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Abstract

We present a mesh decimation algorithm for triangular meshes. Unlike other decimation algorithms we are not
concerned with geometric error but with the existence of a displacement mapping which can map between the
original and decimated meshes. We use the implicit function theorem to derive a condition which ensures the
existence of a displacement map. The algorithmis applied to some standard scanned models and reduction rates

around 99% are seen.

1. Introduction

The high-resolution unstructured meshes which result from
3D scanned data contain highly detailed geometry which
presents problems for animation and compression. The prob-
lems can be tackled by using a low resolution mesh and com-
puting a mapping from this to the high-resolution mesh. At
each point on the low-resolution mesh we calculate a dis-
tance along the normal to the high-resolution mesh. The re-
sulting displacment map representation is compressed and
can be regenerated at multiple levels of detail. Furthermore
the low-resolution mesh can be easily animated and the high-
resolution mesh will in turn animate in a suitable way. The
success of this procedure relies on having a low-resolution
mesh with a displacement map which captures all the high-
resolution points. This paper is concerned with generating
low-resolution meshes by decimating scanned high resolu-
tion meshes in such a way that all the detail can be repre-
sented by a displacement mapping.

Detail is lost by displacement maps when a fold on
the high-resolution mesh is mapped to an unfolded low-
resolution mesh. In this case the inverse map from the high-
resolution mesh to the low-resolution mesh would be non-
injective and therefore its inverse (the mapping from low-
resolution to high-resolution mesh) would not exist. In other
words there would be no scalar displacement map which rep-
resents all the points in the high-resolution mesh.

The problem can be avoided if a suitable low-resolution
mesh is used. We generate low-resolution meshes so that
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the dot product of the normals of the high resolution mesh
points n and the normals of the low-resolution mesh N is
never zero (n.N ## 0). Using the implicit function theorem
we prove that, for the simple case of displacement mapping
with face normals, this will guarantee the existence of a dis-
placement mapping which describes a continuous differen-
tiable surface. The idea is then extended to cope with inter-
polated face normals and triangulated surfaces.

The next section motivates the problem by discussing the
use of displacement maps in mesh representation. Also we
discuss mesh decimation and in particular the decimation
algorithm of Lee et al. 5. Section (3) describes the folding
problem in detail. In section (4) the implicit function theo-
rem is used to derive our condition for a displacement map
representation in an idealised situation. Proceeding from this
we outline our decimation algorithm in section (5) and then
discuss the results of the applying this to some standard
models in section (6).

2. Background
2.1. Displacement M aps

In the general case we consider a local mapping given by
D:L; — H where L, C L isasubset of a low resolution sur-
face in R® and H; C H is a subset of a high resolution sur-
face in R3. For now we consider these surfaces to be either
meshes or continuosly differentiable surfaces. The mapping
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is described as,
x =D(X) = X +d(X)N(X) 1)

where X € L; and x € H,. For any point on H the map-
ping is inverted to give a distance d and a point of inter-
section with the low resolution mesh, X. Once this mapping
has been calculated, the high-resolution mesh can then be
stored like a texture map (a displacement image) where each
texture coordinate stores a distance instead of a colour. Fig-
ure (1d) shows the displacement image of a head model in
figure (1a), which has been mapped onto a cube. The high-
resolution mesh can then be reconstructed by subdividing the
low-resolution mesh and rendering the model at a displace-
ment from the low-resolution surface given by appropriate
point in the displacement image (see figure (6)) The whole
process is described in detail in our previous work 79,

(a) High-resolution Mesh

(c) Unrepresentable Folds

Figure1: Displacement map generation for head model with
simple cube |ow-resol ution mesh

There have been three major research efforts 45 which
can be characterised by their different ways of calculating
the low-resolution surface normal N and in the representa-
tion of the low-resolution surface L.

The simplest solution is to take the normal to be the face
normal of each low-resolution surface polygon and so to be
constant across the face. The obvious disadvantage of this
is that the normals will not be continuous across edges and
this greatly restricts the number of high-resolution points
which can be mapped. Furthermore when such a model is
animated, high-resolution points near low-resolution mesh
edges will move disproportionately to the movement of the
low-resolution mesh surface. However, we employ the face
normal scheme in section (5) for ease of explanation.

(b) Low-Resolution Mesh

.

(d) Final displacement Map

All published schemes take the normal to be a function of
X and to be continuous across the surface. Krishnamurthy
and Levoy “ ensured a continuous normal by calculating dis-
placements off a B-Spline surface. Lee et al. 5 base their ap-
proach on subdivision surfaces and take the normals of the
limit function of their surface.

In Hilton et al. - we have used a polygon representation
and compute a continuous normal across the surface by in-
terpolating the vertex normals N; so that

N(a,B,y) = aNg + BN2 4 yN3, @

where (a, 3,Y) are the barycentric coordinates of X with re-
spect to the triangle on which it lies. The vertex normals de-
fine a “normal volume” which encloses the high-resolution
points which will be mapped onto that triangle.

2.2. Low-Resolution Mesh Generation

Krishnamurthy and Levoy 4 construct their low-resolution
mesh by manually defining spline patches on the surface
of the high-resolution model. Hilton et al. 8° use a simi-
lar approach of drawing polygons on the surface of the low-
resolution mesh. They have also used models derived from
a generic model database. Although constructed models are
more easily animated they may take considerable manual ef-
fort to construct. Furthermore there is no control over loss of
detail since there is no reason why thse meshes will support
a scalar displacement mapping which represents the desired
high-resolution surface.

Mesh simplification is now a mature field of study in com-
puter graphics (see Heckbert and Garland 2 for a compre-
hensive review). Almost all simplification schemes are con-
cerned with simplifying a mesh in order to minimise a mea-
sure of geometric error. The only scheme that is concerned
with the existence of a displacement mapping representation
is that of Lee et al. 5.

Lee et al. use an edge collapsing algorithm which, al-
though it prioritises the edges to be collapsed by a measure
of geometric error, will not allow a collapse unless the result-
ing mesh has similarily aligned normals. Using an efficient
parameterisation algorithm (MAPS 6), they keep track of all
the points that would map to each triangle as the decimation
proceeds. For each collapse the resulting 1-ring neighbour-
hood is calculated and for each triangle in this neighbour-
hood the vertex normals are calculated. The collapse is al-
lowed if the Gauss map of these vertex normals encloses the
Gauss map of all the normals of the high-resolution points
which map to that triangle. Lee et al. provide no analysis of
whether this method ensures a displacement mapping rep-
resentation. Furthermore the authors have had to relax their
condition in order to progress the decimation far enough and
so produce a sufficiently simple low-resolution mesh.
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3. TheProblem

Detail is lost on displacement mapping when a fold in
the high-resolution mesh is mapped onto an unfolded low-
resolution mesh. Figure (2) shows that when this happens
the inverse D1 of the displacement map (1) is noninjective.
Therefore there will be no scalar displacement map D which
describes the surface H. If the mapping is calculated in the
normal way the fold will be lost. Figure (1 c)) shows the
folds of a head model when it is mapped onto an arbitrary
low-resolution mesh - a cube. Information is lost around the
ears and mouth as it is here where the model folds with re-
spect to the cube.

We note that, locally, the mapping is invertible since for
each point x; in Figure (2) there is a solution to the displace-
ment mapping equation (1). However, since there is no scalar
valued function which describes the entire curve in Figure
(2) this surface cannot be represented by a scalar displace-
ment map. We say that the surface H is represented by a
scalar displacement map D if all points on H can be written
as equation (1).

In the next section we provide a condition which ensures
the existence of a displacement map representation.
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Figure 2: Points xq, X and x3 all map to the same point X.

4. Existence of Displacement M ap Representation

We use the implicit function theorem to prove that in a re-
stricted case if the normals of the high and low resolution
surfaces are such that n.N # 0 then the high resolution sur-
face can be represented by a displacement map from a mesh.
We make two simplifications. Firstly, we consider the high-
resolution surface, given by F(x) = 0, to be continuously
differentiable. Secondly, we consider mappings with a nor-
mal N which is constant across each face of the mesh. These
assumptions are dropped in the next section when we con-
sider mappings from meshes to meshes.

The implicit function theorem guarantees the existence
of a function which “solves” the general algebraic equa-
tion F(x) = 0 uniquely. The function must be away from
any folds in the surface otherwise the resulting solution may
be multi-valued in that neighbourhood. The theorem may be
found in many advanced calculus textbooks (Fitzpatrick ! for
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example). Here we state the theorem for a function of three
variables.

The Implicit Function Theorem Let U be an open interval
inR®andF:U - Ra continuously differentiable function.
If, also there exists a point (Xo, Yo, 20) € U such that,

oF
F(x0,Y0,20) =0 and - (¥0,Y0,20) # 0
then there exists a neighbourhood U’ of (Xg,Yo,20) and a
continuously differentiable function f : U’ — R such that

!

z=f(xy)and F(xy, f(xy)) =0V(xy,z) €U".

We now prove that given similarily oriented normals, there
will be a displacement mapping from a plane onto a contin-
uous surface.

Theorem Let a continuoudly differentiable surface H be
given by F(x,y,2) = 0 with normal VF(x,y,2) and let a
plane P have a constant normal N such that,

N.VF(x,Y,2) #0V(x,y,z) on P (3)

then surface H is represented by a continuously differen-
tiable displacement mapping D given by equation (1) with
constant normal N.

Proof If we consider the local coordinate frame of L with
normal N = k (see Figure (2), then

N.VF(x2) =k VF(y2) = o (43,2 £0V(x y.2) on P
The implicit function theorem tells us that, in the neighbour-
hood of any point on P, there is a continuously differentiable
function,

z= f(x,y) such that F(x,y, f(x,y)) =0 V(x,y,2) on H.
A point on H can therefore be written as,
Xi+y +2zk =X +Vyj + f(x,y)k.

Since, in local coordinates, any point (x,y,0) is on P, we
have represented any point on the surface with the displace-
ment mapping D. O

If we now consider a triangle of a mesh M\ instead of a
plane, then the above theorem holds for any point in H which
has a mapping from some point on Vis (ie. D can be inverted
locally). We therefore state the result for a mapping from a
mesh to a surface.

Corollary If for any point x € H equation (1) can be solved
for an X € M and for all these points condition (3) holds,
then H isrepresented by D.



Collins and Hilton / Displacement Decimation

5. TheAlgorithm

In order to guarantee a valid displacement mapping from
the low-resolution mesh M" to the high resolution mesh M"
we proceed by decimating mesh M" wherever the resulting
mesh still allows a displacement map representation of MM,
We draw upon the analysis in the previous section in order to
suggest a condition for the existence of a displacement map
represenatation. In this case we must drop the assumptions
of a continuously differentiable high-resolution surface in
favour of a high-resolution mesh and and of a low-resolution
surface with constant normals in favour of a continuous in-
terpolated normal given by (2).

The condition (3) guarantees a continuously differentiable
injective displacement mapping from a mesh to a continu-
ously differentiable surface H. In the case of high-resolution
scanned data we desire a continuously differentiable dis-
placement mapping which approximates a triangulated sur-
face MM, Since VF does not exist at vertices, we need to
discretise condition (3) for triangular surfaces.

Condition (3) requires that the dot product of the normals
of the high and low resolution mesh are never zero. In the
discrete setting this will almost always be true. However we
may assume that if this dot product changes sign then some-
where it has become 0. Furthermore, since the low resolution
mesh M" is generated from the high resolution M" the dot
product of their normals will initially be positive. Therefore,
if this dot product ever becomes negative, we suppose that
condition (3) has been violated.

For a high resolution vertex v with surrounding face nor-
mals n; our discrete version of (3) is

N(X).nj >0 (4)

where N(X) is given by the interpolation (2). Note that we
have generalised condition (3) further by using this interpo-
lated normal instead of the constant normal.

Of course, now we have discretised our condition, the
analysis of the last section does not prove the existence of
a displacement map representation. For this to be proved we
would need a discreet version of the implicit function theo-
rem which holds for mappings along an interpolated normal.
We are not aware of any such theorem and so we use the
analysis in the previous section to suggest that this discreti-
sation of condition (3) holds.

We employ a non-hierarchical decimation algorithm
based on edge collapses as described in 3. As the decima-
tion progresses we ensure that each high-resolution vertex
can be described by a displacment mapping to a triangle to
which it is associated.

First we associate each high-resolution vertex with a tri-
angle which it is on (and therefore it is representable by
a displacment mapping (1) with d = 0) We then prioritise
the edge collapses in order of edge length. We now begin
the decimation loop by performing an edge collapse and

testing whether the resulting mesh still supports a displace-
ment mapping of the high-resolution mesh. All the vertices
currently associated with triangles in the candidate edge’s
neighbourhood (its 2-ring) are tested on the collapsed neig-
bourhood of the edge so that.

e There is a unique mapping (1) to the neighbourhood of
the edge for all the associated vertices.
e All the associated vertices satisfy condition (4).

The first condition guarantees an injective mapping D and
the second that the surface M can be represented as a dis-
placement map. These two conditions are the equivalent of
the hypothesis in corollary 2. If any vertex fails these tests,
then the collapse is not performed and the edge is priori-
tised last. To ensure mesh quality, an edge is collapsed only
if its valence (the combined valences of its vertices minus
one) is less than 12. If the collapse is performed then all the
associated vertices are re-associated with the new triangles
to which they now map. The process continues until all the
edges remaining fail the tests above.

a) Original
Mesh Normal

b) Constant c) Interpolated

Normal

Figure 3: Monster head and decimations for injective dis-
placement mapping

6. Results

Meshes were generated by applying the algorithm described
above to several standard examples and the results are shown
in Figures (3), (4), (5) and (6). Figure (3 b)) shows a low-
resolution mesh which allows displacement mapping with a
constant normal which is discontinuous at mesh edges. This
mesh for which the analysis of section (4) is valid shows
the limitation of this approach since the mesh could only be
reduced by 10%.

All these low-resolution meshes were tested for loss
of detail by two methods. First an image of the folds,
such as that shown in Figure (1 c), was computed. Each
high-resolution point was mapped via the displacement
mapping equation (1) into texture space. A fold is shown in
white when many high-resolution points map to the same
low-resolution texture coordinate. In Figure (1 c) it is clear
that folds are seen around the ears and eyes. For the meshes
generated here only a few pixels are shown as white in the
image. These points may be due to rounding errors at the
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border of two high-resolution triangles or because of the
quantisation error involved in sampling the image at each
pixel. Secondly the model can be reconstructed from the
displacement image and tested against the original. Work on
this is still in progress although preliminary results suggest
that even finely detailed folds are reconstructed (see figure

().

Monster  Horse  Bunny  Venus
High-Res Faces 30,086 96,966 69,451 100,004
Low-Res Faces 612 502 388 100
% Decimated 98.2 99.2 99.4 99.9

The table shows the amount of decimation possible for
each model. Low-Resolution mesh sizes are, on the whole,
smaller than those quoted in Lee et al. 6. Simplification
times are an order of magnitude larger than those of Lee et
al. since they do not test each high-resolution point for each
collapse.

Figure 4: Horse Model and Decimated Model

Figure5: Bunny Model and Decimated Model

7. Summary and Future Work

We have given a mathematical formulation to the problem
of detail loss in displacement mapping. We presented an al-
gorithm which draws on this analysis to give low-resolution
meshes which allow a scalar displacement map representa-
tion of the high-resolution mesh.

Further work would formulate theorem (1) for triangu-
lar surfaces and for continuous displacement maps. Also,
in order to build low-resolution meshes for animation fur-
ther constraints are needed on decimation to produce low-
resolution meshes which bend in the right places. Lastly a
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Figure 6: Vlenus model subdivided 0,1,2,3,4 and 5 times.

compression analysis at different levels of detail is needed
to assess the compactness of the representation.
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