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Abstract
Most methods of cloth simulation produce animations that do not move very freely; the result often looks like
the material is “swimming”. The primary sources of this phenomenon are the non-physical dissipation terms
often added to the mechanics to ensure stability in the simulation, and the numerical damping that is implicit
in the choice of ODE integration schemes. By disposing of the additional dissipation terms and choosing a new
integrator, the generalized-α method, that was designed to safely integrate mechanical systems with extraneous
high-frequency signals in their temporal component, we obtain more realistic results often with the about the same
amount of computation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Recent advances in cloth simulation have produced attrac-
tive animations with a reasonable amount of computation.
However, the results still fall short of physical realism. The
motion of real cloth is often fast and jerky. The numerical
methods that are usually employed to simulate cloth are not
well suited to this sort of problem due to their inherent damp-
ing properties.

In order to see how this happens, we need to look at the
core problem. All physically-based routines, regardless of
whether they are particle or finite-element based, attempt to
solve the standard discretized ordinary differential equation,

Mẍ � F
�
x � ẋ � t � (1)

Here M is the (possibly lumped) mass matrix, the vector x
contains the positions of the particles or, in finite-element
codes, the nodes, of the mesh that represent the discretized
cloth sheet. The function F

�
x � ẋ � t � is the sum of the con-

servative forces in the system, such as material stretch and
gravitation, and the non-conservative forces in the system
(such as friction or user-imposed constraints). We can there-
fore write

F
�
x � ẋ � t � ��� ∂E

∂x
�
x ��� F � � x � ẋ � t �

where E is the material’s potential energy function and F �
represents the non-conservative forces.

The potential energy of cloth has two natural scales. Fab-
ric is very strong in its plane (“stretching”) – recall that the
tensile strength of silk can be higher than that of steel. On the
other hand, deformations out of the material plane (“bend-
ing”) are virtually free. It can take orders of magnitude more
work to stretch a small region of cloth than it does to cause
a large fold. The result is that equation 1 is generally poorly
scaled and this stiffness leads to serious issues impacting the
numerical stability.

Until recently, most related dynamics research focused on
solving equation 1 with explicit integration 4 	 8. In explicit in-
tegration, the state (x, v), where v � ẋ, is advanced using an
explicit difference equation. This class of integration scheme
is known to be unstable when applied to stiff and oscillatory
problems. Conversely, most new research into the problem is
based on using implicit integration 1 	 3 	 6 (additionally, some
of the older research of Terzopoulos 11 	 10 also used these
methods). In these methods, the state at a new time step is
a function of the state at both the old and new steps, or, in
other words, the equation for advancing the state is implicit.
Members of this class of algorithms typically supply an ar-
tificial amount of damping, which leads to a higher level of
stability.

The implicit method most frequently employed to solve
equation 1 is backward Euler,

yn 
 1
� yn � hf

�
yn 
 1 � (2)

where y � � f
�
y � . When applied to our problem, the result is
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the following set of difference equations:

xn 
 1
� xn � hvn 
 1

vn 
 1
� vn � hM 
 1 � F � xn 
 1 � vn 
 1 � tn 
 1 ��� (3)

Here, the subscript represents the time step and h is the
length of time we are trying to integrate in this step. Tech-
niques have been introduced in attempts to solve this system
of equations quickly 3, but we will simply employ Newton’s
method.

In 12, the explicit midpoint rule and a fifth-order explicit
Runge-Kutta method are compared with backward Euler
when applied to cloth simulation. The authors’ results sug-
gest what we stated above; the mechanics of complex cloth
dynamics are better suited to implicit schemes. They also
observe, however, that the inaccuracy of backward Euler can
lead to unrealistic results. This is further discussed in section
2.

1.1. Potential Energy

For ease, we have chosen the potential energy function de-
fined in 1. We could easily replace it with another form
for deformation energy, but the difficulties mentioned above
would be the same as they are inherent to the mechanics of
the problem.

The function E is the positive-definite form E � 1
2 CT C.

The vector C contains terms for stretch, shear, and bend, all
of which are zero in a state of no deformation. For each trian-
gular face in our mesh, there is a stretch and a shear contribu-
tion, and for each pair of adjacent faces, there is a bend term.
Defining the piecewise-linear function w

�
u � v � as the func-

tion mapping a parameterization of the cloth surface to its
three-dimensional coordinates, the stretch and shear terms
are defined as:

Cstretch
� a

���
∂w
∂u

� � � ∂w0
∂u

��
∂w
∂v

� � � ∂w0
∂v

��� (4)

Cshear
� a

∂w
∂u

T ∂w
∂v

(5)

where a is the triangle’s undeformed area and w0 represents
the function w for an undeformed sheet. Given two adjacent
triangles with normals n1 and n2, we charge for bending in
the sheet as

Cbend
� arccos

�
n1

T n2 � (6)

In order to simulate cloth, we scale these equations so that
the penalty for bending out of plane is not nearly as harsh
as that for stretching in plane. Additionally, an artificial term
based on these functions is introduced in order to improve
numerical stability in the integration (leading to a so-called
damping force).

In the remaining sections of this paper, we will suggest a
numerical integrator that is better suited our problem. In sec-
tion 2, we discuss why backward Euler is a poor choice for

solving equation 1. We show that the sort of damping that
is inherent to the method is ineffective for our needs, which
leads to the need for the additional damping force mentioned
above. In section 3, we cover the generalized-α method 2.
We detail the ways in which it is an improvement over using
backward Euler and discuss how its implementation can pro-
duce codes that run with the same amount of computation.
Preliminary results comparing the two algorithms are given
in section 4, and we discuss the remaining issues in section
5.

2. Damping in Backward Euler

In order to see how the backward Euler method damps os-
cillations, we will apply it to the single DOF second-order
ODE

ẍ � ω2x � 0 (7)

The solution to this problem is easily seen to be x
�
t � �

a sin
�
ωt ��� bcos

�
ωt � for some constants a and b. For our pur-

poses, we need a method that damps periods on the order of
our time step. More precisely, a desirable integrator will pro-
vide little numerical damping when ωh � 1 and more when
ωh � 1. Applying equation 2 to equation 7, we see that we
can write the solution in the convenient form,�

xn 
 1
vn 
 1 � � ABE

�
xn

vn � (8)

� An 
 1
BE

�
x0
v0 �

where ABE is the amplification matrix for the backward Eu-
ler method,

ABE
� �

1
1 
 ω2h2

h
1 
 ω2h2
 ω2h

1 
 ω2h2
1

1 
 ω2h2

� (9)

From equation 8, we see that the amplification matrix gov-
erns the level of damping caused by the method. Clearly, un-
less ABE has all eigenvalues � λ ��� � 1, the method will be un-
stable for increasing n. In addition, any eigenvalues � λ ��� 1
will cause the system to damp, with limn ��� xn

� 0.

The eigenvalues of ABE are λ1 � 2 � 1
1 
 ω2h2

�
1  ωh � . A plot

of ωh vs � λ � is found in figure 1.

3. The generalized-α method

In order to improve on the low-frequency accuracy of the in-
tegration while maintaining the useful high-frequency damp-
ing, we would like an integrator that sustains its plateau near
1 when ωh � 1 and drops off steeply when ωh � 1. A natu-
ral conclusion would be to implement a higher order method
and thereby obtain additional accuracy. This is the approach
taken in 5, but the benefit typically comes with a computa-
tional cost – smaller time steps are required to enforce sta-
bility. Symplectic integration9, which conserves the system’s
mechanical energy, requires an even more dramatic decrease
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Figure 1: A plot of ωh vs the magnitude of the largest eigen-
values of the amplification matrices (max � λi � ) for both back-
ward Euler (the dotted line) and the high-frequency dissipa-
tion limit (ρ � � 0) of the generalized-α algorithm (the solid
line). The amplification matrices are found by applying each
integrator to the single-DOF problem ẍ � ωx � 0 with time
step h. To achieve the desirable properties of heavily damp-
ing frequencies that are high with respect to h, while mini-
mizing the impact on low frequencies, an algorithm should
show � λ �"! 1 for small ωh and � λ �#! 0 for large ωh. As the
generalized-α response is always higher than that of back-
ward Euler (at times the difference is a factor of four), we
would expect that for given h, generalized-α to provide a
much more accurate low-frequency response, but not damp
high frequencies as aggressively. Our results suggest that
the penalty paid for this damping loss is marginal while im-
provements in accuracy can be dramatic.

in time step to remain stable. In order to retain the benefits
of backward Euler, the chosen method should minimize any
computational penalty.

The generalized-α method is a member of a class of inte-
gration schemes long popular in the mechanics literature be-
cause they possess some of these useful properties 2 	 7. The
method is specifically designed for second order systems and
is second-order accurate in the positions; it is first order ac-
curate in velocities. Its parameters are chosen in an attempt
to associate dissipation with the higher frequencies, provid-
ing some numerical stability.

3.1. Implementation

The generalized-α algorithm begins with the user select-
ing a value for the high-frequency dissipation limit, ρ � �
limωh ��� � λ � . ρ � � 1 is no dissipation and ρ � � 0 is max-
imum dissipation. The response of the generalized-α method

with ρ � � 0 is plotted in figure 1. Define2 	 13,

αm
� 2ρ � � 1

ρ � � 1
� α f

� ρ �
ρ � � 1

β � 1
4

�
1 � αm � α f � 2 � γ � 1

2
� αm � α f

β̂ � β
1 � α f

1 � αm
� γ̂ � γ

1 � α f

1 � αm

The nonlinear form of the generalized-α method, as detailed
in 13 and applied to equation 1, is

M
�
xn 
 1

� x̂n � � β̂h2F
�
xn 
 1 � vn 
 1 � tn 
 1 � � 0 (10)

M
�
vn 
 1

� v̂n � � γ̂hF
�
xn 
 1 � vn 
 1 � tn 
 1 � � 0

where x̂n and v̂n are functions of the prior state

x̂n
� xn � hvn � h2 $ � 1

2
� β

1 � αm � an � βα f

1 � αm
M 
 1Fn %

v̂n
� vn � h $ � 1 � γ

1 � αm � an � γα f

1 � αm
M 
 1Fn % (11)

Here the vector an represents a third component to the sys-
tem’s state,

an
� 1

1 � αm & � 1 � α f � M 
 1Fn � α f M 
 1Fn 
 1
� αman 
 1 '

a0
� M 
 1F0 (12)

Before attempting to solve equation 10, we can simplify
it and hence cut the size of the nonlinear problem in half
by observing that the vectors

�
xn 
 1

� x̂n � and
�
vn 
 1

� v̂n �
must be parallel. We therefore define our new parameter
φ � xn 
 1

� x̂n and reduce the system to one equation :

Mφ � β̂h2F

�
φ � x̂n � γ̂

β̂h
φ � v̂n � tn 
 1 � � 0 (13)

When solving this equation with Newton iteration, we use
the previous state as an initial guess φ ( 0 ) � xn

� x̂n. Newton
iterations require that we solve the linear system�

M � β̂h2 ∂F
∂x
� γ̂h

∂F
∂v � ∆φ ( i ) ��� & Mφ ( i 
 1 ) � β̂h2F '

(14)
and then set φ ( i ) � φ ( i 
 1 ) � ∆φ ( i ) . We currently use the pre-
conditioned conjugate gradient linear solver detailed in 1. In
order to compare the method discussed here with the algo-
rithm from that paper, our examples use one Newton step per
iteration for both backward Euler and generalized-α.

4. Results

Our simulations were done using a flag made of a mesh of
116 points. In order to better compare the two algorithms,
we do not add external forces, such as air drag or internal
friction. Some of the animations may seem to imitate these
effects, but they are artifacts of the numerical damping and
therefore poor approximations to these physical properties.
As we have seen in figure 1 that the degree to which the
methods damp is a function of the chosen step size. Were
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Figure 2: A plot of the total energy over the course of the
60 second animations produced using backward Euler and
generalized-α, each with step sizes h �+* 005s and h �+* 03.
In the simulation, the sheet is driven by moving two corner
points in a sinusoidal motion. As seen in the figure, this cre-
ates two frequency components in the total energy (although
as h increases, particularly with backward Euler, the lowest
frequency component is squashed). At T � 30s, the moving
constraints are stopped and the points are held static with a
workless force. We fit the curves from T � 30s to T � 60s
to the function exp 
 σt; we would have energy conservation
if σ � 0. Backward Euler and generalized-α with h �,* 005
result in σ ! * 069 and σ ! * 008 respectively, a 9-fold dif-
ference. With h �-* 03, σ ! * 358 and σ ! * 08, a factor of 6
difference. This is seen clearly in the animations in figures
3-6. Related results for backward Euler, implicit midpoint,
and some explicit methods can be found in 5.

the inherent numerical damping a fair replacement for drag
or friction, it would not be such a strong function of the
step size. It is clearly better to add these terms using actual
physically-based approximations.

The flag (shown in figures 3-6) is driven by displacing the
two top corner points in a sinusoidal motion with a period
of 2s. After 30 seconds, the motion is stopped and the flag
is held stationary at those two points. As this constraint is
workless, perfect integration would cause the system to lose
no energy once the motion had stopped. From the discussion
above, it is clear that the system will instead suffer a steady
loss of energy. This is seen in figure 2.

The amount of computation spent on generalized-α is on
the same scale as backward Euler for a given time step. Both
methods spend most of their time building the linear systems
and solving them. As we have seen, there is some mild over-
head involved in building the linear system for generalized-
α, but we have found that it is offset by the improved con-
vergence rate in the conjugate gradient solver; in the ρ � 0

high-frequency limit, the Jacobian matrix tends to be better
conditioned than the system found in backward Euler.

As the methods share similar run times for a given time
step, it is natural to ask how they perform with increasing
time step. In our examples, with the increase in time step
from h �.* 005s to h �+* 03s, both methods bleed energy in
order to maintain stability. We see from the energy plots and
simulations, however, that even with a large step size, the
generalized-α simulation continues to act long after back-
ward Euler has settled into a virtually static state.

5. Conclusions

The generalized-α integrator for second-order mechanical
systems has been applied to the cloth dynamics problem.
The method has been shown to provide results that are more
accurate than that of backward Euler, due to its ability to
damp high frequencies aggressively while respecting the
more important low-frequencies. The implementation of the
method has been simplified to the point where it takes little
to no more work than backward Euler.

One avenue that we have yet to investigate is the impact
of the ρ � parameter. While the choice of ρ � as zero seems
natural for our needs of speed vs accuracy, but we know little
about how the amount of work increases as the parameter is
changed. We plan to look into the way that the work required
by the algorithm changes as a function of this parameter.
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(a) T=56s (b) T=56.36s (c) T=56.72s (d) T=57.1s

Figure 3: Frames from one-half of an oscillation of a waving flag simulated with no air drag or friction. The sheet was shaken
for 30 seconds and then held. About 26 seconds later, much of the energy has been lost. This animation was done using backward
Euler integration with a step size h �/* 005s. As the damping is a function of the integrator and the choice of step size, we judged
the period of the oscillation by visually marking frames where the motion seemed to reverse direction. The entire video can be
seen at http://www.cs.berkeley.edu/ 0 davidp/clothintegration.html.

(a) T=56.7s (b) T=56.93s (c) T=57.16s (d) T=57.4s

Figure 4: Frames from one-half of an oscillation of the same simulation but replacing backward Euler with the generalized-α
integration scheme. When compared with the frames above, both the amplitude and period of the swinging motion are more
accurate. In addition, the curling of the sheet at the ends of the sequence are a noteworthy visual artifact missing in figure 3.

(a) T=56s (b) T=56.36s (c) T=56.72s (d) T=57.1s

Figure 5: Another ’half-period’ of an oscillation of the same simulation, done using backward Euler with step size h �-* 03s.
Due to heavy damping of low frequencies, there is no real period to analyze as the motion has effectively stopped.

(a) T=55.9s (b) T=56.2s (c) T=56.5s (d) T=56.8s

Figure 6: A half-period of an oscillation of the same simulation, done using generalized-α with step size h �,* 03s. Despite a
more than five-fold increase in the time step, the simulation resembles the one produced by backward Euler with h �1* 005s. The
frequency of the swing remains more accurate.
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