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Abstract

Dynamic human vision is an important contributing factor to the design of perceptually-based Virtual Reality.
A common strategy relies on either an implicit assumption or explicit measurement of gaze direction. Given the
spatial location of foveal vision, computational resources are directed at enhancing the foveated region in real-
time. To obtain an explicit gaze measurement, an eye tracker may be used. In the absence of an eye tracker, a
computational model of visual attention may be substituted to predict visually salient features. The fidelity of the
resultant real-time system hinges on the agreement between predicted and actual regions foveated by the human.
The contributions of this paper are the development and evaluation of a novel method for the comparison of human
and artificial scanpaths recorded in VR. The novelty of the present approach is the application of previous accuracy
measures to scanpath comparison in VR where analysis is complicated by head movements and dynamic imagery.
An attentional model previously used for view-dependent enhancement of Virtual Reality is evaluated. Analysis
shows that the correlation between human and artificial scanpaths is much lower than expected. Recommendations
are made for improvements to the model to foster closer correspondence to human attentional patterns in VR.

1. Introduction

To increase the visual fidelity of Virtual Environments
(VEs), recent strategies have emerged which combine
view-independent rendering solutions (e.g., global illumi-
nation) with view-dependent perceptually-driven enhance-
ments. Perceptually-driven techniques generally exploit the
perceptual limitations of the Human Visual System (HVS)
and reduce the computational burden by either withholding
imperceptible information (e.g., compression) or by focus-
ing computational resources within highly salient regions. In
Virtual Reality (VR), the latter form of perceptually-driven
enhancement typically relies on either an implicit assump-
tion or explicit measurement of the human’s instantaneous
foveal Region Of Interest (ROI) or Point Of Regard (POR).
Given the spatial location of the human POR, computational
resources are directed at enhancing the foveated region in
real-time by, for example, ray tracing a region of limited
spatial extent. This provides a “just-in-time” view-dependent
enhancement of the pre-rendered view-independent scene.
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The key to “just-in-time” view-dependent enhancement is
the determination of the instantaneous ROI to which the hu-
man participant is attending. To obtain an explicit measure-
ment of the human’s foveal ROI, an eye tracker may be used.
In the absence of an eye tracker, a computational model of
visual attention may be substituted to predict instantaneous
human Regions Of Interest. The fidelity of the resultant real-
time system hinges on the agreement between predicted and
actual eye movements made by the human.

The aim of this paper is to measure the accuracy of an at-
tentional model previously used in Virtual Reality for the
purpose of real-time view-dependent scene enhancement.
The contributions of this paper are the development and eval-
uation of a novel method for the comparison of human and
artificial scanpaths following immersion in a VE. The com-
parison method is based on the well-known scanpath similar-
ity indices derived from string editing. Scanpath similarity
indices have successfully been used to measure the accuracy
of visual attention models over still images. The novelty of
the present approach is the application of the accuracy mea-
sures to human scanpaths in VR where the comparison is
complicated by head movements and dynamic imagery.
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2. Background

Perceptually-based rendering incurs a tradeoff between min-
imizing computational resources and maximizing (or pre-
serving) image quality as perceived by a human observer.
Many approaches have been considered. For real-time ap-
plications such as Virtual Reality, a particularly relevant
class of perceptually-based rendering algorithms involves
approaches where the instantaneous location of a partic-
ipant’s gaze is used to guide high-fidelity rendering ap-
proaches in a gaze-contingent manner. In these applications,
an eye tracker is often used to determine the participant’s
direction of gaze.” 8 If an eye tracker is unavailable, a com-
putational model of visual attention may be substituted. The
modeling approach is a popular alternative in static image
rendering and has recently been applied to real-time ren-
dering of a Virtual Environment.® Among several decision
criteria, Haber et al. employed a model of visual attention
patterned after the model developed by Itti et al.> to predict
the most salient objects within a scene assumed to attract
the participant’s visual attention. Based on these artificially
determined Regions Of Interest (aROIs) the globally illumi-
nated scene was partially updated with a real-time ray tracer
restricted to shooting rays within the small (foveal) aROI.

Haber et al.’s perceptually-guided corrective splatting al-
gorithm is one of the first VR applications to employ a real-
time model of visual attention. The model operates by eval-
uating a projected image on a frame-by-frame basis. While
Itti et al.’s model has been shown to be quite accurate over
still images, it is not clear how well the model generalizes to
the dynamic scene content presented during VR immersion.

2.1. Visual Attention Modeling

Building on biologically-plausible architectures of the hu-
man visual system, the model developed by Itti et al.5 is
related to Treisman’s Feature Integration Theory.12 Starting
with an input image, it is progressively low-pass filtered and
subsampled to yield nine dyadic spatial scales. The multi-
scale image representation is then decomposed into a set of
topographic feature maps. Each feature is computed via a
set of linear “center-surround” operations akin to visual re-
ceptive fields. Different spatial locations then compete for
saliency within each map, such that only locations which
locally stand out from their surround can persist. All fea-
ture maps feed, in a purely bottom-up manner, into a master
“saliency map”. The saliency map contains internal dynam-
ics which generate attentional shifts. The model has been
tested on a variety of artificial and natural images and ap-
pears to be very robust, particularly to the addition of noise.
The model’s performance is in general consistent with obser-
vations in humans and is consistent with Treisman’s Feature
Integration Theory.

For adaptation of Itti et al.’s model to real-time VR render-
ing, all steps up to the computation of the saliency map need

only to be performed once per image. This map is used for
computing all aROls in the image. Computing the saliency
map is the most expensive operation. In general, without
any modification, the algorithm does not necessarily support
real-time applications. To reduce computational time, sev-
eral components of the model may be removed to guarantee
real-time operation. For example, orientation map process-
ing may be omitted, as suggested by Haber et al.3

2.2. Comparison of Human and Artificial ROIs

To test any model of visual attention, one very attractive
methodology is to compare the sequence of Regions Of In-
terest (ROIs) identified by an attentional algorithm to those
foveated by human observers. A recent study by Privitera
and Stark presents just such a methodology for comparing
algorithmic ROls, or aROls to those selected by humans,
hROIs.19 The comparison algorithm relies on two impor-
tant processes: one of clustering of ROIs for comparison of
loci of ROIs and a subsequent step of assembling the tempo-
ral sequences of ROIs into ordered strings of characters for
comparison of sequences based on string editing. String edit-
ing, defined by an optimization algorithm based on the Lev-
enshtein distance,! assigns unit cost to three different char-
acter operations: deletion, insertion, and substitution. Char-
acters are manipulated to transform one string to another,
and character manipulation costs are tabulated to yield a se-
quence similarity index Ss. A positional, or loci, similarity
index Sp can be found for two strings by examining the char-
acters of the second string to those of the first. Similarity
coefficients are sorted and stored in a table, named the Y -
matrix, having as many rows and columns as the number of
different sequence ROIs to be considered.

Scanpath comparison values from the Y-matrix (which
typically contains large amounts of data) are condensed (av-
eraged) and reported in two tables, called Parsing Diagrams,
one for each of Ss and Sp indices. Each of the parsing di-
agrams reports several correlation measures: idiosyncratic,
local, and global. Idiosyncratic values report on the within-
subject attentional scanning tendencies of individual sub-
jects, i.e., these values report correlation measures between
scanpaths made over different pictures by the same sub-
ject. For example, in reading studies, English readers would
be expected to exhibit high idiosyncratic indices due to the
adopted left-to-right text scanning strategies. Local indices
report on between-subject correlations of scanning patterns
over similar stimuli. That is, local indices report on differ-
ent subjects’ scanpaths over the same picture. In the present
case, these are the most important results since these indices
divulge the correlation between human and artificial scan-
paths made over the same images. Global measures report
on the correlation between scanpaths made by different sub-
jects over different stimuli. Should these values be highly
correlated (for hROIs made by different people or aROIs and
hROIs over different environments), this would suggest that
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Figure 1: Adaptations of Y -matrices and parsing diagrams.10

Virtual Environments tend to be viewed similarly by differ-
ent people (and by the attentional model). Examples of a
Y -matrix and parsing diagrams are shown in Figure 1.

Using these similarity measures, Privitera and Stark eval-
uated ten different attentional algorithms. In general, al-
though the set of tested algorithms was only a small repre-
sentative sample of many possible procedures, this set could
indeed predict eye fixations over still images. It appears that
a multiresolutional strategy, such as that of Itti et al., seems
to be very efficient for several classes of images.

3. Methodology for Model Evaluation in VR

The string editing approach to scanpath comparison is de-
fined to operate over two scanpaths captured over still im-
ages. To permit comparison of scanpaths generated while
immersed in VR, the methodology is applied to sets of still
images obtained during immersion. Thus to allow use of the
scanpath comparison technique, a participant’s immersive
session in VR must be analyzed to locate periods of time
when the image viewed by the participant is relatively still.

Two novel methods of temporal analysis are presented:
head-based and time-based. Head-based analysis is used to
locate sequences of still images where the head is stable (but
the eyes may not be). Based on estimates of head stability,
this analysis technique presents a still image to the atten-
tional model for variable periods of viewing time. To more
closely resemble the real-time use of the attentional model
in VR, the time-based analysis approach assumes a constant
frame rate (10 fps). In this approach, the attentional model
is modified in a manner similar to Haber et al. so that it is
constrained to locating aROIls within a constant time period
(100 ms). The difference between the two approaches lies in
the amount of time allotted to the attentional model to lo-
cate aROls. The head-based approach favors the attentional
model (since the model is given more time to analyze an im-
age) while the time-based technique better mimics real-time
constraints placed on the attentional model in a VR applica-
tion.

To allow comparison between aROls and hROls in both
approaches, human fixations are identified via velocity-
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based analysis of eye movements over identical sequences
of images as those input to the attentional model.

3.1. Head-Based Analysis

The head-based analysis methodology aims at isolating pe-
riods of immersion in VE where the head (and hence image)
is stable. The resulting sequence of image frames, averaged
to a single image, is used to collect human and artificial eye
movements over the period of (relative) head stability. Re-
sulting scanpaths are then evaluated against automatically
located ROIs by Itti et al.’s attentional model over variable
viewing periods.

As suggested by Jaekl et al.,b to analyze head motion,
head movements are considered separately within 3 degrees
of freedom in terms of their translational and rotational
movement components. To establish appropriate thresholds
and to examine captured signal components, three bench-
mark head movements were recorded: stable, slow, and fast
rotation. The captured head rotation signals are shown in
Figure 2. The angular velocity plots have been processed to
remove signal noise.

The rotational head-stable detection algorithm calculates
the degree of change for Euler angles roll (¢), elevation (or
pitch, p), and azimuth (or yaw, y). To obtain angular velocity
(o, in deg/s), the difference between two successive orien-
tations is calculated as a 3-vector and divided by the time
between samples. That is, given the instantaneous orienta-

tion vector @ = (i, i, i),

_lo—-all

At
where At is the time between samples. A velocity thresh-
old of 23 deg/s was chosen to locate fast changes in head
rotation. Data between these fast movements were then con-
sidered as sequences of rotational head stability.

W deg/s

To complete the head-stable analysis, a translational
movement threshold is needed. A velocity thresholding fil-
tering approach was chosen, where velocity is determined
as the difference between two spatial head positions di-
vided by the time between samples. Given two successive
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Figure 2: Angular head velocity (in deg/s).

head positions in three-space, p; = (Xi,Yi,z) and pjy1 =
(Xi+1,Yi+1,Zi+1), Velocity is calculated as

Il Pi+1—pill

=" ft/s

where At is the time between samples. A 3 ft/s (91.44 cm/s)
threshold was selected empirically. It should be noted that
the translational threshold is only used to support the local-
ization of head-stable sequences—for the purposes of deter-
mining head-stable imagery, the more important considera-
tion is the head’s angular velocity.

\Y

In cases where subjects performed slow head rotations be-
low threshold, head-stable sequences were found by splitting
the entire sequence based on detected absolute changes of
azimuth and elevation exceeding 5 deg/s or a detected roll
exceeding 2.5 deg/s. To summarize, the following four con-
ditions define stable head movement: (1) W< Tw, 2) v < Ty,
B)|p+YI<A ()] ¢ |< B, with the following parameters:
Tew =23 deg/s, Ty = 3 ft/s (91.44 cm/s), A =5 deg/s, and B =
2.5 deg/s.

3.2. Time-Based Analysis

In contrast to the above head-based analysis, where view-
ing periods are variable, a time-based analysis approach was
developed to evaluate the accuracy of Itti et al.’s model in
a real-time setting where images of constant duration (based
on frame rate) are presented to the viewer. To match the real-
time frame rate of 10-12 fps reported by Haber et al., the
performance of Itti et al.’s algorithm was examined. Follow-
ing Haber et al.’s recommendations, tests showed that Itti
et al.’s algorithm can be made in most cases to extract the
most salient region within 100 ms. While a typical extent
of 5° visual angle is associated with foveal vision, it is not
clear how close human eye movements (or human ROIs) fall
to the automatically located attentional regions (aROIs). To
evaluate the average distance between aROls and hROls, the
same raw data as used in the head-stable analysis (collected
from immersive trials; see below) is analyzed to evaluate the
attentional model’s accuracy. This time, instead of identify-
ing sequences of images displayed during stable head move-
ments, hROIs and aROls are compared over frames collected
every 100 ms.

In this form of analysis, the only processing step required
is to identify and regenerate those image frames that were
shown to participants during active use of the eye tracker
(i.e., frames shown to the participant when the eye tracker is
either in reset of calibration mode are not considered).

To enable comparison of aROIls and hROIs over se-
quences of images shown during 100 ms cycles, eye move-
ment data is analyzed over image frames to locate fixations
(see below). If, on a given frame, no fixation is detected (i.e.,
the subject was performing a saccade), no comparison is pos-
sible. That is, image frames where no human or artificial
fixations are detected are not considered in the comparative
analysis.

Note that the simplifications implemented in the time-
based analysis are aimed at simulating real-time use of an
attentional model (e.g., in VR). In this case, due to time
constraints and expected lengths of scanpaths (usually 1 fix-
ation), building string sequences for comparison makes no
sense if there are only two fixations per frame to compare.
Instead of scanpath sequences, the time-based analysis re-
lies on the computation of pixel distance between aROls and
hROIs in the image. The idea here is to provide an approxi-
mation of the extent of the area required for update by a ray
tracer or other similar perceptually-based enhancement. It is
expected that such a real-time foveal window should be lim-
ited in size but still offer the same perceptual impression as
that of a fully ray traced environment displayed at the same
frame rate (which is currently not possible and is of course
the reason for gaze-contingent systems). In this analysis, in-
stead of employing scanpath comparison measures used by
Privitera and Stark, or reporting a single distance measure
per frame, time-based analysis produces a table reporting the
size of the model’s attentional window needed to overlap hu-
man fixations over a set percentage of frames.

3.3. Eye Movement Analysis

In both head- and time-based analysis approaches, an in-
trinsic component of scanpath comparisons relies on the
analysis of eye movements. Due to saccadic suppression,
generally the most meaningful eye movements are those
where the viewer is fixating steadily during inspection of

(© The Eurographics Association 2002.



Marmitt and Duchowski / Visual Attention in VR

the scene. Eye movement analysis, therefore, is concerned
with the identification of fixations. To locate fixations, an
acceleration-based velocity filtering approach with adaptive
thresholding is chosen to detect saccades. Fixations are then
classified as those periods in the eye movement data stream
that occur between saccades. A modified version of a 3D
eye movement algorithm is used.2 Because only projected
2D images of the 3D environment are usable by the atten-
tional model, only monocular 2D eye movements made on
the near focal plane are considered for analysis.

3.4. Scanpath Comparison

The segmentation of image frames by either head- or time-
based methods provides image sequences over which hu-
man and artificial scanpaths can be compared. In head-
based analysis, following identification and grouping of sta-
ble head positions and orientations, identified fixations are
assigned to the appropriate head-stable sequence of images
(i.e., images when the head was stable and when fixations
were detected). If a given eye fixation spans two (or more)
head-stable image groups, the fixation is assigned to both (or
all) groups. Prior to this duplication of overlapping fixations,
most image sequences contained only one or two fixations
(which was not surprising due to the relatively short dura-
tions of identified head stability). To obtain eye movement
results from the attentional model, averages of head position,
up, and view vectors are used to generate a single image used
as input to the attentional algorithm. To take into account the
possibility of the Vestibulo-Ocular Response (VOR, a type
of eye movement used to stabilize a retinal image during
head motion), an average of the viewer’s gaze is obtained by
bisecting the gaze direction at the beginning and end of the
head-stable image sequence. This bisected vector forms the
direction of view from which an input image is generated.
The attentional model is limited to run in the same time as
the duration of the head-stable sequence.

The resulting human and artificial scanpaths over se-
quences of images are then compared in a manner simi-
lar to the technique proposed by Privitera and Stark,1° with
two key differences. First, repetitive measures (same sub-
ject, same pictures) are not calculated since, even in the case
of several repeated subject trials, identical images (based on
head position and orientation) can not readily be reproduced.
To do so would require each subject to exactly repeat their
previous navigational sequence within the environment. Sec-
ond, to facilitate string editing, instead of a k-means clus-
tering approach to fixation grouping used by Privitera and
Stark, fixation grouping is performed by defining a 5° spatial
window for clustering. If two or more human (or algorith-
mic) fixations fall within this window, fixations are clustered
and relabeled as a new fixation located at the centroid of
the cluster. This within-sequence clustering procedure effec-
tively reduces a large number of fixations (in either human
or algorithmic sequence). A similar spatial clustering strat-
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egy is employed to label fixations for subsequent between-
sequence string editing comparisons. That is, if the atten-
tional model generates fixations within 5° distance to the
center of a human fixation, the algorithmic and human fixa-
tions are counted as falling within the same fixation group (a
measure of equivalence, resulting in the same character label
for string editing). All other unassigned algorithmic fixations
are assigned new character labels.

Further scanpath analysis is identical to Privitera and
Stark’s. Loci (Sp) and path (Ss) similarity indices are calcu-
lated for idiosyncratic (same subject, different image), local
(different subject, same image), and global (different sub-
ject, different image) scanpath comparisons.

4. Results

Attempting to maximize the model’s attentional perfor-
mance at lowest computational cost, four variants of the at-
tentional model are compared to human scanpaths. All vari-
ations of the algorithm rely on a key modification which al-
ters the amount of time allowed to process image sequences.
In some cases, the attentional model is given certain advan-
tages over the human, e.g., extra time to compute artificial
Regions Of Interest. All but one variant of the model gen-
erate artificial scanpaths limited to the number of fixations
detected by the human over a given frame. The four model
variations are described as follows:

1. Case 1: Pseudo-Time Measurement. In this case, the al-
gorithm is allowed to use its own time measurement to
finish processing in the time allotted (e.g., in head-based
analysis, time is based on periods of head stability). Note
that the algorithmic time measurement is only a pseudo-
time measurement, since it mainly represents the num-
ber of iterative steps made by the internal neural network
rather than the real-time amount. In this variant, this mea-
surement excludes the calculation of the saliency map.

2. Case 2: ldentical Number of Fixations. In head-based
analysis, the attentional model is given as much time as
required, limited to the number of fixations made by the
human.

3. Case 3: Near-Real-Time. In this case, instead of allow-
ing the attentional model to use its own intrinsic timing
facility, the model is timed using the independent sys-
tem function get t i meof day() . Note that this mea-
surement is not quite real-time since the measurement is
made on a multi-tasking Unix platform. To ensure near-
real-time performance in this (and the next case), the
model’s neural network is replaced with a mechanism to
locate the most salient pixel region in the saliency map
(i.e., maximum luminance detection). Because this mod-
ification significantly enhances the model’s performance,
the model is capable of generating hundreds of fixations
in near-real-time. This is clearly an oversimplification of
the model since localization of this many fixations defeats
the purpose of attentional analysis of the image (with this
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many fixations, one may as well render the entire scene
at full fidelity). For this reason, since it is assumed there
is an underling attentional mechanism represented by the
saliency map, the model is restricted to selecting as many
fixations as detected by the human. Furthermore, in this
case, the time taken by the model to generate the saliency
map is not taken into consideration.

4. Case 4: Full-Real-Time (Picture rescaled to 1/4). In this
case, the algorithm was examined for possible modifica-
tions leading to real-time performance. One of the most
time-consuming components of the algorithm is its gen-
eration of the saliency map. This step may take normally
over one second (on the available Unix platform). Omit-
ting the computation of the orientation map (as suggested
by Haber et al.3), execution time still averaged around
700 ms. Further time savings could only be made by
rescaling the image and interpolating the result to its orig-
inal size following algorithmic analysis. In this case the
image is subsampled to 1/4 its original size (maintaining
aspect ratio).

In all comparisons of model variations, human data is iden-
tical since the various approaches do not alter human per-
formance. Random scanpath values are also not altered. The
experimental conditions used to generate raw eye movement
data were the same for both head-based and time-based anal-
ysis.

4.1. Experimental Design

A 3 x 3 factorial design was used, with three factors (three
types of environments; cube, panoramic, CG; see below) at
three levels, distributed between three trial groups of three
subjects. Each group was assigned each type of environment,
with each type of environment limited to viewing by only
one group. Order effects were counterbalanced by organiz-
ing each group’s viewing order in a 3 x 3 Latin square.

Apparatus. All experimental trials were conducted in the
VR Lab at Clemson University. The primary rendering en-
gine is a dual-rack, dual-pipe, Silicon Graphics Onyx2®)
InfiniteReality2™ system with 8 raster managers and 8
MIPS® R12000™ processors, each with 8MB secondary
cache.! It is equipped with 8Gh of main memory and 0.5Gb
of texture memory.

Multi-modal hardware components include a binocular
eye tracker mounted within a Virtual Research V8 Head
Mounted Display. The V8 HMD offers 640 x 480 pixel res-
olution per eye with individual left and right eye feeds. HMD
position and orientation tracking is provided by an Ascen-
sion 6 Degree-Of-Freedom (6DOF) Flock Of Birds (FOB).
The HMD is shown in Figure 3(inset), with the FOB sensor
just visible on top of the helmet.

T silicon Graphics, Onyx2, InfiniteReality, are registered trade-
marks of Silicon Graphics, Inc.

The eye tracker is a video-based, corneal reflection unit,
built jointly by Virtual Research and ISCAN. Each of the
binocular video eye trackers is composed of a miniature
camera and infrared light sources, with the dual optics as-
semblies connected to a dedicated personal computer (PC).
The ISCAN RK-726PCI High Resolution Pupil/Corneal Re-
flection Processor uses corneal reflections (first Purkinje im-
ages) of infra-red LEDs mounted within the helmet to mea-
sure eye movements. Figure 3 shows the dual cameras and
infra-red LEDs of the binocular assembly. Mounted below

Figure 3: Binocular eye tracker optics (W/HMD inset).

the HMD lenses, the eye imaging cameras peer upwards
through a hole cut into the lens stem, capturing images of
the eyes reflected by a dichroic mirror placed behind the
HMD lenses. The processor typically operates at a sample
rate of 60Hz, however while in binocular mode the mea-
sured sample rate decreases to 30Hz. The subject’s eye posi-
tion is determined with an accuracy of approximately 0.3 de-
grees over a +20 degree horizontal and vertical range using
the pupil/corneal reflection difference. The maximum spatial
resolution of the calculated Point Of Regard (POR) provided
by the tracker is 512 x 512 pixels per eye.

Subjects. Nine subjects were invited to participate in the ex-
periment (7 males, 2 females; average age 26). Most of the
subjects (8) were undergraduate students with no experience
in Virtual Environments. Each subject was asked to fill out
an informed consent form (approved by Clemson’s Institu-
tional Review Board), and was asked to indicate which eye
was dominant (by asking to simulate shooting a rifle).

Procedure. Following an introduction and a brief descrip-
tion of the experiment, participants were asked to don the
HMD and were given a brief preview of the types of envi-
ronments in a short training session. Subjects first viewed
each of the three types of environments in the prescribed or-
der, but for eye movement data collection, the three train-
ing environments were chosen from a different group. Of
particular interest are fixations during a first-time immer-
sion in a VE. To avoid memory effects, each subject was
exposed to a new environment, and each environment was
viewed only once. Exposure to environments was limited to
the following: Level 0: 10 sec; Level 1: 20 sec; Level 2: 40
sec. Durations for viewing training environments were not
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as strict. Each subject viewed the training environments un-
til they were comfortable in each.

Before viewing each test environment, each participant
underwent a 5-point eye tracker calibration sequence. Cal-
ibration quality of each eye was noted (to facilitate subse-
quent eye movement analysis). In most cases, calibration
was better for the subject’s dominant eye (self-reported).
Each trial lasted approximately 15 to 25 minutes. Each par-
ticipant was asked whether they wanted to take a break after
seeing the training environments or to continue with the tri-
als. Most subjects chose to continue immediately.

No particular task was assigned during trials, e.g., subjects
were allowed to “free view” the environment. However, one
problem was observed when viewing the CG scene environ-
ments: all CG environments lacked a wall, creating an open
space at one end of the environment. If subjects were seen
looking at this empty space, they were asked to divert their
attention toward more interesting parts of the environment
(e.g., they were informed that there was something else to
look at and that they were free to move their head about).
Anecdotal analysis indicates there at least two types of VR
participants: some exhibit very slow head movements, usu-
ally not being able to view the entire environment in the time
allotted, while others explore the environment with appar-
ently great enthusiasm and cover the entire scene within a
few seconds (generating fast head movements).

Stimuli. To gauge eye movements in VR and to mimic the
environment generated by Haber et al., three types of VEs
were used, shown in Figure 4, each of varying complexity:

e Level 0: A simple cube environment. The first type of en-
vironment is a simple box-like volume with simple stim-
uli texture-mapped on its walls. This environment, shown
in Figure 4(a), was constructed from simple images over
which the attentional model is known to perform well. All
six inner faces contained the same texture. In all, three
different textures were used (obtained from the publicly
available distribution of Itti et al.’s code) in each of three
environments.

e Level 1: A panoramic environment. To enable compari-
son of scanpaths over “natural” imagery, textures of nat-
ural scenes were used to create a 360° panoramic VE.
These environments are similar to commonly seen Quick-
Time VR environments on the web. Since the environ-
ments were created by texture mapping a cylinder, the
floor and ceiling of the environments were simply made
of a homogeneous color (usually matching the dominant
hue of the bottom and upper portions of the panoramic
scenes, e.g., a blue ceiling for an “outdoor” environment).
The 360° panoramic images were obtained from the web
and mapped to a cylinder spanning the main vertical axis,
S0 as to impart the impression of standing in the middle
of the scene (see Figure 4(b)). All subjects were asked
to minimize their head movements to rotations about the
vertical axis (e.g., not to look down or up at the floor and
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ceiling). The three textures used represented a landscape,
county fair, and fort.

e Level 2: A CG scene. To extend the complexity of scenes
to purely synthetic scenes, and to simulate the work
of Haber et al. (without perceptually adaptive enhance-
ments), 3D radiosity environments were generated. All
virtual environments were created at Clemson University
using an in-house file format as well as in-house tools for
computing radiosity-based global illumination. All VEs
were fairly simple, consisting of one room and a few ob-
jects, e.g., table, light(s), chair(s). The most sophisticated
of the three environments is shown in Figure 4(c).

4.2. Head-Based Analysis

Selected scanpath examples over three different VEs viewed
in the experiment are shown in Figure 5. In these images,
hROIs and aROls are symbolized by circles and squares, re-
spectively, each representing 5° visual angle coverage.

Average results are reported comparing human and artifi-
cial scanpaths in VR, following Privitera and Stark’s string
editing methodology. Results from comparisons of human
scanpaths to those generated by each attentional modeling
variant over each environment are reported in two parsing di-
agrams, given in Tables 1-4, one giving loci (Sp) correlation
measures, the other giving scanpath order (Ss) similarity in-
dices. The parsing diagrams are adapted to the present eval-
uation of two characteristic subjects: human and algorithm.
For ease of comparison, human idiosyncratic indices are
replicated in each of the four tables. Compared to the atten-
tional model, human idiosyncratic indices are fairly highly
correlated (at about 15%), roughly matching expected hu-
man idiosyncratic measures reported by Privitera and Stark.
To facilitate testing for statistical significance between lo-
cal indices, a random scanpath is generated to establish a
“control” or baseline measurement composed of random fix-
ations. The bottom-right entry of the parsing diagrams shows
the local correlation between human and random fixations,
i.e., correlation of scanpaths made by humans and a random
process over the same image. Since viewing time for the ran-
dom process is meaningless, the random process is simply
made to generate the same number of fixations per image as
the human.

In terms of human-artificial scanpath comparisons, the
most salient values found in the parsing diagrams listed in
Tables 1-4 are the local (different subject, same image) scan-
path loci indices (Sp), listed as the upper-right element of
each parsing diagram. Inspection of these values suggests
that Cases 3 (Near-Real-Time) and 4 (Full-Real-Time) gen-
erate better agreement between aROls and hROIls. This is
somewhat surprising since those variants of the model which
are given more time to analyze images were expected to pro-
vide better agreement. The reason for better performance of
the Case 3 and 4 variants may be the removal of the orien-
tation map, the same component removed by Haber et al. in
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(a) A Level-0 scene (cube).
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(b) A Level-1 scene (panorama).
Figure 4: Example virtual environments.

Same  Same Diff. Same  Same Diff.
Subj.  Subj.  Subj. Subj.  Subj.  Subj.

(h) (m) (h) (m)
X X 0.007 X X 0.007
0.162 0.104 0.006 0.148 0.000 0.004
S 0.044 S 0.000

(h) (m) (h) (m)
X X 0.028 X X 0.028
0.153 0.114 0.017 0.151 0.004 0.016
S 0.031 S 0.013

(h) (m) (h) (m)
X X 0.007 X X 0.007
0.197 0.081 0.015 0.191 0.004 0.013
S 0.020 S 0.017

Table 1: Head-based analysis: Case 1

Same  Same Diff. Same  Same Diff.
Subj.  Subj.  Subj. Subj.  Subj.  Subj.

(h) (m) (h) (m)
X X 0.010 X X 0.007
0.162 0.212 0.013 0.148 0.203 0.006
S 0.044 S 0.000

(h) (m) (h) (m)
X X 0.019 X X 0.017
0.153 0.289 0.012 0.151 0.289 0.013
S 0.031 S 0.009

(h) (m) (h) (m)
X X 0.028 X X 0.024
0.197 0.186 0.032 0.191 0.183 0.027
S 0.020 S 0.017

Table 3: Head-based analysis: Case 3

(a) Level-0 scene (cube).
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(c) A Level-2 scene (CG environment).

Same  Same Diff. Same  Same Diff.
Subj.  Subj.  Subj. Subj.  Subj.  Subj.
(h) (m) (h) (m)
X X 0.003 X X 0.003
0.162 0.015 0.022 0.148 0.001 0.015
S 0.044 S 0.000
(h) (m) (h) (m)
X X 0.015 X X 0.015
0.153 0.005 0.016 0.151 0.003 0.015
S 0.031 S 0.013
(h) (m) (h) (m)
X X 0.023 X X 0.021
0.197 0.019 0.026 0.191 0.010 0.021
S 0.020 S 0.017
Table 2: Head-based analysis: Case 2
Same  Same Diff. Same  Same Diff.
Subj.  Subj.  Subj. Subj.  Subj.  Subj.
(h) (m) (h) (m)
X X 0.026 X X 0.026
0.162 0.100 0.018 0.148 0.086 0.010
S 0.044 S 0.000
(h) (m) (h) (m)
X X 0.020 X X 0.020
0.153 0.060 0.016 0.151 0.058 0.015
S 0.031 S 0.013
(h) (m) (h) (m)
X X 0.016 X X 0.014
0.197 0.110 0.022 0.191 0.102 0.017
S 0.020 S 0.017

Table 4: Head-based analysis: Case 4

(b) Level-1 scene (panorama).
Figure 5: Example scanpaths.

(c) Level-2 scene (CG environment).

(© The Eurographics Association 2002.
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Case 1 Case 2 Case 3 Case 4 Random
L-0 L-1 L-2 L-0 L-1 L-2 L-0 L-1 L-2 L-0 L-1 L-2

100% 4830 4270 43.38 46.69 42.09 4317 41.70 4173 49.42 5476 47.49 48.20 48.26
90% 43.10 36.75 37.31 41.01 36.43 37.03 35.06 35.87 4434 48.82 4143 43.92 42.03
80% 36.99 3270 3245 3644 3234 3248 3232 3286 4170 4441 37.10 41.26 37.37
70% 3423 29.24 28.81 3351 2847 2869 28.66 28.97 3842 39.10 3295 38.34 32.95
60% 3097 2575 2542 3042 2537 2518 2634 2578 3520 3411 29.35 3550 29.72
50% 28.08 2261 2157 26.09 2225 21.83 2234 2252 3336 30.05 26.02 31.47 25.98
40% 2376 19.39 1824 22.01 1920 1825 19.20 19.84 31.06 26.18 2217 28.74 22.33
30% 1823 16.09 1465 1857 1567 1421 1586 16.58 28.93 20.82 19.23 25.59 17.87
20% 1431 1138 10.18 1335 1119 1003 11.29 13.05 26.60 16.69 1490 21.48 14.34
10 % 4,01 2.86 2.03 3.56 3.45 1.87 5.77 355 12.67 5.64 528 1253 3.74

Table 5: Time-based analysis.

their real-time implementation of a perceptually-based Vir-
tual Environment.

4.3. Time-Based Analysis

As discussed in Section 3, the time-based analysis approach
measures only the correlation between fixations since real-
time frame display is used as the delimiting factor (100 ms
per image). Here, instead of presentation of Sp and Ss val-
ues, results are given in terms of area coverage and distance
between human and artificial fixations (in degrees visual an-
gle). Table 5 lists average distance measures calculated for
each environment under each modeling variant condition.
The table should give an idea of how large the foveal re-
gion should be extended beyond the model’s fixation point
to match a specific amount (here percentage overlay) of hu-
man fixations. Lower numbers in the table indicate better
performance (smaller distance between aROls and hROIs).
All time-based analysis techniques utilize the same variants
of the attentional model as discussed above.

Examining average values reported in Table 5, perhaps the
two most informative lines of data are at the 10% and 50%
coverage levels. At the 10% level, relatively low values are
seen for Cases 1 and 2 in comparison to those listed under
Cases 3 and 4. Case 1 and 2 algorithm variants appear to per-
form slightly better than chance (compared to random ROI
and hROI distances, reported in the far right column). Should
the average distance values be significantly lower than ran-
dom values at the 50% level, one might be tempted to claim
that the attentional model is no different from another human
(correlation between human subjects was reported at 50% by
Privitera and Stark19). While statistical significance is not yet
available, it does not appear likely that any variation of the
model will qualify for this distinction.

A curious trend can be seen in Table 5: unlike head-based
analysis, at real-time constraints the model variants of Case
1 and Case 2 seem to outperform those of Case 3 and Case
4. This is again surprising since the opposite was expected.
In real-time analysis, it may be that the lack of an orientation
map at such minimal processing times (100 ms) may hinder
algorithm performance. That is, since under real-time con-
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straints generally only one fixation is expected per frame, it
may be that the first ROl generated by Case 1 and 2 vari-
ants is generally more accurate than the first ROl generated
by Case 3 and 4 variants. The orientation map may thus be
more important at initial stages of the algorithm rather than
at longer exposures.

5. Discussion

Analysis shows that the correlation between human and ar-
tificial scanpaths in all three types of environments is much
lower than expected. At first, these results seemed rather in-
credulous. Certainly the attentional model appears to work
quite well over still images, and as Privitera and Stark have
shown, the techniques employed by the attentional model
tend to identify foveal regions which generally agree with
those identified by humans. However, it is the static nature
of the stimulus that seems to be at issue. In most cases the
image within head-stable or time-based sequences does not
change much. The problem may lie in the algorithm’s lack of
memory. That is, each time the algorithm is run, as far as it is
concerned, it is presented with a completely new image. In
contrast, the human has already seen most parts of the image
and is therefore free to distribute visual attention to new ar-
eas, even though, according to the algorithm’s saliency map,
the areas may appear to the model as less interesting.

Whatever viewing strategy is employed, calculated id-
iosyncratic indices suggest that humans tend to repeat
adopted viewing patterns more consistently than the model.
The attentional model appears to distribute attention to a
wider area of the image. In contrast, humans appear to direct
their attention to the central region of the image (at least, it
is suspected, upon initial viewing or when viewing time is
restricted). This is supported by distribution plots of human
and artificial fixations, shown in Figure 6. Figure 6(a) shows
that human fixations tend to cluster about the central image
region, at least when immersed in VVR. Indeed, this supports
previous findings of human fixations being restricted to the
central 30° of the VR display, 13 9 as well as findings of hu-
mans tending to fixate the image center within the first 2 or
so seconds of initial image exposure.14
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(a) Human fixations. (b) Artificial fixations.
Figure 6: Spatial distribution of hROIs and aROls.

6. Conclusion and Recommendations for Future Work

The contributions of this paper are the development and eval-
uation of a novel method for the comparison of human and
artificial scanpaths recorded in VR. String editing appears
to offer a powerful analytical mechanism for evaluation of
human-human or human-artificial scanpaths. An attentional
model previously used for view-dependent enhancement of
Virtual Reality is evaluated. Results indicate that, at least un-
der immersive viewing conditions, the model does not ac-
curately predict human fixations in VR. Despite the results
presented here, it is believed that an image-based approach
for real-time visual attention modeling in VR is not an unac-
ceptable strategy. It is conjectured that any attentional model
suitable for perceptually-based VR rendering should be aug-
mented with a memory of previously seen image regions or
perhaps previously inspected objects. This could be done by
updating the saliency map dynamically over changing im-
age regions, increasing the model’s sensitivity to image tran-
sients while reducing its sensitivity to full-field transients
(e.g., due to head motion).# The attentional model may be
further enhanced by biasing it toward the central image lo-
cation, at least during initial exposure.
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