
EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek
(Guest Editors)

Short Presentations

Interpolating 2D Shape Hierarchically

Henry Johan and Tomoyuki Nishita

Department of Computer Science, The University of Tokyo, Japan

Abstract
Shape interpolation has been widely used in the field of computer graphics for modeling and for creating visual

effects. This paper presents a novel hierarchical method to interpolate between two 2D shapes. A hierarchical
representation, which is a hierarchy of triangles, is proposed to represent the interior and the details of each
shape. By constructing the compatible hierarchical representations of the two shapes, the intermediate shapes are
computed by interpolating the corresponding triangles at the lowest level to the highest level of the representations,
From experimental results, the proposed method produces smooth interpolation sequences.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - Hierarchy and geometric transformations

1. Introduction

Shape interpolation is a technique used to generate a se-
quence of intermediate shapes that transform a source shape
into a target shape. Combining the shape interpolation tech-
nique with a morphing technique provides a powerful tool
for creating visual effects. Nowadays, these techniques have
been used widely in motion-pictures, television, and other
commercial images. There are two main problems in shape
interpolation, the vertex correspondence and the vertex path
problems. Vertex correspondence is the problem of estab-
lishing the correspondences between the vertices of the two
shapes, while vertex path is the problem of determining the
positions of the vertices during the interpolation.

This paper presents a novel solution to the 2D vertex path
problem. A smooth interpolation between two shapes can
be realized by first interpolating between their interiors and
then gradually adding the details. For this purpose, we in-
troduce a new "hierarchical representation" which is used
to represent the interior and the details of a shape. Hierar-
chical representation of a shape is defined as a hierarchy of
triangles used to describe the shape. This hierarchy of trian-
gles can be represented as a tree, and we call it "hierarchical
tree". The basic idea of this representation is that, we start
from a single triangle, then by adding triangles recursively,
we reconstruct the original shape.

If two hierarchical representations have the same hierar-
chical tree, we say that the two hierarchical representations

are compatible, and we call them "compatible hierarchical
representations (CHR)". Note that in their compatible repre-
sentations, each triangle in the source representation has ex-
actly one corresponding triangle in the target representation.
Intermediate shapes are computed by interpolating the corre-
sponding triangles at the lowest level to the highest level of
the compatible hierarchical representations, that is, adding
the details (vertices) gradually.

The advantages of using hierarchical approach are that the
interpolation starts from the interior, then gradually adds the
details, resulting in smooth interpolation sequence, also the
features of the source and target shapes are guaranteed to
be preserved during the interpolation. For example, if the
source and target shapes have bumpy boundaries, then the
generated intermediate shapes will also have bumpy bound-
aries. The main contributions of this paper are: (1) a novel
hierarchical representation of a shape and a method to con-
struct the compatible hierarchical representations of two
shapes, (2) an algorithm to interpolate the compatible hier-
archical representations of two shapes.

This paper is organized as follows. Section 2 describes
previous work on the vertex path problem. Section 3 ex-
plains the definition of compatible hierarchical representa-
tions. Section 4 describes the algorithm to construct the com-
patible hierarchical representations of two shapes. Section 5
discusses our method to interpolate these compatible hierar-
chical representations, and Section 6 shows the results of our
algorithm. The final section concludes this paper.

c© The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org

H. Johan and T. Nishita / Interpolating 2D Shape Hierarchically

2. Previous Work

The simplest solution to the vertex path problem is achieved
by linearly interpolationg the coordinates of the two corre-
sponding vertices. However, this approach suffers from the
problem of shrinkage. This problem occurs frequently espe-
cially when the shapes undergo rigid body motion.

Sederberg et al.9 proposed an algorithm that interpolates
the edge lengths and the vertex angles of the two polygons.
However, this method tends to distort the area of the interme-
diate polygons. Methods using multi-resolution representa-
tions were proposed by Goldstein and Gotsman4, Zhang and
Huang15. Goldstein and Gotsman use the polygon evolution
scheme, while Zhang and Huang use a wavelet approach to
construct the multi-resolution representations.

Carmel and Cohen-Or2 and Zhang14 compute the vertex
path with a transformation that consists of a rigid part and an
elastic part. In the rigid part of the transformation, rotation
and translation are performed, while in the elastic part, the
corresponding vertices are linearly interpolated. The short-
coming of their approaches is that a single rotation and trans-
lation are usually not enough to generate a smooth interpo-
lation. Samoilov and Elber8 proposed methods for eliminat-
ing self-intersection when interpolating between freeform
curves. However, according to Surazhsky and Gotsman11,
their methods cannot guarantee that the resulting interpola-
tion will be self-intersection free.

All of the methods described above take into account only
the boundaries of the polygons. Shapira and Rappoport10 no-
ticed that the interiors of the polygons play an important role
in the interpolation process. They express the interiors of the
polygons by using the "star-skeletons" representation. If the
two polygons differ significantly, however, it is quite am-
biguous to construct the corresponding skeletons.

Recent research publications such as Tal and Elber13,
Floater and Gotsman3, Alexa et al.1, Gotsman and
Surazhsky5, and Surazhsky and Gotsman11, 12 have dealt
with the problem of interpolating two compatible triangu-
lations. Alexa et al. proposed an excellent method to inter-
polate between two triangulations. For each pair of corre-
sponding triangles, the ideal affine transformation is defined.
The global transformation is performed such that its mini-
mizes the local deformation. In the methods of Surazhsky
and Gotsman, the original polygons are first enclosed by two
convex polygons. Then the new polygons are compatible tri-
angulated, after which the triangulations are morphed using
the method proposed by Floater and Gotsman3.

The methods proposed by Surazhsky and Gotsman guar-
antee that the intermediate shapes will be free from self-
intersection. However, since their methods use polygons to
enclose the original shapes and perform the interpolation be-
tween these enclosed polygons, the computed intermediate
shapes can exhibit area distortion if the source and target
shapes differ significantly.

1 4

3

5

8

4

2

8

4

2

2

6

level 0

8 7

5
4

level 1

2

3

1 6

8 7

5
4

2

6

7

level 2 level 3

Figure 1: Hierarchical representation of a shape.

3. Compatible Hierarchical Representations

A hierarchical representation of a shape is defined as a set
of triangles used to describe the shape with hierarchical re-
lationships defined among the triangles. The basic idea of
the hierarchical representation is similar to that of building-
bricks, starting from a single triangle, then by adding trian-
gles recursively, the original shape is reconstructed. Figure
1 shows an example of a hierarchical representation. Each
level contains triangles which represent some of the details
of the shape at that particular level. In the example shown in
Figure 1, triangle 248 is the triangle at the coarsest level of
the representation. The shape at the next higher level (level
2) is created by adding triangle 478 to triangle 248. Trian-
gle 478 represents vertex 7 which does not exist in the shape
at the next lower level (level 3). By adding triangles recur-
sively, the original shape is reconstructed. Note that this rep-
resentation is not a triangulation. For instance, triangle 457
and triangle 467 overlap each other in the representation.

We use the following terms to refer to the vertices of a
triangle: "center vertex" and "base vertices". Center vertex
is the vertex which is represented by the triangle and base
vertices are the rest vertices of the triangle. Edge which con-
nects the two base vertices is called "base edge". For in-
stance, triangle 478 represents vertex 7, and thus vertex 7
is the center vertex, vertices 4, 8 are the base vertices, and
edge 48 is the base edge. All triangles at the same level are
assigned the same level number. The triangles at the highest
level of representation have level number 0. Triangles in the
next lower level have level number 1 and so on. The lowest
level of the representation consist of a single triangle.

Except the triangle at the lowest level of the representa-
tion, every triangle has one "parent triangle". The parent tri-
angle is defined as follows. Let vi,v j,vk be the vertices of
triangle T . Assume that vi and vk are the base vertices. There
are two triangles, a triangle with vi as its center vertex and a
triangle with vk as its center vertex, which are suitable can-
didates for the parent triangle of T . For instance, triangles 5
and 6 in Figure 1 are the candidates for the parent of triangle
3. From these two triangles, the triangle which has its level
number closest to the level number of T is chosen as the par-
ent triangle. In the case of triangle 3, triangle 5 becomes its
parent triangle.

c© The Eurographics Association 2002.

H. Johan and T. Nishita / Interpolating 2D Shape Hierarchically

5

3 4

21level 0

level 3 6

level 2

level 1

Figure 2: The hierarchical tree for the hierachical represen-
tation shown in Figure 1.

Hierarchical representation can be expressed by using a
tree. The nodes of the tree represent the triangles in the rep-
resentation. In particular, the root of the tree represents the
triangle at the coarsest level of the representation. The edges
of the tree represent the parent-child relationships (hierar-
chy) between the triangles in the representation. We call this
tree a "hierarchical tree". Figure 2 shows the hierarchical
tree of the hierarchical representation in Figure 1. Given two
shapes A and B. Assume that HA and HB are the hierarchical
representations of shapes A and B, respectively. If the hier-
archical trees of these two representations are the same, then
we say that HA and HB are compatible hierarchical represen-
tations. Note that if HA and HB are compatible, then there
exists a one-to-one correspondence between the triangles in
HA and HB.

4. Construction of Compatible Hierarchical
Representations

We can build many types of compatible hierarchical repre-
sentations of two shapes. For the purpose of shape interpo-
lation, the goal is to build representations which express the
corresponding details and interiors of two shapes at a higher
level and a lower level of the representations, respectively.
The interiors of the given shapes can be obtained by recur-
sively removing the details.

We assume that the source and target shapes have the
same number of vertices and there exist one-to-one cor-
respondence relationships between the vertices of the two
shapes. The outline of the compatible hierarchical represen-
tations construction is as follows (see Figure 3). First, we
insert additional vertices into the source and target shapes
(Section 4.1), creating new source and target shapes. Then
we search for vertices to be removed. After that we perform
the actual vertex removal operation (Section 4.2), create tri-
angles to represent the removed vertices, and finally create
the source and target shapes at the next hierarchical level
(Section 4.3). We repeat these operations until the shapes at
the next hierarchical level are either triangles or lines. We
treat lines as degenerate triangles.

v1
T

v2
T

v3
T

v4
T

(c)(a) (b)

source at the
next lower level

next lower level
target at the

v1
S

v2
S

v3
S

v4
S

v1
T

v2
T

v3
T

v4
T

v1
S

v2
S

v3
S

v4
S

target

source

vertices

: inserted
vertices

originaladditional
vertices

removinginserting

Figure 3: Constructing the compatible hierarchical repre-
sentations of (a) the source and target shapes by (b) insert-
ing additional vertices, (c) removing some of the original
vertices and creating the source and target shapes at the next
lower hierarchical level.

4.1. Inserting additional vertices

If the original shapes are represented by small numbers of
triangles (the size of triangles are relatively large compared
to the size of the original shapes), and the source and target
shapes differ significantly, natural interpolation cannot be
achieved since the trajectories of the vertices during the in-
terpolation are restricted. Thus, it is important that the num-
ber of triangles are sufficient to express the differences be-
tween the source and target shapes. By inserting new vertices
in the edges of the source and target shapes, smaller triangles
can be generated. As a result, the number of triangles in the
representations are increased.

Before we insert any vertices, the values lsrc_max and
ltgt_max are determined to restrict the edge lengths of the tri-
angles in the source and target representations, respectively.
Let lsrc be the average edge length of the source shape. We
define lsrc_current = γ· lsrc. The value γ is chosen depending
on the degree of similarity between the original source and
target shapes. If the two shapes are similar, we set γ to be a
large value, otherwise we set it to be a small value. In our
experiment, γ is set between 0.5 to 2.0. Let lsrc_upper be the
value of lsrc_max at the previous upper level. lsrc_max is com-
puted using the following equation,

lsrc_max = max(lsrc_current , lsrc_upper). (1)

By considering the value of lsrc_upper, we avoid inserting
new vertices over and over again and thus guarantee that the
algorithm will terminate. The above computation is also per-
formed on the target shape, yielding ltgt_max.

We define vi and vi+1 as the end points of the i-th edge.
We also assume that θi and θi+1 are the internal angles at vi
and vi+1, respectively. We do not insert a vertex into the i-th
edges if either one of the following conditions is satisfied.

c© The Eurographics Association 2002.

H. Johan and T. Nishita / Interpolating 2D Shape Hierarchically

1. The lengths of the i-th edges in the source and target
shapes are smaller than lsrc_max and ltgt_max, respectively.

2. |π−θi| < εθ and |π−θi+1| < εθ are satisfied in both the
source and target shapes.

The second condition is used to avoid inserting vertices
into a region which is nearly a straight line. From exper-
imental results, setting εθ to 15◦ is sufficient to deciding
whether an edge lies on a flat region or not. If the above
conditions are not satisfied, we insert vertices in the i-th
edges. Let lsrc

i and ltgt
i be the edge lengths of the i-th

edges in the source and target shapes, respectively. We de-
fine η = max(f loor(lsrc

i /lsrc_max), f loor(ltgt
i /ltgt_max)). If

the value of η is one, we insert a new vertex at the mid-
dle of the i-th edges (parameter u = 0.5) . Otherwise, we
insert two vertices, one at u1 = 1.0/(η +1) and another one
at u2 = 1.0− u1, of the i-th edges. In the following subsec-
tions, we will use the term "original vertices" to refer to the
vertices that belong to the original shapes and the term "in-
serted vertices" to refer to the vertices inserted at this stage.

4.2. Removing some of the original vertices

The next step is to remove some of the original vertices
which represent the details in the source and target shapes.
For each original vertex v, we assign a "detail value" Dv

which is a pair of two values (α,β). These values are de-
termined as follows. Assume that θS and θT are the internal
angles at v in the source and target shapes, respectively. Let
dmax = 2π−min(θS,θT), dmin = 2π−max(θS,θT).

1. If either θS or θT is smaller than π, then Dv =
(dmax,dmin).

2. If θS and θT are larger than or equal to π, then Dv =
(dmin,dmax).

Let Dv1 = (α1,β1), Dv2 = (α2,β2). Dv1 is smaller than
Dv2 if and only if either α1 < α2, or α1 = α2 and β1 < β2.
That is, the lexicographic order is used to compare between
two detail values. Note that vertices whose detail values are
relatively large compared to other vertices tend to represent
fine details at the source and target shapes.

Vertices to be removed are determined by searching for
the vertices with the largest detail values. These vertices are
put together in one list called CANDIDATE. Then, we try to
remove the vertices in this list (Section 4.2.1). The removed
vertices are represented by using triangles (Section 4.2.2).
These triangles are the triangles of the hierarchical represen-
tations. If we cannot remove any of the vertices in list CAN-
DIDATE, then we search for vertices with the next largest
detail values. We repeat the search until we find vertices that
can be removed.

In the case when none of the original vertices can be re-
moved, the value of lsrc_max and ltgt_max is halved and the
vertex insertion step (Section 4.1) is repeated. By inserting
new vertices near the original vertices, it is guaranteed that

vi+1 vi+2
vi+4

vi+3

vi

Figure 4: Removing many vertices simultaneously.

we can always find vertices that can be removed since the
possibility of causing self-intersections and folding prob-
lems (i.e., the ordering of the vertices are reversed) is de-
creased when we remove those original vertices (refer to
Section 4.2.1).

4.2.1. Removing the vertices in list CANDIDATE

We group the vertices in the list into groups which con-
sist of successive vertices. For example, if the shape has
nine vertices (v1, ...,v9), and list CANDIDATE contains
{v2,v3,v4,v7}, then we can group the vertices in the list
into two groups, which are group of {v2,v3,v4} and group
of {v7}. Then we process these groups independently. If a
group consists of one vertex, we check if the vertex can be
removed. A vertex can be removed if its removal does not
cause the source and target shapes to exhibit self-intersection
and does not cause the folding problem. If a group has two
vertices, we check if we can remove these two vertices si-
multaneously without causing the self-intersection and the
folding problems. By removing the two vertices simultane-
ously, we guarantee that if the source and target shapes are
symmetric, then the shapes at all hierarchical levels are also
symmetric.

Next, we consider the case of a group G which consists
of more than two vertices. We assume that vi,vi+1, ...,vi+k
are those vertices. If all these vertices are removed simulta-
neously, relatively large triangles most likely will be needed
to represent these vertices (see Figure 4). However, as we
mentioned previously in Section 4.1, large triangles are not
desireable when computing the intermediate shapes. There-
fore, when G consists of more than two vertices, we check
its vertices as follows. Depending on the number of vertices
in the group (equal to k +1), we define list G1 as follows.

1. If (k +1) is an odd number, we define
G1 = {vi,vi+2,vi+4, ...,vi+k}.

2. If (k+1) is an even number and (k+1)/2 is an odd num-
ber, we define
G1 = {vi,vi+2, ...,vi+(k−1)/2,vi+(k+1)/2, ...,vi+k−2,vi+k}.

3. If (k + 1) is an even number and (k + 1)/2 is an even
number we define
G1 = {vi,vi+2, ...,vi+(k−3)/2,vi+(k+3)/2, ...,vi+k−2,vi+k}.

Next, we define list G2 = G−G1. Note that the vertices in
G1 and G2 can be grouped into smaller groups which consist
of one or two vertices. We first check if we can remove the
vertices in G1. If we cannot find at least one vertex that can

c© The Eurographics Association 2002.

H. Johan and T. Nishita / Interpolating 2D Shape Hierarchically

inserted

removing

original

v

new shape

inserted

not removing

v v

v

v

Figure 5: Determining vertices of the new shape at the next
hierarchical level.

be removed, then we check the vertices in G2.By using this
approach, we avoid removing more than two vertices simul-
taneously and thus avoid generating relatively large triangles
in the representations.

4.2.2. Representing the removed vertices

To represent the removed vertices, we use triangles. The re-
moved vertex is the center vertex of the triangle and its two
neighbor vertices are the base vertices of the triangle. In the
case when we remove two consecutive vertices, their two
neighbor vertices are used as the base vertices. For instance,
in Figure 1, vertices 4 and 7 are the base vertices when we
remove vertices 5 and 6.

4.3. Lower level shape

After removing some of the original vertices, the next step
is to create the source and target at the next lower level. The
shape at the next lower level is composed of original vertices
which are not removed and the inserted vertices which are
the direct neighbors of the removed vertices (see Figure 5).
Figures 13 (a) and (c) show the source and target shapes at
some levels of the compatible hierarchical representations,
respectively. As shown in this figure, the details of the shapes
are removed gradually as the algorithm proceeds.

5. Interpolation between Two Compatible Hierarchical
Representations

The intermediate shapes are computed hierarchically, that is,
interpolating the triangles at the coarsest level, then gradu-
ally adding the details at each level of the representations.

The outline of the interpolation method is as follows (see
Figure 6). First, we interpolate the triangles (Section 5.1) at
the lowest level of the hierarchical representations. Then, we
move to the next higher level, interpolate all the triangles at
this level, and finally we compute the shape at this level (Sec-
tion 5.2). We perform these operations until we have finished
processing the triangles at the highest level of the represen-
tations.

M

3

v2

v

(a) (c)(b)

v1

Figure 6: Interpolating the compatible hierarchical repre-
sentations. (a) Interpolate the lowest level triangles, (b) in-
terpolate the triangles at the next higher level, and (c) com-
pute the final shape at this level.

base2

l1
lB

l2

base1
lB(/2, 0.0)lB(- /2, 0.0)

y

x

edge 1 edge 2

base

center

Figure 7: Computation of ideal intermediate triangle.

5.1. Intermediate triangle

To compute an intermediate triangle, we first determine its
ideal shape (Section 5.1.1), then compute the orientation of
its base edge (Section 5.1.2), and finally compute its location
(Section 5.1.3).

5.1.1. Ideal intermediate triangle

We define an ideal transformation between two triangles as a
transformation that linearly changes the lengths of the edges.
By using this approach, the intermediate shapes can be gen-
erated without causing shrinkage. To compute the ideal in-
termediate triangle at a time t, we define a local coordinate
system with the base edge of the triangle as the x-axis (see
Figure 7). Since the lengths of the edges change linearly, we
first compute the length lB of the base edge, and then the co-
ordinates of the base vertices are given by (+/− lB/2,0.0).
The coordinates of the center vertex can be computed as an
intersection between two circles centered at base1 and base2,
having radii of l1 and l2, respectively (see Figure 7). l1 and
l2 are the lengths of edge 1 and edge 2 at time t. If the y
coordinates of the source and target triangle are equal to or
larger than zero, then the y coordinate of the center vertex is
equal to or larger than zero. Otherwise, the y coordinate is
smaller than zero.

There is a special case if the source and target triangles
have different orientations (see Figure 8). First, we check

c© The Eurographics Association 2002.

H. Johan and T. Nishita / Interpolating 2D Shape Hierarchically

center is inside

1base
t trans

at time
base2

t trans

at time base2
t trans

at time1base
t trans

at time

target

source

target

y
source

(a) (b)

center is outside

y

xx

Figure 8: Interpolation between triangles with different ori-
entations. (a) The case when linearly interpolating the cen-
ter vertex is adequate and (b) the case when we cannot sim-
ply linearly interpolate the center vertex.

transition
triangle

source

center

source

targettarget

’s trajectory

y

x

Figure 9: Interpolation using transition triangle.

whether it is sufficient to linearly interpolate the center ver-
tex. We compute the time ttrans when the center reaches the
x-axis. Then we compute the coordinates of the base vertices
at time ttrans. If the center vertex is located inside the base
edge of the triangle, then we use linear interpolation to inter-
polate the center vertices (Figure 8(a)). If the center vertex is
located outside the base edge (Figure 8(b)), we cannot sim-
ply linearly interpolate the center vertices since the resulting
intermediate shape will exhibit self-intersection. In such a
case, we first transform the center of the source triangle to
the origin of the local coordinate system, and then we trans-
form from the origin to the center of the target triangle using
linear interpolation. This operation can be viewed as trans-
forming the source triangle into a transition triangle which is
a line, and then transforming the transition triangle into the
target triangle (see Figure 9).

5.1.2. Orientation of the base

If the interpolation involves rotations, then the rotations can
be well expressed by rotating the intermediate triangles. The
angle of rotation can be determined by computing the orien-
tation of a triangle relative to the orientation of a "reference
triangle". Since the intermediate shapes are built gradually,
the triangles at a particular level can be used as the reference
triangles for the triangles in the higher level. As mentioned
in Section 3, except the triangle at the lowest level of the rep-
resentation, all triangles have one parent triangle. In fact, the
parent triangle is the best choice for the reference triangle.

parent

child
child in source

child in target

parent in source

parent in target

p

c
p

c

c

c
p

(a) (b)

Figure 10: (a) Angle computation between the base edge of
a triangle and its reference axis and (b) rotate a triangle
such that the total rotation angle is minimum.

The details of the algorithm are as follows. For each trian-
gle, the base edge of its parent triangle is used as a reference
axis. For the triangle at the lowest level, we use the x-axis of
the global coordinate system (the coordinate system where
the original source and target are defined) as the reference
axis. We then compute the angle between the base edge of
the triangle and its reference axis (see Figure 10). In Figure
10(b), we have chosen the smallest angle possible, since we
want to avoid local self-intersection. By linearly interpolat-
ing this angle, we determine the orientation of the base edge
with respect to the reference axis. We add the orientation
of the reference axis to this value in order to compute the
correct orientation of the base in the global coordinate sys-
tem. Note that we have already processed the parent triangle
and therefore we know the orientation of its base edge in the
global coordinates system.

5.1.3. Location of the triangle

There exists one edge, that belongs to the shape at the previ-
ous level, which corresponds to the base edge of the triangle.
The computed ideal intermediate triangle is placed such that
the middle point of its base edge (point M in Figure 6) coin-
cides with the middle point of such edge.

5.2. Intermediate lower level shapes

In the hierarchical representation, a vertex v can be the ver-
tex of more than one triangle. The vertices v1, v2, and v3 in
Figure 6 are the examples of these. Assume that vertex v is
the vertex of m triangles. We compute the coordinates of v at
a time t, (0.0 ≤ t ≤ 1.0) by using the following equation.

v(t) = ∑m
i=1 wi · vi(t)
∑m

i=1 wi
. (2)

vi(t) (i = 1, ...,m) are the coordinates of v in the i-th trian-
gle at time t. wi is the weight of i-th triangle. In order to
produce a smooth interpolation, if the corresponding trian-
gles in the source and target representations are similar, then
their intermediate triangles must not suffer great distortions.
Therefore, the weight of such a triangle should be large. To
realize this, weight wi is computed as follows. A "triangle

c© The Eurographics Association 2002.

H. Johan and T. Nishita / Interpolating 2D Shape Hierarchically

(a) between two arbitrary shapes (14 vertices, γ = 1.0)

(b) a box into an animal (18 vertices, γ = 1.0)

(c) "U" into "T" (16 vertices, γ = 0.5)

Figure 11: Examples of interpolation.

difference value" of the i-th triangle is defined as the maxi-
mum value of differences between corresponding angles of
the i-th triangles in the source and target representations. If
the two triangles have different orientations, the difference
value is the sum of the difference value between the source
and the transition triangles and the difference value between
the transition and the target triangles. We use the reciprocal
of this value as the weight wi. Note that when the triangles in
the source and target representations are similar, then their
triangle difference value is small, and thus the weight be-
comes large. In the implementation, a small value is added
to the triangle difference value before we compute the recip-
rocal in order to avoid division by zero.

The coordinates of the vertices can be computed effi-
ciently by processing each triangle at this level instead of
processing each vertex independently. This is done by using
a "coordinates accumulation buffer" and a "weight buffer".
The coordinates accumulation buffer and the weight buffer
have entries for all the vertices. For each triangle at this level,
we compute the coordinates of its vertices at a time t, add
their weighted coordinates to the accumulation buffer, and
add their weights (the weight of the triangle) into the weight
buffer. After we have finished processing all the triangles at
this particular level, we compute the coordinates of the ver-
tices of the shape at this level by dividing the values in the
accumulation buffer by the values in the weight buffer.

6. Examples

Before we perform the interpolation process, the user first
establish the correspondences between the vertices of the
two given shapes. We let the user to specify the correspon-
dences in order to make the interpolation sequence looks nat-
ural and aesthetic. For example, for the interpolation shown
in Figure 12(b), we want to make sure that the spout of the
teapot goes to the trunk of the elephant, the handle of the
teapot goes to the tail of the elephant.

(a) source shape (Utah teapot)

(b) intermediate shape at time t = 0.5

(c) target shape (elephant)

Figure 13: Intermediate shapes at different levels of the hi-
erarchical representations.

Figure 14: Interpolation from letter "U" to letter "S".

Figures 11 and 12 show examples of interpolation se-
quences. In some of the examples, some parts of the shapes
undergo rotations. This means that linear interpolation can-
not produce smooth interpolation sequences for these ex-
amples. In contrast, our method has produced smooth inter-
polation sequences for all these examples. Figure 13 shows
the intermediate shapes at different levels of the hierarchical
representation for the interpolation shown in Figure 12(b).

From our experimental results, the proposed algorithm
is fast. The compatible hierarchical representations can be
computed in less than 0.4 second in all the examples. The
intermediate shapes can be generated fast. We can generate
more than 60 intermediate shapes per second for all the ex-
amples shown in this paper. The computation is performed
on machine with Pentium III 800Mhz running Linux.

6.1. Limitation of the proposed method

We have tested the proposed method using various types of
inputs. From these experiments, we found out that the gen-
erated intermediate shapes can exhibit some area distortion
in the case when the source and target shapes are skinny-
long-stick-like shapes (Figure 14). This is caused by the fact
that the intermediate triangle is generated by linearly inter-
polating the edge lengths, which expands the intermediate
triangle too fast in the case of interpolating between a trian-
gle whose center vertex is near the base edge and a triangle
whose center vertex is far from the base edge.

7. Conclusions and Future Work

We have presented a new hierarchical shape interpolation
method that can be used to smoothly interpolate between

c© The Eurographics Association 2002.

H. Johan and T. Nishita / Interpolating 2D Shape Hierarchically

(a) a donkey into a bird (151 vertices, γ = 2.0)

(b) the Utah teapot into an elephant (105 vertices, γ = 2.0)

Figure 12: Interpolation between two polygons.

two 2D shapes. We introduce a hierarchical representation
of a shape, which is a set of triangles used to describe the
shape. To interpolate between two shapes, the method first
constructs the compatible hierarchical representations of the
two shapes. Then, interpolating the triangles at the lowest
level of the representations and adding vertices by interpo-
lating the triangles at the next higher level successively gen-
erates the intermediate shapes. Image morphing can be per-
formed by combining our method with the techniques pro-
posed in Lee et al.6, Ruprecht and Muller7. To summarize,
the advantages of the proposed hierarchical method are: (1)
interpolation starts from the coarse version of the shapes,
then gradually adds the fine details, resulting in smooth in-
terpolation sequence, (2) the features of the source and target
shapes can be preserved during the interpolation.

For future research, we would like to develop a better
method for computing the intermediate triangle in order to
resolve the area distortion problem. By computing the inter-
mediate shapes hierarchically, we can easily control the ap-
pearance of the generated shapes, and thus give us the ability
to detecting and fixing self-intersections. Therefore, we are
looking forward to extending the proposed method in order
to realize self-intersection free interpolation.

Acknowledgment

This research is supported in part by Japan Society for the
Promotion of Science Research Fellowship.

References

1. M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-
as-possible shape interpolation. Proceedings of SIG-
GRAPH 2000, 157-164, 2000.

2. E. Carmel and D. Cohen-Or. Warp-guided object-space
morphing. The Visual Computer, 13(9/10):465-478,
1998.

3. M. S. Floater and C. Gotsman. How to morph tilings in-
jectively. Journal of Computational and Applied Math-
ematics, 101:117-129, 1999.

4. E. Goldstein and C. Gotsman. Polygon morphing us-
ing a multiresolution representation. Proceedings of
Graphics Interface’95, 247-254, 1995.

5. C. Gotsman and V. Surazhsky. Guaranteed intersection-
free polygon morphing. Computers and Graphics,
25(1):67-75, 2001.

6. S. Lee, K.Y. Chwa, S.Y. Shin, and G. Wolberg. Image
metamorphosis using snakes and free-form deforma-
tions. Proceedings of SIGGRAPH 95, 439-448, 1995.

7. D. Ruprecht and H. Muller. Image warping with scat-
tered data interpolation. IEEE Computer Graphics and
Application, 15:37-43, 1995.

8. T. Samoilov and G. Elber. Self-intersection elimination
in metamorphosis of two-dimensional curves. The Vi-
sual Computer, 14(8/9):415-428, 1998.

9. T. Sederberg, P. Gao, G. Wang, and H. Mu. 2D shape
blending: An intrinsic solution to the vertex path prob-
lem. Proceedings of SIGGRAPH 93, 15-18, 1993.

10. M. Shapira and A. Rappoport. Shape blending using the
star-skeleton representation. IEEE Computer Graphics
and Application, 15(2):44-51, 1995.

11. V. Surazhsky and C. Gotsman. Controllable morphing
of compatible planar triangulations. ACM Transactions
on Graphics, 20(4):203-231, 2001.

12. V. Surazhsky and C. Gotsman. Morphing stick figures
using optimized compatible triangulations. Proceed-
ings of Pacific Graphics 2001, 40-49, 2001.

13. A. Tal and G. Elber. Image morphing with feature
preserving texture. Computer Graphics Forum (Euro-
graphics’99), 18(3):339-348, 1999.

14. Y. Zhang. A fuzzy approach to digital image warp-
ing. IEEE Computer Graphics and Applications, 33-41,
1996.

15. Y. Zhang and Y. Huang. Wavelet shape blending. The
Visual Computer, 16(2):106-115, 2000.

c© The Eurographics Association 2002.

