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Abstract 
This paper addresses interactive function-based shape modelling. Interactive modification of the function 
model with concurrent visualization of the respective polygonal mesh lets us provide both the interactivity 
and any required level of detail leading to photo-realistic appearance of the resulting shapes. We have 
proposed an interactive visualisation method capable of handling local shape modifications with any 
desired precision. We illustrate the implementation of the proposed visualisation method on the example of 
the interactive function-based artistic shape modelling. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism – Visible line/surface algorithms; I.3.8 [Computer Graphics]: 
Applications 
 

 
 
 

1. Introduction 
 
Function-based shape modelling is becoming increasingly 
popular in computer graphics. Usually, implicit functions 
and their modifications are used to describe the shapes1. 
Among them, geometric shapes can be defined with an 
inequality ƒ(x,y,z)≥0, where function ƒ is positive for the 
points inside the shape, equal to zero on its border and 
negative outside the shape. This representation, called  
F-Rep2, is used in this paper. 
 

Normally, for rendering function-defined shapes, 
either ray tracing or polygonisation followed by fast 
polygon rendering is used. Alternatively, the function-
defined shapes can be voxelised and rendered as a set of 
points. A bottleneck of all these rendering methods is in 
usually large time needed to evaluate the defining 
functions. A very big number of sample points are to be 
tested, which makes it really difficult to perform any 
interactive changes to the shape being modelled. Also, the 
rendering algorithms themselves are to be fast enough to 
allow for implementing interactivity. 

 
In this article, we continue the research described 

in3,4 where the interactive function-based shape modelling 
was addressed. In this approach, the shape being created 
was totally defined using the function representation  
(F-Rep), which provided any required level of detail. The 
interactivity was achieved with interactive ray tracing, 

which redrew only the affected areas of the screen while 
the rest of the image remained intact. Although, compared 
to other methods, the interactive ray tracing provides us 
the required level of detail and photo-realistic quality of 
the resulting images, it works efficiently only when 
interactive local modifications of the shape are being 
done and requires large time for rendering the whole 
shape. In this paper, we switch our attention to interactive 
polygonisation and propose a method of interactive 
rendering function-defined shapes, which provides us any 
desired level of detail and rendering quality while still 
maintaining the interactivity. 
 

In our project, we simulate with a computer various 
crafting techniques such as sculpting, carving, embossing, 
engraving, etc. By analysing the nature of these crafts, we 
have imposed certain restrictions on the process of 
geometric shape modelling, which helped us to find the 
efficient way of implementation. First, we assume that the 
original shape is topologically connected like a work-
piece before the crafting had begun. Second, we consider 
only a surface of the shape and its local gradual 
modifications imitating the actual crafting. And finally, 
we are aware of the expected result of each interactive 
operation like a craftsman anticipates the result of each 
crafting operation. All these assumptions have been taken 
into account when devising the method of interactive 
visualisation according to the following requirements: 
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• The algorithm should be able to polygonise only the 
visible surface of the shape with the fastest possible 
speed and any required level of detail up to the size 
of a pixel.  

• The mesh produced by the algorithm should be 
optimal in terms of the polygonal quality, i.e. the 
polygons should have a near-equal aspect ratio.  

• Robust and seamless local mesh reconstruction is 
required for interactive polygonisation. 

 
 
2. Achieving interactive polygonisation 
 
For obtaining a polygonal representation of a function-
defined shape, a significant amount of points on or near 
its surface is to be calculated. This task involves multiple 
function evaluations, which can be time consuming. For 
parametric function representations, the polygonisation is 
rather a straightforward task, while it is not so obvious for 
implicit functions. Since in this project we use implicit 
functions and their modifications, we will further 
concentrate on the methods of polygonisation of 
implicitly defined shapes.  
 

The existing algorithms of polygonisation differ in 
terms of their computational complexity, the frequency of 
the function evaluation (sampling), and the resulting mesh 
quality. To achieve interactivity, the polygonisation 
algorithm should sample the function as seldom as 
possible and update the image on the screen within the 
interactive rate. There are two possible ways of 
interactive updating the polygonal mesh. The first method 
would assume re-polygonisation of the whole shape. This 
is the generic and probably the easiest solution but it has a 
very limited application assuming that quite often the 
function evaluation takes large time, which may bring to 
nothing the total algorithm performance. Also, only about 
10K polygons reportedly can be re-built at the interactive 
rates for the whole shape being modified. The other 
possible approach, noted in1, assumes that only a part of 
the shape is to be re-polygonised, and the newly obtained 
polygons will update the existing polygonal mesh. This 
approach will be valid for relatively small modifications 
of the shape compared to its total size. This will greatly 
reduce the number of samples required, and the 
interactivity will become dependent on polygonisation of 
the relatively small areas of the function-defined shape. 
Moreover, the polygon size can also be altered 
interactively to reveal more details at a specified location.  
 
 
2.1 Common polygonisation methods 
 
A comprehensive survey of the implicit surface 
polygonisation algorithms can be found in1, where all the 
algorithms fall into two major classes:  
 

• The methods intended for operating on continuous 
functions. 

• The methods devised for processing discretely 
sampled data.  

 
We shall follow this classification updating it with the 

recently published results.  
 

The algorithms, initially designed for continuous data, 
include particle–based, predictor-corrector and 
subdivision techniques. 
 

Particle-based techniques were initially designed for 
interactive modelling. The methods for effective 
interaction between particles and an implicit surface were 
developed in5, while the interactive system based on the 
technique is described in6. Unfortunately, the maximum 
number of particles that can be operated in real time is 
only about a few thousands. Therefore, these techniques 
fail to satisfy our requirement of the fine detail 
reconstruction. 
 

When a high quality mesh is required, Predictor-
corrector methods are to be sought. These methods are 
based on prediction of the adjacent triangles positions, 
with their consequent placement at the actual surface. The 
high quality mesh is achieved by a near-equilateral shape 
of the triangles. The recent works in the area are7,8. The 
predictor-corrector method requires initial seeding 
triangle to be put on the surface—the condition, which 
could easily be met in our case as we know the original 
shape. Shape modelling with local mesh updating based 
on the predictor-corrector algorithm is presented in9. In 
this work, only the blobby objects were constructed since 
the method was not suitable for models with sharp edges. 
Using of the adaptive polygonisation leads to 
undersampling, i.e. omitting fine details. Moreover, the 
global overlap detection can be expensive for fine 
meshes. Therefore, although the shape of polygons seems 
to be acceptable, we cannot use this method since it fails 
to reveal fine details of the model. 
 

Subdivision mesh extraction method is based on 
recursion. A cell containing the model is subdivided into 
eight smaller cells, which are examined whether they 
contain the surface or not. The process repeats, until the 
minimum cell size is reached. All the leaf cells containing 
the surface are polygonised. Unlike the predictor-
corrector methods, this algorithm does not need an initial 
point to begin the polygonisation with. It detects the 
surface automatically. The mesh generated by this 
algorithm is similar to the one generated by the marching 
cubes algorithm, but, like the most of the adaptive 
methods, may suffer from occasional undersampling. The 
working area is generally limited by the initial cell size. 
An interactive system utilizing this method was described 
in10. For reliable detection of the function-defined surface 
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in a cell, Lipschitz conditions were used, which resolved 
the undersampling problem but restricted a possible set of 
implicit functions. Another point preventing the method 
from being utilized in our application is a poor mesh 
quality, similar to that of the marching cubes algorithm. 
 

Since the nature of our function-defined model is 
continuous, we should have restricted our consideration to 
the continuous methods only, however the algorithms 
initially designed for discrete data can be successfully 
applied to polygonisation of the shapes defined with 
continuous functions as well. Among the most common 
methods are spatial enumeration and continuation 
techniques. 
 

Spatial enumeration is probably the oldest algorithm 
for polygonising volume data11. It is perfectly suitable for 
range data from CT or MRI scans, but for interactive 
visualization of a large function-defined model, the 
uniform sampling requirement may become unfeasible 
due to the high complexity of each function evaluation. 
Because of our assumption on the model topological 
connectivity, the search through all the volume becomes 
redundant. 
 

The second approach named continuation12, exploits 
spatial coherence for detecting all the cells intersecting 
the surface. Initially, a seeding set of cells is introduced. 
Then at each step, the neighbouring intersecting cells are 
examined. To avoid checking the same cell twice, a sort 
of hashing can be introduced for the cells. The hashing 
can be based, for example, on integer coordinates of the 
cell corners. The demerit of the continuation method 
compared to spatial enumeration is in its lack of 
generality since it requires to place seeding points on each 
separate surface defined by the implicit function. 
Fortunately, in an interactive application it can easily be 
implemented.  
 

The continuation algorithm fits our needs quite well. 
It detects the surface effectively without unnecessary 
function evaluations. Also, due to its discrete nature, it is 
very fast and can be extended for quick local re-
polygonisation. It must be noted, though, that the mesh 
quality is highly dependent on the way every cell is 
polygonised, the configuration of the cell, and the 
optimisation algorithms used. 
 
 
2.2 Problems of interactive polygonisation 
 
Two different tasks are to be addressed when solving the 
problems of interactive polygonisation of a function-
defined shape.  
 

The first task is visualizing at the interactive rates the 
whole shape on the screen by changing the observer’s 

position or illumination without changing the number of 
polygons and their coordinates. This task refers to 
defining the appropriate size of the polygonal mesh and 
methods of its fast rendering. The interactive rendering 
performance is a hardware dependent feature. From 
different reports it may be concluded that nowadays about 
100K polygons can be manipulated this way on the screen 
of a computer with a common configuration. 
 
The second task is updating the polygonal mesh at the 
interactive rate following the respective interactive 
operations modifying a part of the shape. It is more 
sophisticated, and it assumes a user’s control over the 
mesh generation. Such a control is required when 
automatic methods fail or not applicable. For example, 
when a function model changes, it is often impossible to 
detect the area of modification by examining the defining 
functions directly. In that case, either the whole model is 
to be re-polygonised or additional interactive information 
should be used to detect and rebuild the modified area 
only. Although rebuilding the entire polygonal model 
after each modification ensures obtaining the correct 
polygonal surface, the process may take unacceptably 
long time. On the other hand, if we can find a way of fast 
detecting the area of modification, the polygoniser can be 
confined to it, and the running time can be reduced.  
 

Different methods have been used for specifying the 
area of re-polygonisation. In the interactive sculpting 
system based on the predictor-corrector polygonisation9, 
an oriented bounding box was used to define a part of the 
space where the modification took place. Then, every 
polygon of existing mesh was checked against the box, 
and removed from the mesh in case of intersection. 
Although for several thousand polygons this method 
performes well, it may become inefficient for hundreds of 
thousands of polygons, which we are expecting in our 
case. The subdivision system in10 defines the modification 
areas with axes aligned bounding boxes and then re-
polygonises their interior. It may be noted, that this 
method will become inefficient in case if the modification 
area has a fancy, long or not axes aligned shape. 
However, even with such a way of confining 
polygonisers, a considerable acceleration has been 
achieved. We have proposed several improvements to this 
technique in this paper. 
 

Another important benefit from the controlled 
polygonisation is in interactive definition of the 
resolution. In most applications, the resolution in 
polygonisation algorithms is set up automatically, 
depending on the surface parameters such as curvature, 
error value, dihedral angle between adjacent polygons, 
etc. Most of those criteria suffer either from non-
generality, undersampling, or heavy function evaluation 
requirements. In an interactive application, the task of 
detecting resolution can be transferred to the user. Like 
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changing the eye focal length when shifting the gaze from 
the whole shape to a little part of it, the size of the 
polygons may vary depending on the size of the 
visualization or modification area. In connection with the 
function-based shape modelling, this problem was 
addressed in13 and has found a different solution in our 
work. 
 
 
3. Fast polygonisation of the interactively modified 

function-defined shape 
 
3.1. Method description 
 
As we have already mentioned, in our project we use the 
function-defined model of a shape, which is being 
interactively modified. The detailed model description is 
outside the scope of this paper, therefore we shall just 
mention that each modification of the shape adds a new 
function to the function defining the shape. Eventually, 
the resulting function becomes a superposition of the 
basic shape function and the functions defining all the 
interactive operations, which were gradually applied to 
the basic shape. In other works, we are discussing the 
problems of accelerated function evaluation. In this paper, 
we shall just assume that we are able to sample the shape 
by doing quick evaluations of the defining function. This 
has been achieved due to the special accelerating 
functions as well as the effective memory organisation. 
 

Besides the ability of the interactive high resolution 
rendering of any modified part of the shape, we need to 
be able to obtain an updated high-resolution image of the 
whole shape on the screen at an interactive rate. 
Therefore, both tasks of the interactive polygonisation 
described in 2.2 are to be addressed and implemented. 
 

We propose the following solution to this problem.  
 

1. As it was concluded in 2.1, the continuation 
polygonisation method appears to be the most 
suitable for obtaining the polygonal mesh of our 
function-defined shape model. Therefore, we will 
use the idea of this method although improve it in 
terms of the cell shape used for calculating the 
polygons. 

 
2. Two different polygonal resolutions–coarse and fine 

ones–will be used simultaneously. The coarse 
resolution will be used when a relocation of the 
whole shape or changing the light condition is 
required so that the user wants to be able to see the 
whole shape changing at the interactive rate. This 
fine resolution will be dependent on the hardware 
performance, and may be around 100K polygons for 
the shape whose model does not change during 
visualisation. The fine resolution assumes a smaller 

size of the polygons up to the size of a pixel. It will 
be used for interactive rendering the modified parts 
of the shape, as well as for high-quality rendering of 
the whole shape. The ability to reduce the size of a 
polygon up to the size of a pixel gives us the point 
rendering quality while still using hardware 
acceleration of polygon rendering.  

 
3. Both polygonal meshes will result from the same 

polygonisation algorithm, as well as will be linked to 
the same data structure controlling the 
polygonisation process. Since the size of the 
polygonal mesh obtained for the fine resolution will 
be substantial, this mesh will be stored and 
maintained in a hard disk, while the polygons for the 
coarse resolution and the respective control data will 
be stored and maintained in the RAM. 

 
The visualization pipeline will work as follows. First, 

for the initial function-defined shape, the coarse 
resolution mesh will be created and rendered on the 
screen. Concurrently, the fine resolution mesh will be 
created in another thread. While the fine mesh is being 
created and stored in the hard disk, it will be immediately 
rendered and the respective image will replace the one on 
the screen produced from the coarse resolution polygons. 
If then the shape is relocated, the coarse resolution mesh 
will be used for rendering the moving shape while the 
fine resolution mesh will be rendered as soon as the shape 
comes to its rest. When any interactive modification is to 
be done, the defining function will be modified first 
followed by the both fine and coarse re-polygonisation of 
the respective area. Only the fine resolution polygons will 
be used now for updating the image on the screen while 
the coarse resolution polygons will be only calculated to 
update the stored coarse mesh for further possible use. 
Since the size of the fine polygons is smaller than the size 
of the coarse polygons, the whole processor power will be 
used for rendering only these newly created polygons. 
When rendering these polygons, the respective part of the 
image on the screen will be updated while the rest of the 
image will remain intact. This will create an illusion of 
interactive working in high resolution with the whole 
shape. Both meshes will be updated respectively and will 
be readily available for further rendering thus providing 
the sustained interactive rate. In fact, in place of the fine 
resolution polygons we might have used points but we 
have chosen to use polygons since it gives us more 
rendering benefits comparing to point rendering even if 
we reduce the size of polygons to the size of pixel. With a 
proper memory organisation, the size of a mesh will not 
be much bigger than the size of the respective point array. 
 

Below, we describe the implementation details of the 
proposed method of rendering.  
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3.2. Optimisation of the continuation method 
 
Commonly, a cubical shape of a cell with its optional 
tetrahedral decomposition14 is used in the continuation 
polygonisation algorithms. However, these cells still fail 
to ensure the sampling uniformity and therefore will not 
provide us the required mesh quality. The cell shape, 
which would satisfy our requirement is a tetrahedron 
generated by the body-centric lattice (see Figure 1), as it 
was theoretically proven in15.  

 
Figure 1: The cell configuration used. 

 
This tetrahedron has been recently used for surface 

extraction from volumes16,17. We have applied this 
tetrahedron for the continuation method. Besides 
obtaining the required mesh quality, we have also 
managed to accelerate the whole process of 
polygonisation by detecting the neighbouring cells by 
simple 2D mirroring (points D, B, A and D’ in Figure 1), 
which makes its propagation nearly as simple, as 
propagation of a cubical cell. Taking into account that all 
of the faces are equal isosceles triangles, the continuation 
algorithm can be simplified even further.  

 
 

 
 
Figure 2: The set of tetrahedra and the resulting mesh.  
 

Obtaining a triangular mesh from a set of tetrahedral 
cells intersecting the surface is a common straightforward 
task. The surface inside each cell is polygonised piece-
wise, and then assembled with other triangles thus 
forming the entire mesh. To improve the resulting mesh 
quality, we have applied a cell clustering method similar 
to the one described in18. In this method, each tetrahedral 
cell produces maximum one triangle. On average, it gives 

one triangle per three cells. The number of triangles may 
grow in uneven parts of the surface. This method does not 
require any additional function evaluation beside those 
used for the cell detection. The triangles can be linked to 
the cell set, and therefore will become readily available 
for retrieving when stored in the memory. The example of 
the set of tetrahedra and the resulting mesh is shown in 
Figure 2. 

 
The continuation method requires a certain control 

data structure to avoid cell overlapping when moving 
along the surface. Usually, a hashing technique based on 
the integer cell coordinates is employed for fast cell 
querying. Commonly, such hash data is discarded for the 
processed cells for the sake of memory conservation. On 
the contrary, in our approach we keep and use it for 
obtaining the fine resolution triangles from the original 
coarse resolution cells. It is also used for fast surface 
querying as well as for local mesh updating. 
 
 
3.3. Coarse and fine resolutions 
 
When requiring a fine polygonal mesh with up to the 
pixel size for each triangle, we must have anticipated a 
huge memory grow as well as tremendous computing 
time for storing and processing the respective hash data 
structure and the tetrahedral set. However, we have found 
a solution to this problem by controlling the fine 
resolution polygonisation with the tetrahedral set obtained 
and stored for the initial coarse resolution. We have 
achieved it by assigning to the same cell one triangle from 
the coarse resolution mesh and several respective fine 
mesh triangles, which are located inside this cell. This is 
schematically depicted in Figure 3.  
 

 

Front and side views 

Top view 
B 

A 

D 

D’ 

C 

function-
defined model 

Coarse mesh 

 

 

cell detection by 
continuation 
Figure 3: Data structure
Cell
Fine mesh
 outline. 

f (x,y,z) ≥ 0 



Levinski and Sourin  / Interactive Polygonisation 

 The Eurographics Association 2002. 

As it was mentioned in 3.2, computing the coarse 
mesh does not require any additional function evaluations 
besides those done for calculating the coarse tetrahedral 
set. On the contrary, calculating the fine triangles for each 
cell will require significant time. To avoid slowing down 
the coarse mesh calculation, we have implemented the 
fine mesh calculation as a separate process, which runs in 
parallel to the coarse polygonisation. 
 

The refinement process employs the same 
continuation principle as the general cell detection 
algorithm. Let us denote the small cell used by this 
process as a sub-cell. It is smaller than the original cell by 
2k times, and tiles the tetrahedron completely. The value 
of k is either calculated to match the resolution of a 
particular display device, or defined by the user. To start 
the fine polygonisation, a seed sub-cell is to be defined 
inside the coarse seed cell. Then, the sub-cell propagates 
inside the cell and extracts the fine polygons. For the 
initial basic shape, new fine polygons will be immediately 
shown on the screen following the coarse polygons. This 
calculation will be performed much faster. Besides, the 
fine mesh will be stored in the hard disk for later use. 
During the propagation process, a sub-cell can 
occasionally appear to be in another cell next to the one 
being processed. In this case, the propagation of the sub-
cell will be halted, and this sub-cell will be defined a 
seeding sub-cell for the cell where it penetrated to. If this 
cell has been already refined, then no further action is 
taken. Otherwise, the cell will be added to the refinement 
queue, provided it is not there yet. Eventually, the fine 
mesh for the entire surface will be obtained. The process 
of creating the fine mesh may involve those tetrahedra 
that were not used in the original coarse polygonisation. 
 

Since the fine mesh of the whole shape should have 
a significant size in terms of the memory required for its 
storage, we assume that generally it is to be stored in the 
hard disk while being addressed through the coarse cells 
stored in the RAM (Figure 3). Each cell will address a 
block of a fixed size. The size of the block is to be chosen 
to accommodate an average amount of the triangles that 
can be generated from one cell. Extra blocks can be 
linked to each other whenever the mesh becomes larger 
than that fitting in one block. A few most recently used 
blocks may still remain in the RAM in anticipation that 
they will be required again soon. When the memory limit 
is exceeded, these blocks will be removed from the 
memory while still kept in the hard disk. However, for 
any reasonably small area on the shape’s surface, the 
respective fine mesh can be loaded from the hard disk for 
further fast rendering.  
 
 
 
 
 

3.4. Local updates and modifications 
 
For updating the mesh for the modified part of the shape, 
we developed an algorithm detecting and retrieving only 
those cells that belong to the modification area. Upon 
retrieval, the respective polygons will be removed from 
the mesh and replaced with the new ones. As we 
described in 3.3, the hashed set of cells allows us to 
retrieve both the coarse and the fine meshes very quickly. 
Among different ways of defining the modification area, 
we have selected perhaps the most generic one: definition 
by an implicit function. Without loss of generality, we 
assume that the modification area resides in a 
topologically connected bounding surface defined by a 
simple implicit function. We apply the continuation 
algorithm to this surface and obtain a set of cells 
containing this surface. Then, every cell in this set is to be 
checked against the hash table of the initial set to obtain 
all cells, which intersect both the shape surface and the 
bounding surface. At this point, the cells intersecting only 
the bounding surface will be discarded. Using the same 
continuation algorithm with the initial queue of the cells 
resulting from the previous step, we can mark for deletion 
all the cells intersecting the surface of the shape but 
located inside the bounding surface. A 2D illustration of 
this approach is given in Figure 4. Note, that up to this 
point no additional shape function evaluations were 
needed and the overall complexity was O(n), where n is 
the number of the recalculated cells. Finally, the 
algorithm is applied to the modified function with the 
same starting queue, yielding new cells in place of the old 
ones. The resulting cell set will not differ from that, 
which could be created for the whole shape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: a) Obtaining cells for the bounding surface. 
 b) Detecting the boundary cells. 
 c) Removing the inside cells.  
 d) Obtaining the new inside cells. 

a) b) 

Bounding surface 

Surface of the shape 

Modified 
surface 

Boundary cells 
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3.5 Rendering 
 
The coarse mesh can be rendered easily and quickly with 
a single OpenGL command. This rendering is performed 
when the relocations of the whole shape, changing the 
observer’s position or changing the lighting conditions is 
requested so that the user will be able to see the whole 
shape moving or changing its visual appearance at the 
interactive rate. Simultaneously, the fine resolution 
rendering begins. The process of retrieving the fine 
polygons will begin, concurrently processing unrefined 
cells. After the fine rendering is completed, the resulting 
image will be saved for further optional interactive re-
polygonisation. During such an interactive rendering, the 
tetrahedra and the respective polygons will be stored, 
while the whole image will still remain on the screen with 
the respective Z-buffer depth information stored. Only the 
new fine-resolution polygons from the area being 
modified will be sent to the rendering pipeline, and their 
graphics image will eventually update the respective part 
of the shape image on the screen as well as the Z-buffer. 
Therefore, most of the time there will be no need to 
redraw the whole scene. Using the Z-buffer is required to 
avoid artifacts when new polygons have greater depth 
value than those, which they are replacing. Simple 
overwriting of the image is also not feasible because in 
this case we take no advantage of the depth information, 
and visibility detection artifacts are likely to occur.  
 
 
4. Application the interactive artistic function-based 

shape modelling 
 
The proposed method of interactive polygonisation and 
the methods of the interactive function based shape 
modelling proposed in3,4 have been applied to virtual 
embossing and carving. These tools have been 
implemented as an interactive shape modelling program 
where the function model of the shape is gradually 
modified with offset and set-theoretic operations. The 
final shape is represented in the data structure as a list of 
interactive operations over the basic shape, which defines 
the final F-Rep model of the shape. A pressure sensitive 
graphics tablet and a six-degree of freedom haptic input 
device (Figure 5) have been used to interact with the 
shape and realistically simulate the depth of penetration 
of the tools. 

In Figure 6, an example of the function-based 
embossing is presented. Its model is made with 3000 
interactive operations and includes 5000 individual offset 
functions. This image is the result of the rendering of one 
million polygons, which was the fine resolution (point 
rendering quality) set for this shape. The respective coarse 
resolution was one quarter of the fine one. In Figure 7, a 
crystal vase interactively modelled with our tools is 
shown. After modelling, we converted the shape model 
into one of the standard data formats and then rendered it 

with Houdini to demonstrate the ability of using different 
rendering tools for obtaining the high-quality images. The 
streaming video available from our project web-site19 
illustrates the process of interactive modelling the vase as 
well as embossing. 

 

 
 

Figure 5: Virtual embossing with a haptic device. 
 
 

 
 

Figure 6: Interactive function-based embossing: 
 One million polygons have been interactively rendered 
when making a function model of this shape as well as 

used for obtaining the final image of the shape. 
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Figure 7: Function-defined crystal vase created 
interactively and rendered with Houdini. 

 
 
The performance of the proposed rendering method is 
illustrated in the Tables 1-3 for three shapes: a sphere and 
the shapes from Figures 6 and 7.  
 

Sphere, 1 function  
Coarse resolution Fine resolution 

Tetrahedra 
processed 

175,000 2,807,000 

Triangles 
generated  

61,000 979,000 

Evaluations 
needed 

60,000 978,000 

Time for L 0.650 s 25.237 s 
Time for H 0.610 s 18.597 s 

 
Table 1: The processing data for a single sphere 

 
 

Vase, 187 functions  
Coarse resolution Fine resolution 

Tetrahedra 
processed 

117,000 1,918,000 

Triangles 
generated  

43,000 701,000 

Evaluations 
needed 

41,000 697,000 

Time for L 3.044 s 99.543 s 
Time for H 2.734 s 49.578 s 

 
Table 2: The processing data for the shape from Figure 7 
 

Dragon, 7545 functions  
Coarse resolution Fine resolution 

Tetrahedra 
processed 

149,000 2,405,000 

Triangles 
generated  

60,000 960,000 

Evaluations 
needed 

57,000 951,000 

Time for L 113.193 s 2400.786 s 
Time for H 60.125 s 1190.786 s 

 
Table 3: The processing data for the shape from Figure 6 
 
 
Two different hardware configurations L and H have been 
used: L is a notebook (PIII 800MHz/256 Mb/Win2000), 
and H is the INTERGRAPH XE2 graphics workstation 
(2xPIII 800 MHz/1024 Mb/Win NT).  

Note, that this data is given for the coarse and fine 
resolution rendering of the whole shape after it had been 
interactively created. For each individual interactive 
operation, it was just a real time response. Note also that 
only about one function evaluation was required to 
perform per each generated triangle including the normal 
calculations. 
 
 
6. Conclusion 
 
In this paper we have addressed interactive function-
based shape modelling. Interactive modifications of the 
function model with the concurrent visualization of the 
respective polygonal mesh have let us provide both the 
interactivity and any required level of detail leading to 
photo-realistic appearance of the resulting shapes.  
 

We have proposed an efficient method of interactive 
visualisation by improving the continuation 
polygonisation method and extending it for interactive 
local shape modifications. In our method, we use the 
tetrahedra generated by the body-centric lattice, which  
follow the surface of a shape for calculating the polygonal 
mesh.  

 
We have proposed to use two different polygonal 

resolutions concurrently for interactive rendering the 
function-defined shape. The coarse resolution (up to 
100K polygons) is used when the relocations of the whole 
shape or different lighting is requested, so that the user is 
able to see the whole shape moving or changing at the 
interactive rate. The fine resolution (about 1M polygons) 
is used for precise interactive rendering of the parts of the 
shape being modified, as well as for high-quality 
rendering of the whole shape. Both polygonal meshes 
result from the same polygonisation algorithm, as well as 
are linked to the same data structure controlling the 
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polygonisation process. When working with high-
resolution images, only a part of the shape is re-
polygonised after each interactive shape modification 
while the whole high-resolution image is still kept on the 
screen. For updating the mesh for the modified parts of 
the shape, we developed an algorithm detecting and 
retrieving only those cells that belong to the modification 
area. Both polygonal meshes are constantly kept updated 
to provide a sustained time of rendering when the whole 
image is to be redrawn. The algorithm is capable of 
running on low-end personal computers, and lets us 
achieve any desired quality of rendering free of artifacts 
common for other algorithms. It is achieved by 
minimizing the number of function evaluations and 
resulting triangles, as well as by the efficient usage of the 
tetrahedral set. 

 
Finally, we have applied the developed method to 

the interactive function-based shape modelling of virtual 
embossing and carving. The function models of the 
embossed and carved shapes can be either rendered with 
our software with photo-realistic quality or converted to 
other models for rendering with other software tools as 
well as for rapid prototyping. Also, the standalone version 
of the polygoniser has been applied for the project 
reported in20 for transferring and visualising the created 
function-defined shape model through the Internet. 
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