
EUROGRAPHICS 2002 / I. Navazo and Ph. Slusallek Short Presentations

 The Eurographics Association 2002.

Interactive polygonisation for function-based shape modelling

K. Levinski and A. Sourin

Nanyang Technological University, Singapore

Abstract
This paper addresses interactive function-based shape modelling. Interactive modification of the function
model with concurrent visualization of the respective polygonal mesh lets us provide both the interactivity
and any required level of detail leading to photo-realistic appearance of the resulting shapes. We have
proposed an interactive visualisation method capable of handling local shape modifications with any
desired precision. We illustrate the implementation of the proposed visualisation method on the example of
the interactive function-based artistic shape modelling.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism – Visible line/surface algorithms; I.3.8 [Computer Graphics]:
Applications

1. Introduction

Function-based shape modelling is becoming increasingly
popular in computer graphics. Usually, implicit functions
and their modifications are used to describe the shapes1.
Among them, geometric shapes can be defined with an
inequality ƒ(x,y,z)≥0, where function ƒ is positive for the
points inside the shape, equal to zero on its border and
negative outside the shape. This representation, called
F-Rep2, is used in this paper.

Normally, for rendering function-defined shapes,
either ray tracing or polygonisation followed by fast
polygon rendering is used. Alternatively, the function-
defined shapes can be voxelised and rendered as a set of
points. A bottleneck of all these rendering methods is in
usually large time needed to evaluate the defining
functions. A very big number of sample points are to be
tested, which makes it really difficult to perform any
interactive changes to the shape being modelled. Also, the
rendering algorithms themselves are to be fast enough to
allow for implementing interactivity.

In this article, we continue the research described

in3,4 where the interactive function-based shape modelling
was addressed. In this approach, the shape being created
was totally defined using the function representation
(F-Rep), which provided any required level of detail. The
interactivity was achieved with interactive ray tracing,

which redrew only the affected areas of the screen while
the rest of the image remained intact. Although, compared
to other methods, the interactive ray tracing provides us
the required level of detail and photo-realistic quality of
the resulting images, it works efficiently only when
interactive local modifications of the shape are being
done and requires large time for rendering the whole
shape. In this paper, we switch our attention to interactive
polygonisation and propose a method of interactive
rendering function-defined shapes, which provides us any
desired level of detail and rendering quality while still
maintaining the interactivity.

In our project, we simulate with a computer various
crafting techniques such as sculpting, carving, embossing,
engraving, etc. By analysing the nature of these crafts, we
have imposed certain restrictions on the process of
geometric shape modelling, which helped us to find the
efficient way of implementation. First, we assume that the
original shape is topologically connected like a work-
piece before the crafting had begun. Second, we consider
only a surface of the shape and its local gradual
modifications imitating the actual crafting. And finally,
we are aware of the expected result of each interactive
operation like a craftsman anticipates the result of each
crafting operation. All these assumptions have been taken
into account when devising the method of interactive
visualisation according to the following requirements:

http://www.eg.org
http://diglib.eg.org

Levinski and Sourin / Interactive Polygonisation

 The Eurographics Association 2002.

• The algorithm should be able to polygonise only the
visible surface of the shape with the fastest possible
speed and any required level of detail up to the size
of a pixel.

• The mesh produced by the algorithm should be
optimal in terms of the polygonal quality, i.e. the
polygons should have a near-equal aspect ratio.

• Robust and seamless local mesh reconstruction is
required for interactive polygonisation.

2. Achieving interactive polygonisation

For obtaining a polygonal representation of a function-
defined shape, a significant amount of points on or near
its surface is to be calculated. This task involves multiple
function evaluations, which can be time consuming. For
parametric function representations, the polygonisation is
rather a straightforward task, while it is not so obvious for
implicit functions. Since in this project we use implicit
functions and their modifications, we will further
concentrate on the methods of polygonisation of
implicitly defined shapes.

The existing algorithms of polygonisation differ in
terms of their computational complexity, the frequency of
the function evaluation (sampling), and the resulting mesh
quality. To achieve interactivity, the polygonisation
algorithm should sample the function as seldom as
possible and update the image on the screen within the
interactive rate. There are two possible ways of
interactive updating the polygonal mesh. The first method
would assume re-polygonisation of the whole shape. This
is the generic and probably the easiest solution but it has a
very limited application assuming that quite often the
function evaluation takes large time, which may bring to
nothing the total algorithm performance. Also, only about
10K polygons reportedly can be re-built at the interactive
rates for the whole shape being modified. The other
possible approach, noted in1, assumes that only a part of
the shape is to be re-polygonised, and the newly obtained
polygons will update the existing polygonal mesh. This
approach will be valid for relatively small modifications
of the shape compared to its total size. This will greatly
reduce the number of samples required, and the
interactivity will become dependent on polygonisation of
the relatively small areas of the function-defined shape.
Moreover, the polygon size can also be altered
interactively to reveal more details at a specified location.

2.1 Common polygonisation methods

A comprehensive survey of the implicit surface
polygonisation algorithms can be found in1, where all the
algorithms fall into two major classes:

• The methods intended for operating on continuous
functions.

• The methods devised for processing discretely
sampled data.

We shall follow this classification updating it with the

recently published results.

The algorithms, initially designed for continuous data,
include particle–based, predictor-corrector and
subdivision techniques.

Particle-based techniques were initially designed for
interactive modelling. The methods for effective
interaction between particles and an implicit surface were
developed in5, while the interactive system based on the
technique is described in6. Unfortunately, the maximum
number of particles that can be operated in real time is
only about a few thousands. Therefore, these techniques
fail to satisfy our requirement of the fine detail
reconstruction.

When a high quality mesh is required, Predictor-
corrector methods are to be sought. These methods are
based on prediction of the adjacent triangles positions,
with their consequent placement at the actual surface. The
high quality mesh is achieved by a near-equilateral shape
of the triangles. The recent works in the area are7,8. The
predictor-corrector method requires initial seeding
triangle to be put on the surface—the condition, which
could easily be met in our case as we know the original
shape. Shape modelling with local mesh updating based
on the predictor-corrector algorithm is presented in9. In
this work, only the blobby objects were constructed since
the method was not suitable for models with sharp edges.
Using of the adaptive polygonisation leads to
undersampling, i.e. omitting fine details. Moreover, the
global overlap detection can be expensive for fine
meshes. Therefore, although the shape of polygons seems
to be acceptable, we cannot use this method since it fails
to reveal fine details of the model.

Subdivision mesh extraction method is based on
recursion. A cell containing the model is subdivided into
eight smaller cells, which are examined whether they
contain the surface or not. The process repeats, until the
minimum cell size is reached. All the leaf cells containing
the surface are polygonised. Unlike the predictor-
corrector methods, this algorithm does not need an initial
point to begin the polygonisation with. It detects the
surface automatically. The mesh generated by this
algorithm is similar to the one generated by the marching
cubes algorithm, but, like the most of the adaptive
methods, may suffer from occasional undersampling. The
working area is generally limited by the initial cell size.
An interactive system utilizing this method was described
in10. For reliable detection of the function-defined surface

Levinski and Sourin / Interactive Polygonisation

 The Eurographics Association 2002.

in a cell, Lipschitz conditions were used, which resolved
the undersampling problem but restricted a possible set of
implicit functions. Another point preventing the method
from being utilized in our application is a poor mesh
quality, similar to that of the marching cubes algorithm.

Since the nature of our function-defined model is
continuous, we should have restricted our consideration to
the continuous methods only, however the algorithms
initially designed for discrete data can be successfully
applied to polygonisation of the shapes defined with
continuous functions as well. Among the most common
methods are spatial enumeration and continuation
techniques.

Spatial enumeration is probably the oldest algorithm
for polygonising volume data11. It is perfectly suitable for
range data from CT or MRI scans, but for interactive
visualization of a large function-defined model, the
uniform sampling requirement may become unfeasible
due to the high complexity of each function evaluation.
Because of our assumption on the model topological
connectivity, the search through all the volume becomes
redundant.

The second approach named continuation12, exploits
spatial coherence for detecting all the cells intersecting
the surface. Initially, a seeding set of cells is introduced.
Then at each step, the neighbouring intersecting cells are
examined. To avoid checking the same cell twice, a sort
of hashing can be introduced for the cells. The hashing
can be based, for example, on integer coordinates of the
cell corners. The demerit of the continuation method
compared to spatial enumeration is in its lack of
generality since it requires to place seeding points on each
separate surface defined by the implicit function.
Fortunately, in an interactive application it can easily be
implemented.

The continuation algorithm fits our needs quite well.
It detects the surface effectively without unnecessary
function evaluations. Also, due to its discrete nature, it is
very fast and can be extended for quick local re-
polygonisation. It must be noted, though, that the mesh
quality is highly dependent on the way every cell is
polygonised, the configuration of the cell, and the
optimisation algorithms used.

2.2 Problems of interactive polygonisation

Two different tasks are to be addressed when solving the
problems of interactive polygonisation of a function-
defined shape.

The first task is visualizing at the interactive rates the
whole shape on the screen by changing the observer’s

position or illumination without changing the number of
polygons and their coordinates. This task refers to
defining the appropriate size of the polygonal mesh and
methods of its fast rendering. The interactive rendering
performance is a hardware dependent feature. From
different reports it may be concluded that nowadays about
100K polygons can be manipulated this way on the screen
of a computer with a common configuration.

The second task is updating the polygonal mesh at the
interactive rate following the respective interactive
operations modifying a part of the shape. It is more
sophisticated, and it assumes a user’s control over the
mesh generation. Such a control is required when
automatic methods fail or not applicable. For example,
when a function model changes, it is often impossible to
detect the area of modification by examining the defining
functions directly. In that case, either the whole model is
to be re-polygonised or additional interactive information
should be used to detect and rebuild the modified area
only. Although rebuilding the entire polygonal model
after each modification ensures obtaining the correct
polygonal surface, the process may take unacceptably
long time. On the other hand, if we can find a way of fast
detecting the area of modification, the polygoniser can be
confined to it, and the running time can be reduced.

Different methods have been used for specifying the
area of re-polygonisation. In the interactive sculpting
system based on the predictor-corrector polygonisation9,
an oriented bounding box was used to define a part of the
space where the modification took place. Then, every
polygon of existing mesh was checked against the box,
and removed from the mesh in case of intersection.
Although for several thousand polygons this method
performes well, it may become inefficient for hundreds of
thousands of polygons, which we are expecting in our
case. The subdivision system in10 defines the modification
areas with axes aligned bounding boxes and then re-
polygonises their interior. It may be noted, that this
method will become inefficient in case if the modification
area has a fancy, long or not axes aligned shape.
However, even with such a way of confining
polygonisers, a considerable acceleration has been
achieved. We have proposed several improvements to this
technique in this paper.

Another important benefit from the controlled
polygonisation is in interactive definition of the
resolution. In most applications, the resolution in
polygonisation algorithms is set up automatically,
depending on the surface parameters such as curvature,
error value, dihedral angle between adjacent polygons,
etc. Most of those criteria suffer either from non-
generality, undersampling, or heavy function evaluation
requirements. In an interactive application, the task of
detecting resolution can be transferred to the user. Like

Levinski and Sourin / Interactive Polygonisation

 The Eurographics Association 2002.

changing the eye focal length when shifting the gaze from
the whole shape to a little part of it, the size of the
polygons may vary depending on the size of the
visualization or modification area. In connection with the
function-based shape modelling, this problem was
addressed in13 and has found a different solution in our
work.

3. Fast polygonisation of the interactively modified

function-defined shape

3.1. Method description

As we have already mentioned, in our project we use the
function-defined model of a shape, which is being
interactively modified. The detailed model description is
outside the scope of this paper, therefore we shall just
mention that each modification of the shape adds a new
function to the function defining the shape. Eventually,
the resulting function becomes a superposition of the
basic shape function and the functions defining all the
interactive operations, which were gradually applied to
the basic shape. In other works, we are discussing the
problems of accelerated function evaluation. In this paper,
we shall just assume that we are able to sample the shape
by doing quick evaluations of the defining function. This
has been achieved due to the special accelerating
functions as well as the effective memory organisation.

Besides the ability of the interactive high resolution
rendering of any modified part of the shape, we need to
be able to obtain an updated high-resolution image of the
whole shape on the screen at an interactive rate.
Therefore, both tasks of the interactive polygonisation
described in 2.2 are to be addressed and implemented.

We propose the following solution to this problem.

1. As it was concluded in 2.1, the continuation
polygonisation method appears to be the most
suitable for obtaining the polygonal mesh of our
function-defined shape model. Therefore, we will
use the idea of this method although improve it in
terms of the cell shape used for calculating the
polygons.

2. Two different polygonal resolutions–coarse and fine

ones–will be used simultaneously. The coarse
resolution will be used when a relocation of the
whole shape or changing the light condition is
required so that the user wants to be able to see the
whole shape changing at the interactive rate. This
fine resolution will be dependent on the hardware
performance, and may be around 100K polygons for
the shape whose model does not change during
visualisation. The fine resolution assumes a smaller

size of the polygons up to the size of a pixel. It will
be used for interactive rendering the modified parts
of the shape, as well as for high-quality rendering of
the whole shape. The ability to reduce the size of a
polygon up to the size of a pixel gives us the point
rendering quality while still using hardware
acceleration of polygon rendering.

3. Both polygonal meshes will result from the same

polygonisation algorithm, as well as will be linked to
the same data structure controlling the
polygonisation process. Since the size of the
polygonal mesh obtained for the fine resolution will
be substantial, this mesh will be stored and
maintained in a hard disk, while the polygons for the
coarse resolution and the respective control data will
be stored and maintained in the RAM.

The visualization pipeline will work as follows. First,

for the initial function-defined shape, the coarse
resolution mesh will be created and rendered on the
screen. Concurrently, the fine resolution mesh will be
created in another thread. While the fine mesh is being
created and stored in the hard disk, it will be immediately
rendered and the respective image will replace the one on
the screen produced from the coarse resolution polygons.
If then the shape is relocated, the coarse resolution mesh
will be used for rendering the moving shape while the
fine resolution mesh will be rendered as soon as the shape
comes to its rest. When any interactive modification is to
be done, the defining function will be modified first
followed by the both fine and coarse re-polygonisation of
the respective area. Only the fine resolution polygons will
be used now for updating the image on the screen while
the coarse resolution polygons will be only calculated to
update the stored coarse mesh for further possible use.
Since the size of the fine polygons is smaller than the size
of the coarse polygons, the whole processor power will be
used for rendering only these newly created polygons.
When rendering these polygons, the respective part of the
image on the screen will be updated while the rest of the
image will remain intact. This will create an illusion of
interactive working in high resolution with the whole
shape. Both meshes will be updated respectively and will
be readily available for further rendering thus providing
the sustained interactive rate. In fact, in place of the fine
resolution polygons we might have used points but we
have chosen to use polygons since it gives us more
rendering benefits comparing to point rendering even if
we reduce the size of polygons to the size of pixel. With a
proper memory organisation, the size of a mesh will not
be much bigger than the size of the respective point array.

Below, we describe the implementation details of the
proposed method of rendering.

Levinski and Sourin / Interactive Polygonisation

 The Eurographics Association 2002.

3.2. Optimisation of the continuation method

Commonly, a cubical shape of a cell with its optional
tetrahedral decomposition14 is used in the continuation
polygonisation algorithms. However, these cells still fail
to ensure the sampling uniformity and therefore will not
provide us the required mesh quality. The cell shape,
which would satisfy our requirement is a tetrahedron
generated by the body-centric lattice (see Figure 1), as it
was theoretically proven in15.

Figure 1: The cell configuration used.

This tetrahedron has been recently used for surface

extraction from volumes16,17. We have applied this
tetrahedron for the continuation method. Besides
obtaining the required mesh quality, we have also
managed to accelerate the whole process of
polygonisation by detecting the neighbouring cells by
simple 2D mirroring (points D, B, A and D’ in Figure 1),
which makes its propagation nearly as simple, as
propagation of a cubical cell. Taking into account that all
of the faces are equal isosceles triangles, the continuation
algorithm can be simplified even further.

Figure 2: The set of tetrahedra and the resulting mesh.

Obtaining a triangular mesh from a set of tetrahedral
cells intersecting the surface is a common straightforward
task. The surface inside each cell is polygonised piece-
wise, and then assembled with other triangles thus
forming the entire mesh. To improve the resulting mesh
quality, we have applied a cell clustering method similar
to the one described in18. In this method, each tetrahedral
cell produces maximum one triangle. On average, it gives

one triangle per three cells. The number of triangles may
grow in uneven parts of the surface. This method does not
require any additional function evaluation beside those
used for the cell detection. The triangles can be linked to
the cell set, and therefore will become readily available
for retrieving when stored in the memory. The example of
the set of tetrahedra and the resulting mesh is shown in
Figure 2.

The continuation method requires a certain control

data structure to avoid cell overlapping when moving
along the surface. Usually, a hashing technique based on
the integer cell coordinates is employed for fast cell
querying. Commonly, such hash data is discarded for the
processed cells for the sake of memory conservation. On
the contrary, in our approach we keep and use it for
obtaining the fine resolution triangles from the original
coarse resolution cells. It is also used for fast surface
querying as well as for local mesh updating.

3.3. Coarse and fine resolutions

When requiring a fine polygonal mesh with up to the
pixel size for each triangle, we must have anticipated a
huge memory grow as well as tremendous computing
time for storing and processing the respective hash data
structure and the tetrahedral set. However, we have found
a solution to this problem by controlling the fine
resolution polygonisation with the tetrahedral set obtained
and stored for the initial coarse resolution. We have
achieved it by assigning to the same cell one triangle from
the coarse resolution mesh and several respective fine
mesh triangles, which are located inside this cell. This is
schematically depicted in Figure 3.

Front and side views

Top view
B

A

D

D’

C

function-
defined model

Coarse mesh

cell detection by
continuation
Figure 3: Data structure
Cell
Fine mesh
 outline.

f (x,y,z) ≥ 0

Levinski and Sourin / Interactive Polygonisation

 The Eurographics Association 2002.

As it was mentioned in 3.2, computing the coarse
mesh does not require any additional function evaluations
besides those done for calculating the coarse tetrahedral
set. On the contrary, calculating the fine triangles for each
cell will require significant time. To avoid slowing down
the coarse mesh calculation, we have implemented the
fine mesh calculation as a separate process, which runs in
parallel to the coarse polygonisation.

The refinement process employs the same
continuation principle as the general cell detection
algorithm. Let us denote the small cell used by this
process as a sub-cell. It is smaller than the original cell by
2k times, and tiles the tetrahedron completely. The value
of k is either calculated to match the resolution of a
particular display device, or defined by the user. To start
the fine polygonisation, a seed sub-cell is to be defined
inside the coarse seed cell. Then, the sub-cell propagates
inside the cell and extracts the fine polygons. For the
initial basic shape, new fine polygons will be immediately
shown on the screen following the coarse polygons. This
calculation will be performed much faster. Besides, the
fine mesh will be stored in the hard disk for later use.
During the propagation process, a sub-cell can
occasionally appear to be in another cell next to the one
being processed. In this case, the propagation of the sub-
cell will be halted, and this sub-cell will be defined a
seeding sub-cell for the cell where it penetrated to. If this
cell has been already refined, then no further action is
taken. Otherwise, the cell will be added to the refinement
queue, provided it is not there yet. Eventually, the fine
mesh for the entire surface will be obtained. The process
of creating the fine mesh may involve those tetrahedra
that were not used in the original coarse polygonisation.

Since the fine mesh of the whole shape should have
a significant size in terms of the memory required for its
storage, we assume that generally it is to be stored in the
hard disk while being addressed through the coarse cells
stored in the RAM (Figure 3). Each cell will address a
block of a fixed size. The size of the block is to be chosen
to accommodate an average amount of the triangles that
can be generated from one cell. Extra blocks can be
linked to each other whenever the mesh becomes larger
than that fitting in one block. A few most recently used
blocks may still remain in the RAM in anticipation that
they will be required again soon. When the memory limit
is exceeded, these blocks will be removed from the
memory while still kept in the hard disk. However, for
any reasonably small area on the shape’s surface, the
respective fine mesh can be loaded from the hard disk for
further fast rendering.

3.4. Local updates and modifications

For updating the mesh for the modified part of the shape,
we developed an algorithm detecting and retrieving only
those cells that belong to the modification area. Upon
retrieval, the respective polygons will be removed from
the mesh and replaced with the new ones. As we
described in 3.3, the hashed set of cells allows us to
retrieve both the coarse and the fine meshes very quickly.
Among different ways of defining the modification area,
we have selected perhaps the most generic one: definition
by an implicit function. Without loss of generality, we
assume that the modification area resides in a
topologically connected bounding surface defined by a
simple implicit function. We apply the continuation
algorithm to this surface and obtain a set of cells
containing this surface. Then, every cell in this set is to be
checked against the hash table of the initial set to obtain
all cells, which intersect both the shape surface and the
bounding surface. At this point, the cells intersecting only
the bounding surface will be discarded. Using the same
continuation algorithm with the initial queue of the cells
resulting from the previous step, we can mark for deletion
all the cells intersecting the surface of the shape but
located inside the bounding surface. A 2D illustration of
this approach is given in Figure 4. Note, that up to this
point no additional shape function evaluations were
needed and the overall complexity was O(n), where n is
the number of the recalculated cells. Finally, the
algorithm is applied to the modified function with the
same starting queue, yielding new cells in place of the old
ones. The resulting cell set will not differ from that,
which could be created for the whole shape.

Figure 4: a) Obtaining cells for the bounding surface.
 b) Detecting the boundary cells.
 c) Removing the inside cells.
 d) Obtaining the new inside cells.

a) b)

Bounding surface

Surface of the shape

Modified
surface

Boundary cells

Levinski and Sourin / Interactive Polygonisation

 The Eurographics Association 2002.

3.5 Rendering

The coarse mesh can be rendered easily and quickly with
a single OpenGL command. This rendering is performed
when the relocations of the whole shape, changing the
observer’s position or changing the lighting conditions is
requested so that the user will be able to see the whole
shape moving or changing its visual appearance at the
interactive rate. Simultaneously, the fine resolution
rendering begins. The process of retrieving the fine
polygons will begin, concurrently processing unrefined
cells. After the fine rendering is completed, the resulting
image will be saved for further optional interactive re-
polygonisation. During such an interactive rendering, the
tetrahedra and the respective polygons will be stored,
while the whole image will still remain on the screen with
the respective Z-buffer depth information stored. Only the
new fine-resolution polygons from the area being
modified will be sent to the rendering pipeline, and their
graphics image will eventually update the respective part
of the shape image on the screen as well as the Z-buffer.
Therefore, most of the time there will be no need to
redraw the whole scene. Using the Z-buffer is required to
avoid artifacts when new polygons have greater depth
value than those, which they are replacing. Simple
overwriting of the image is also not feasible because in
this case we take no advantage of the depth information,
and visibility detection artifacts are likely to occur.

4. Application the interactive artistic function-based

shape modelling

The proposed method of interactive polygonisation and
the methods of the interactive function based shape
modelling proposed in3,4 have been applied to virtual
embossing and carving. These tools have been
implemented as an interactive shape modelling program
where the function model of the shape is gradually
modified with offset and set-theoretic operations. The
final shape is represented in the data structure as a list of
interactive operations over the basic shape, which defines
the final F-Rep model of the shape. A pressure sensitive
graphics tablet and a six-degree of freedom haptic input
device (Figure 5) have been used to interact with the
shape and realistically simulate the depth of penetration
of the tools.

In Figure 6, an example of the function-based
embossing is presented. Its model is made with 3000
interactive operations and includes 5000 individual offset
functions. This image is the result of the rendering of one
million polygons, which was the fine resolution (point
rendering quality) set for this shape. The respective coarse
resolution was one quarter of the fine one. In Figure 7, a
crystal vase interactively modelled with our tools is
shown. After modelling, we converted the shape model
into one of the standard data formats and then rendered it

with Houdini to demonstrate the ability of using different
rendering tools for obtaining the high-quality images. The
streaming video available from our project web-site19
illustrates the process of interactive modelling the vase as
well as embossing.

Figure 5: Virtual embossing with a haptic device.

Figure 6: Interactive function-based embossing:
 One million polygons have been interactively rendered
when making a function model of this shape as well as

used for obtaining the final image of the shape.

Levinski and Sourin / Interactive Polygonisation

 The Eurographics Association 2002.

Figure 7: Function-defined crystal vase created
interactively and rendered with Houdini.

The performance of the proposed rendering method is
illustrated in the Tables 1-3 for three shapes: a sphere and
the shapes from Figures 6 and 7.

Sphere, 1 function
Coarse resolution Fine resolution

Tetrahedra
processed

175,000 2,807,000

Triangles
generated

61,000 979,000

Evaluations
needed

60,000 978,000

Time for L 0.650 s 25.237 s
Time for H 0.610 s 18.597 s

Table 1: The processing data for a single sphere

Vase, 187 functions
Coarse resolution Fine resolution

Tetrahedra
processed

117,000 1,918,000

Triangles
generated

43,000 701,000

Evaluations
needed

41,000 697,000

Time for L 3.044 s 99.543 s
Time for H 2.734 s 49.578 s

Table 2: The processing data for the shape from Figure 7

Dragon, 7545 functions
Coarse resolution Fine resolution

Tetrahedra
processed

149,000 2,405,000

Triangles
generated

60,000 960,000

Evaluations
needed

57,000 951,000

Time for L 113.193 s 2400.786 s
Time for H 60.125 s 1190.786 s

Table 3: The processing data for the shape from Figure 6

Two different hardware configurations L and H have been
used: L is a notebook (PIII 800MHz/256 Mb/Win2000),
and H is the INTERGRAPH XE2 graphics workstation
(2xPIII 800 MHz/1024 Mb/Win NT).

Note, that this data is given for the coarse and fine
resolution rendering of the whole shape after it had been
interactively created. For each individual interactive
operation, it was just a real time response. Note also that
only about one function evaluation was required to
perform per each generated triangle including the normal
calculations.

6. Conclusion

In this paper we have addressed interactive function-
based shape modelling. Interactive modifications of the
function model with the concurrent visualization of the
respective polygonal mesh have let us provide both the
interactivity and any required level of detail leading to
photo-realistic appearance of the resulting shapes.

We have proposed an efficient method of interactive
visualisation by improving the continuation
polygonisation method and extending it for interactive
local shape modifications. In our method, we use the
tetrahedra generated by the body-centric lattice, which
follow the surface of a shape for calculating the polygonal
mesh.

We have proposed to use two different polygonal

resolutions concurrently for interactive rendering the
function-defined shape. The coarse resolution (up to
100K polygons) is used when the relocations of the whole
shape or different lighting is requested, so that the user is
able to see the whole shape moving or changing at the
interactive rate. The fine resolution (about 1M polygons)
is used for precise interactive rendering of the parts of the
shape being modified, as well as for high-quality
rendering of the whole shape. Both polygonal meshes
result from the same polygonisation algorithm, as well as
are linked to the same data structure controlling the

Levinski and Sourin / Interactive Polygonisation

 The Eurographics Association 2002.

polygonisation process. When working with high-
resolution images, only a part of the shape is re-
polygonised after each interactive shape modification
while the whole high-resolution image is still kept on the
screen. For updating the mesh for the modified parts of
the shape, we developed an algorithm detecting and
retrieving only those cells that belong to the modification
area. Both polygonal meshes are constantly kept updated
to provide a sustained time of rendering when the whole
image is to be redrawn. The algorithm is capable of
running on low-end personal computers, and lets us
achieve any desired quality of rendering free of artifacts
common for other algorithms. It is achieved by
minimizing the number of function evaluations and
resulting triangles, as well as by the efficient usage of the
tetrahedral set.

Finally, we have applied the developed method to

the interactive function-based shape modelling of virtual
embossing and carving. The function models of the
embossed and carved shapes can be either rendered with
our software with photo-realistic quality or converted to
other models for rendering with other software tools as
well as for rapid prototyping. Also, the standalone version
of the polygoniser has been applied for the project
reported in20 for transferring and visualising the created
function-defined shape model through the Internet.

References

1. J. Bloomenthal, An introduction to implicit surfaces,

Morgan-Kaufmann, 1997.

2. Pasko A.A, Adzhiev V.D., Sourin A.I., Savchenko

V.V., Function representation in geometric
modeling: concepts, implementations and
applications, The Visual Computer, vol.11, No.8,
1995, pp.429-446.
F-Rep web-site: http://wwwcis.k.hosei.ac.jp/~F-rep

3. A.Sourin, Functionally based virtual embossing,

The Visual Computer, 17:4, 2001, pp.258-271.

4. A.Sourin, Functionally based virtual computer art,

Proc of the 2001 ACM Symposium on Interactive
Computer Graphics, I3D2001, 2001, pp.77-84.

5. Andrew Witkin, Paul S. Heckbert, Using particles to

sample and control implicit surfaces, SIGGRAPH 94,
1994, pp.269-277.

6. T. Stander , C. Hart, Guaranteeing the topology of an

implicit surface polygonization for interactive
modeling, SIGGRAPH 97, 1997, pp.279-286.

7. T.Karkanis, A.J.Stewart, Curvature dependent

triangulation of implicit surfaces, IEEE Comput
Graph Appl, 2, 2001, pp.60-69.

8. E. Hartmann, A marching method for the

triangulation of surfaces, The Visual Computer,
Springer, 14:3, 1998, pp.95-108.

9. S. Akkouche , E. Galin, Adaptive implicit surface

polygonization using Marching Triangles, Computer
Graphic Forum, 20:2, 2001, pp.67-80.

10. E. Galin, S. Akkouche, Incremental polygonization

of implicit surfaces, Graphic Models and Image
Processing, 62, 2000, pp.19-39.

11. W.E. Lorensen and H.E. Cline, Marching Cubes:

a high resolution 3D surface reconstruction
algorithm, SIGGRAPH 87, 1987, pp.163-169.

12. G . Wyvill et al., Data structure for soft objects,

The Visual computer, 2:4, 1986, pp.227-234

13. M. Kazakov, V. Adzhiev, A. Pasko Fast navigation

through an FRep sculpture garden, Shape Modeling
International 2001, 2001, pp.104-113.

14 J. Bloomenthal, An Implicit Surface Polygonizer,

Graphics Gems IV, Academic Press, 1994

15. V. Skala, Precission of iso-surface extraction from

volume Data and Visualization, Algoritmy'2000
Int.Conf., Slovakia, 2000, pp.368-378.

16. S. L. Chan, E. O. Purisima. A new tetrahedral

tessellation scheme for isosurface generation.
Computers and Graphics, 22:1, 1998, pp.83–90.

17. Thomas Theußl, Torsten Moller, Meister Eduard

Groller, Optimal regular volume sampling,
IEEE Vizualization’2001, 2001, pp.91-98.

18. G. M. Treece, R. W. Prager and A. H. Gee.

Regularised marching tetrahedrons: improved iso-
surface extraction. Computers and Graphics. 23:4,
1999, pp.583-598.

19. Interactive function-based shape modelling project

web-site:
http://www.ntu.edu.sg/home/assourin/CompArt.htm

20. F.M. Lai and A.Sourin, Function-defined shape node

for VRML, Eurographics 2002, short presentations.

	Abstract

