cor-
responding site than to any other site. The boundary (i.e.
"Voronoi edge") between two adjacent regions is a line seg-
ment, and the line that contains it is the perpendicular bisec-
tor of the segment joining the two sites.

For efficient computation, the proposed method uses dis-
crete Voronoi diagrams in which the sites are located at
pixel centers. We utilize a fast method using graphics hard-
ware for computing the discrete Voronoi diagrams1, 2. This
method can compute the discrete Voronoi diagrams by draw-
ing cones using graphics hardware. For more detail, this
hardware-accelerated method is well described in the liter-
atures 1, 2.

3.2. Outline of the Proposed Method

Before we describe the outline of the algorithm, we first de-
fine some terms. A "Voronoi image" is an image being gen-
erated by using Voronoi regions. A "reference image" is the
image to be converted into the mosaic image. Ecolor is the
sum of the squared differences between the colors of the
corresponding pixels in the Voronoi image and the reference
image (Equation 1).

Ecolor = ∑
x

∑
y

∑
c

(
PV

(x,y,c)−PR
(x,y,c)

)2
, (1)

where PV and PR are the pixels in the Voronoi image and
the reference image, respectively. Subscripts x and y mean
pixel position, and subscript c represents pixel color where
c is equal to an R, G, B triplet. We assume that the site of
a Voronoi diagram is located at the center of a pixel and the
color of that pixel in the reference image is used as the color
of that Voronoi region.

The proposed method consists of two processes: the pat-
tern generation process, and the effect addition process. In
the pattern generation process, the mosaic image is gener-
ated automatically. In the effect addition process, the user
adds some effects interactively to produce the final image.

In the pattern generation process, the Voronoi sites are
placed at the pixel centers, and the Voronoi image that ap-
proximates the reference image is created automatically.
First, a Voronoi image whose initial site positions are set at

c© The Eurographics Association 2002.

Dobashi, Haga, Johan, Nishita / Mosaic Images Using Voronoi Diagrams

the center of hexagonal lattices is made and Ecolor is calcu-
lated (Section 4.1). Next, the sites are moved in order to de-
crease the value of Ecolor. These processes are repeated un-
til an end condition is satisfied. In each iteration, the move-
ment of the site is limited to its adjoining eight pixels. Hence
the site is not moved if it does not decrease the value of
Ecolor. To speed up the process, the sites are moved in two
steps. First, the changes of the Voronoi regions correspond-
ing to the site movements are roughly computed for all sites.
All the sites are then moved simultaneously in order to de-
crease the Ecolor value (Section 4.2). Second, the change of a
Voronoi region when its site moves is accurately computed.
Then, the site is moved in the optimal direction so that the
value of Ecolor decreases. This computation is performed
for each site, one at a time (Section 4.3). By performing
these processes, a Voronoi image that minimize Ecolor is ob-
tained.

In the effect addition process, an analytical Voronoi dia-
gram is calculated based on the sites obtained in the pattern
generation process. Then, some effects are added by using
the Voronoi edges.

The proposed method is summarized as follows.

Generating pattern

1. The locations of the sites are initialized and the initial
Voronoi image is generated (Section 4.1).

2. Set the four maps as textures.
3. All sites are moved in order to capture the global features

of the reference image (Section 4.2).
4. Each site is moved individually in order to locally adjust

the Voronoi image (Section 4.3).
5. If it is necessary, the fine adjustment of the Voronoi image

is done by interactively moving, adding, or deleting sites
(Section 4.4).

Adding effects

1. An analytical Voronoi diagram is calculated using the site
positions obtained in the pattern generation process, and
the Voronoi edges are obtained (Section 5.1).

2. Two visual effects (emphasizing the outlines and color
variations in each Voronoi region) are added interactively
(Section 5.2).

The following two sections describe all the above steps in
details.

4. Pattern Generation Process

Figure 2 shows the results of each step of the pattern gener-
ation process.

4.1. Initial Positions of the Sites

The initial Voronoi image is created by placing its sites on
the center of hexagonal lattices. The resulting Voronoi im-

(a) (b) (c)

(d) (e)

Figure 2: The resutls of several steps of the patttern gener-
ation process, (a):the reference image, (b): initial positions
of the sites(Section 4.1), (c):captureing the global features
(Section 4.2), (d): local adjustment (Section 4.3), (e): final
image (Section 5.2).

Figure 3: Variation in the initial positions of the sites.

age depends on the expected interval of sites. The user is al-
lowed to specify the expected interval between the sites and
the expected jittering width (from the center of the hexago-
nal lattices) in order to control the appearance of the initial
Voronoi image (see Figure 3). Moreover, the user can inter-
actively specify regions and partially change the densities of
the sites in those regions. As a result, the details of the refer-
ence image can be expressed easily.

4.2. Capturing the Global Features of the Reference
Image

In order to minimize the error Ecolor in a short amount of
computation time, the changes due to moved Voronoi re-
gions are approximately computed, and all sites are then
moved together. These steps are repeated until an end condi-
tion is triggered. As a result, a Voronoi image that expresses
the global features of the reference image can be obtained.

Before we explain our approach in detail, we first de-
scribe the case when sites are moved in a brute force manner.
The shape of a Voronoi region is determined by the rela-
tive position between its site and the sites of the surrounding
Voronoi regions (bold line region in Figure 4(a)). Assume

c© The Eurographics Association 2002.

Dobashi, Haga, Johan, Nishita / Mosaic Images Using Voronoi Diagrams

(a) (b) (c)

Figure 4: Approximated computation for changes in the
Voronoi region, (a): the Voronoi region before moving, (b):
the movement of the sites, (c): the Voronoi region after mov-
ing.

that all sites are moved independently (Figure 4(b)). In or-
der to compute an accurate Voronoi region (slashed line re-
gion in Figure 4(c)), the movements of the one site and its
surrounding sites have to be considered. However, since we
have to consider the movement of the sites in all directions,
the computational cost becomes enormous.

Therefore, to speed up this process, we propose a method
which approximately computes the changes of error caused
by the movement of the sites. If the change in Ecolor is
known when a site is moved, we can simply move the site
in a direction where the Ecolor decreases the most. Note that
computing the change of Voronoi regions, which is neces-
sary when computing the change of Ecolor, is equivalent to
computing the status of each pixel in the image when a site
is moved in a particular direction. For example, when site S
moves in a certain direction, pixel P1 is now included inside
the Voronoi region of S, pixel P2 remains inside the area of S,
and pixel P3 leaves the area of S. To approximate the change
of the Voronoi region due to the movement of its site, we
make the following assumption.

When a site moves in a certain direction (the movement
of neighbouring sites is ignored), the corresponding Voronoi
region moves in the same direction without changing its
shape (gray area in Figure 4(c)).

Moreover, because the movement of the site at one time
has been limited only to the adjoining eight pixels as de-
scribed in Section 3.2, the change in Ecolor can be computed
at low cost. In other words, based on the above assump-
tion, for all pixels in the image, by only comparing a certain
pixel’s color with the colors of the adjoining eight pixels, the
change in Ecolor due to the movement of all sites in all direc-
tions can be computed. So, all we have to do now is to scan
the Voronoi image once using a 3× 3 window.

We explain this in detail by using Figure 5. Assume that P
is the pixel of interest and S1, S2 and S3 are sites which are
close to P. Let dEi, j be the change in Ecolor when site Si is
moved in direction D j(j = 1,2, · · · ,8). The pixels inside the
rectangle (3× 3 pixels) that is drawn with the same color as
P are the ones to be compared to P.

P is located in the area of S2. Similarly, the three pixels on

Figure 5: The calculation for the change of Ecolor.

the top of P, upper right to P, and right to P are also located
in the area of S2. Therefore, P remains inside the area of S2 if
S2 moves to one of the three pixels, that is, the pixel under S2,
the pixel on the left of S2, or the pixel on the right of S2. On
the other hand, if S2 moves in other directions, then P exits
the area of S2. Using this information, the values of dE for S2
are updated. The change of the error value is computed using
the reference table which stores the squared differences be-
tween colors. dE is updated by adding the computed change
of the error value. The pixel to the lower right and the pixel
under P are located in the area corresponding to S3. As a re-
sult, when S3 moves upward or to the upper left, P becomes
the pixel inside the area of S3. Therefore, the values of dE
corresponding to these movements are also updated.

Other cases are also computed similarly. When the above
computation is performed on all pixels, the values of all
dEi, j, that is, the change in the difference Ecolor when site
Si moves in direction D j , are completely computed. Then,
each site is moved in the direction that minimizes the value
of dE.

The steps for moving all the sites can be summarized as
follows.

1. Assign different colors to all sites and create the Voronoi
image by using graphics hardware (see reference2).

2. Read the Voronoi image from the frame buffer.
3. Approximately compute the change of Ecolor (value of

dE) when all sites are moved to their adjoining eight pix-
els and determine the optimal direction where Ecolor de-
creases the most.

4. Move all the sites by using the optimal direction of each
site.

To capture the global features of the reference image, the
above computation is performed repeatedly. Since the com-
putation of the change of Ecolor is only approximate, there is
a possibility that the location of the sites do not converge. In
other words, the sites are sometimes vibrating inside certain
regions. Therefore, the above computation is terminated if
the rate of change of Ecolor is below a given threshold value.

4.3. Local Adjustment of the Voronoi Image

Unlike the approach in Section 4.2, Voronoi sites are moved
one at a time to adjust the local appearance of the Voronoi

c© The Eurographics Association 2002.

Dobashi, Haga, Johan, Nishita / Mosaic Images Using Voronoi Diagrams

image. A site is moved to its adjoining eight pixels, and the
changes in the color differences are computed for all the
movements. Then, the site is moved in the direction where
the color error (Ecolor) decreases most. This computation is
performed repeatedly on all the sites in the Voronoi image.
However, it is computationally expensive to both calculate
the Voronoi regions and read the Voronoi image from the
frame buffer for each of the moving directions. Generally,
the buffer reading operation can become a serious bottle-
neck with respect to computing time when using graphics
hardware.

Thus, we propose a method that can decrease both the fre-
quency of reading from the frame buffer into main memory
and the number of cones that are drawn to the frame buffer.
A Voronoi region can be generated by drawing each cone
whose apex is the Voronoi site1, 2. However, it is computa-
tionally expensive if we draw all the Voronoi regions every
time according to each movement of the Voronoi site. So
we use the stencil buffer, which is usually used as a mask,
as a buffer to memorize the Voronoi regions of the mov-
ing Voronoi site. For all Voronoi sites except the current one
(i.e., the site to be moved), we first draw their correspond-
ing cones into the depth buffer. Next, we draw the portions
of cone of the current Voronoi site whose depth values are
smaller than the depth values in the depth buffer, into the
stencil buffer. Hence, the Voronoi region is obtained. Be-
cause it is not necessary to update the frame buffer and the
depth buffer at this stage, the Voronoi regions can be ob-
tained efficiently.

If the stencil buffer can store n bit values, we can consider
the stencil buffer as a plane that has n layers. Therefore, one
stencil buffer can be used to store n kinds of Voronoi region
which correspond to the movements of a certain Voronoi
site. In general, most standard graphics hardware can store
values of eight bits or more in their stencil buffers. There-
fore, we only have to read out the stencil buffer and the frame
buffer after drawing each Voronoi region that corresponds to
the movement of the Voronoi site toward each of the eight
adjacent pixels.

It is thus possible to speed up the process using the
method mentioned above. To minimize Ecolor, we must re-
peat the method for all Voronoi sites with the possibility that
Ecolor decreases due to a move. The algorithm for a certain
Voronoi site S to be moved is as follows.

1. Generate the Voronoi diagram constructed by all Voronoi
sites except S.

2. Disable drawing to the frame buffer, then draw to the
stencil buffer information about each Voronoi region cor-
responding to S after moving toward each direction, with
each bit of the value in the stencil buffer assigned to each
direction in which there is movement.

3. Read out the frame buffer, that is, the Voronoi image gen-
erated by all Voronoi sites excluding S, and the stencil

buffer, that is, each shape of the Voronoi region corre-
sponding to S moving in each direction.

4. Calculate the amount of the change in Ecolor for each di-
rection in which there is movement after calculating the
change of the shape of the Voronoi region exactly.

5. Move S in the direction where Ecolor decreases most.

The algorithm described above is repeated until the changes
of the Voronoi image become small, that is, until the change
of Ecolor becomes less than a given threshold value.

4.4. Expression of Detailed Features

If the Voronoi sites are moved only through the automatic
movement process described previously, it is sometimes dif-
ficult to express the features in the reference image where
the Voronoi sites have not been located when initializing the
Voronoi image (Section 4.1). Additionally, the user might
want to edit the arrangement of the sites. Therefore the sys-
tem enables the user to move, add or delete the Voronoi sites
interactively. To be specific, the user can do the Voronoi
site operations mentioned above through mouse operations,
and then the system again optimizes the arrangement of
the Voronoi sites automatically by the local adjustments ex-
plained in Section 4.3.

4.5. Experimental Result

Figure 6 shows a comparison between the previous methods
and the proposed method. Figure 6(a) is generated by a free
software, GIMP10. Figure 6(b) is generated by the commer-
cial software, Adobe Photoshop 9. As shown in Figures 6(a)
and (b), the features of the input image are lost with these ap-
plications. The method proposed by Hausner is designed to
address this problem 3. Figure 6(c) is generated by Hausner’s
method. To use this method, the curves corresponding to the
feature edges of the input image must be specified manually
by the user. So, we specified the number of curves manu-
ally to preserve the features of the input image, for example,
outlines, eyes, the bill of the duck. The number of the tiles is
341. As shown in Figure 6(c), the outlines are preserved very
well. However, the eyes and the bill are not captured. To ad-
dress this, the user has to specify the local size of the tiles so
that smaller tiles are used around the eyes and the bill. Figure
6(d) shows the image generated by our method. It is obvious
that our method captures the features of the input image bet-
ter than Figure 6(d). The number of sites is the same as the
number of tiles used in Figure 6(c), 341. Furthermore, Fig-
ure 6(d) is generated automatically. These results imply that
our method can reduce the user’s efforts and create mosaic
images with higher quality than currently available methods.

c© The Eurographics Association 2002.

Dobashi, Haga, Johan, Nishita / Mosaic Images Using Voronoi Diagrams

(a) (b)

(c) (d)

Figure 6: Resultant images, (a): a free software (GIMP10),
(b): a commercial application (Adobe Photoshop9), (c):
Hausner’s method3 (d): the proposed method.

5. Effect Addition Process

5.1. Calculation of Voronoi Diagram

When using the Voronoi image generated in the pattern gen-
eration process described in Section 4, the Voronoi edges and
the adjacency relations between Voronoi regions are not ac-
curately extracted. So, we calculate them exactly using the
information of each site position as determined in Section
4 with the analytical algorithm for generating Voronoi dia-
grams. The various methods to generate Voronoi diagrams,
including the incremental method used in our method, are
discussed in detail by Aurenhammer4.

5.2. Visual Effects

As mentioned previously, this process allows the user to add
two visual effects observed in stained glass windows. The
user can apply the following operations interactively to the
generated image using the information obtained in Section
5.1. Figure 7 shows examples of these effects applied to a
duck image.

• When drawing each Voronoi edge, its width is changed
by both user-specified parameters and the color difference
between two Voronoi regions adjacent to the edge (see
Equation 2).

width = Wbase +Wcolor ·Dcolor, (2)

where Wbase and Wcolor are the user-specified parameters.

(a) (b)

Figure 7: The effects for representing the stained-glass-
style, (a): changing each edge width, (b): simulating effect
of glass.

Dcolor is the color difference. This allows the features in
the reference image to be further emphasized.

• Due to distortion and other factors, there is a slight change
in brightness and transmittivity as each part of actual glass
is seen. To approximately simulate this effect, in other
words, to simply simulate the texture or material element
of glass, and then the Voronoi region is painted smoothly
by using Gouraud shading, that is, color at each corner of
a Voronoi region is calculated by adding a random value
to the site color.

6. Animations

In this section, we explain about creating a sequence of im-
ages for the mosaic animation.

In general, the most important problem when creating
non-photorealistic rendering animation is how to preserve
the coherence between frames. That is, the serious flicking
occurs in the resulting animation if the animation is created
by generating each frame independently. In most cases, it
is difficult to preserve the coherence between frames and
its computational cost is high. In the proposed method, we
adopted the key frame method to preserve coherence and to
keep the computational cost low. The details of the algorithm
are as follows.

First, some of the inputted images are selected as key
frames at every several intervals. Next, the mosaic images
are generated for each key frame by using the technique de-
scribed in Section 4. The same initial position of Voronoi
sites is used for all key frames and the sites with the same ini-
tial positions are assigned the same ID numbers. Then, each
frame other than the key frames is generated by linearly in-
terpolating both the positions and the colors of the sites with
the same ID. The reason why we do not generate each key
frame with, for example, the final arrangement of sites at the
previous key frame but with the same positions of sites is
that the distortions of Voronoi regions become remarkable
as the animation proceeds. The flickering problem becomes
obvious when we use the color of the reference image at the

c© The Eurographics Association 2002.

Dobashi, Haga, Johan, Nishita / Mosaic Images Using Voronoi Diagrams

Table 1: The computational results of the proposed method.

Name Size (pixel) #Site Time[s]

Flower(Figure 2(e)) 256×256 347 3.4

Duck(Figure 6(d)) 256×256 341 2.0

Butterfly(Figure 8(b)) 512×512 830 8.6

Sunflower(Figure 8(d)) 512×512 1271 3.4

Horse(Figure 8(f)) 512×512 1278 14.0

interpolated position of the site. To avoid this problem, the
color of a site is calculated by using linear interpolation.

The animations generated by using our method have the
following characteristics about the positions and the colors
of the sites on each frame. The state of each site in the an-
imation can be classified into two types: (a) the case of ex-
pressing almost the same part of the animation (little change
in color), (b) the case of expressing different part of the ani-
mation (relatively large changes in both position and color).
As the animation proceeds, the state of each site changes
between the two states mentioned above. As a result, it is
possible to express the various changes in each part of the
animation. That is, the sites which belong to (a) can repre-
sent translation and rotation well, while the sites which be-
long to (b) are suitable to represent the parts which appear
or disappear during the animation.

7. Results

7.1. Stained-Glass-Style Images

Figures 2, 7 and 8 show some results obtained with the pro-
posed method. When the user generates a mosaic image, the
user can see the change in the image throughout the gener-
ation process, as shown in Figure 2. Figures 8(b), 8(d) and
8(f) show examples of a swallowtail butterfly, a sunflower,
and a racehorse respectively. Additionally, it is also possible
to add some effects to the resulting image, like those shown
in Figure 7. Note that the pattern generation process for these
images is computed automatically.

Table 1 shows the image size, the computation time and
the number of sites for each resulting image. The compu-
tation times shown in Table 1 are measured on a standard
PC with a Pentium III 1 GHz and an nVIDIA GeForce3.
We used OpenGL as our graphics library. The images in this
paper were generated within several seconds, though not in
real-time.

Table 1 shows the image size, the computation time and
the number of sites for each resulting image. The compu-
tation times shown in Table 1 are measured on a standard

PC with a Pentium III 1 GHz and an nVIDIA GeForce3.
We used OpenGL as our graphics library. The images in this
paper were generated within several seconds, though not in
real-time.

7.2. Animations

Please refer to the attached movies of the mosaic animations
described in Section 6 and some frames of the resulting an-
imation are shown in Figure 9. Though it is hard to say that
each frame well expresses the features of the input image,
the changes through out the original image sequence are
roughly expressed in the animation created by the proposed
method.

8. Conclusion

We have proposed a method for creating mosaic images, or
stained-glass-style images as a non-photorealistic rendering
technique. By using Voronoi diagrams, our method can gen-
erate the image that capture the features of the input image.
Our method works as follows.

1. Given an input image, the pattern of the mosaic (Voronoi
regions determined by optimal sites) is automatically de-
termined. This decreases the user’s efforts since the user
does not have to specify information such as the edges of
the input image.

2. The user can add various effects interactively such as con-
tours and materials. The resulting image is interesting,
and it approximates the input image very well.

3. To decrease the difference between the Voronoi image
and the reference image, the optimal positions of the sites
are efficiently computed in two steps, the global step and
the local step. In the global step, the Voronoi image is
scanned only once by using a 3×3 window. Then, direc-
tions for site movements are determined such that the dif-
ference between the reference image and Voronoi image
is decreased. In the local step, graphics hardware is uti-
lized for the efficient computation. The depth and sten-
cil buffers are used to accelerate the computation of the
shape of each Voronoi region according to the position
of each site. This reduces the computation time since the
number of data transfers between the buffers and main
memory is minimized.

References

1. M. Woo, J. Neider, T. Davis,"OpenGL Programming
Guide - The Official Guide to Learning OpenGL, Release
1," Addison Wesley.

2. K. E. Hoff III, T. Culver, J. Keyser,M. Lin, D. Manocha,
"Fast Computation of Generalized Voronoi Diagrams Us-
ing Graphics Hardware," Proc. SIGGRAPH’99. 1999,
pp. 277-286.

c© The Eurographics Association 2002.

Dobashi, Haga, Johan, Nishita / Mosaic Images Using Voronoi Diagrams

3. A. Hausner, "Simulating Decorative Mosaics," Proc.
SIGGRAPH 2001, 2001, pp. 573-580.

4. F. Aurenhammer, "Voronoi Diagrams: A Survey of a
Fundamental Geometric Data Structure," ACM Comput-
ing Surveys 23, 1991, pp. 345-405.

5. S. Green, D. Salesin, S. Schofield, A. Hertzmann,
P. Litwindowicz, A.A. Gooch, C. Curtis, B. Cooch "Non-
Photorealistic Rendering," Course Note #17 of SIG-
GRAPH’99, 1999.

6. K. Miyata, T. Itoh, K. Shimada "Organic Texture with
Controlled Anisotropy and Directionality," SIGGRAPH
2001, Technical Sketch, 2001, pp. 240.

7. P. Haeberli, "Paint by Numbers," Proc. SIGGRAPH’90,
1990, pp. 207-214.

8. L. Darsa, B. Costa, "Multiresolution Representation and
Reconstruction of Adaptively Sampled Images," Proc.
SIGGRAPH’96, 1996, pp. 321-328.

9. http://www.adobe.com/products/photoshop/

10.http://www.gimp.org/

(a) (b)

(c) (d)

(e) (f)

Figure 9: The key frame sequence of the morphing anima-
tion.

(c) (d)

(a) (b)

(e) (f)

Figure 8: The results of the proposed method: the input im-
ages (left) and the result images (right).

c© The Eurographics Association 2002.

