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Abstract
Intelligent Paint provides a new tool for interactively selecting image objects or regions of interest, while simul-
taneously applying filters or effects directly to the selection(s). By coupling adaptive cost-ordered region growing
with the high-level visual expertise of the user to indicate which objects are of interest, we are able to accurately
select and edit complex, non-homogeneous objects in only a few seconds using simple mouse input gestures. Prior
to selection, the image is oversegmented using a watershed (tobogganing) algorithm. Watershed catchment basins
are assembled into an hierarchical image partition by grouping basins using the student’s t-distribution. Grouped
basins, referred to as TRAPs (Tobogganed Region Accumulation Plateaus), reasonably capture sub-object detail.
Object selection is accomplished by user-steered, adaptive, cost-ordered collection of TRAPs. Tinting or applica-
tion of filters during object selection provides immediate visual feedback as to what is being selected as well as
the suitability of the chosen digital effect. Intelligent Paint selection compares favorably with popular commercial
tools in terms of efficiency, accuracy and reproducibility with the added benefit of on-the-fly filtering, while raising
the granularity of image editing from the pixel to the object-level. Novel tools for object-centered image editing
such as Intelligent Eraser and Intelligent Clone tools are also possible with this technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Editors, Paint
Systems I.3.6 [Computer Graphics]: Interactive Techniques I.4.3 [Image Processing and Computer Vision]: En-
hancement, Filtering I.4.6 [Image Processing and Computer Vision]: Segmentation, Region growing, partitioning

1. Introduction

Current tools for image editing require the user to either
1) apply effects to the entire image, or 2) explicitly prese-
lect the intended object or region to be modified, then (in a
separate step) apply the desired operation to the selection.
For example, image editing packages such as Photoshop
and The GIMP allow users to select regions using one or
more user-guided selection tools (rectangle/ellipse selection,
Magic Wand, Lasso, Magnetic Lasso, Bezier Paths, etc.) and
then apply artistic filters or digital effects to the selection.

In addition to providing a simple paint interface for ob-
ject selection, Intelligent Paint (IP) provides a novel pro-
cess for interactive application of special effects (recoloring,
blurring, artistic filters, distortions, etc.) to interactively se-
lected objects or regions. The selection is both implicit and
simultaneous. IP is unique among selection tools in allowing
the user to apply filters directly to objects of interest while
the effect itself provides in-process visual feedback afford-
ing control of the selection as it is occurring. Thus, when the
selection is complete, so is the effect (Figure 1).

Popular selection tools include manual paint brushes and
lassos that are easy to implement and widely available but
rely heavily on human input1 � 2. Where object selection re-
quires greater accuracy the user must work slowly and/or
zoom to higher levels of magnification. Geometric (rectan-
gle/ellipse) selection tools form selections using only start
and end (mouse press and release) points thereby simpli-
fying human-input. Path tools provide greater flexibility
by utilizing curves to create and edit selections that are
not constrained to a particular geometric shape, but ex-
hibit some smoothness in boundary curvature. However,
all curve-constrained tools rarely adhere precisely to object
boundaries in real-world scenes, and still require some type
of manual drawing, tracing, or placement of vertices to po-
sition boundaries. Such tools are limited by the precision
with which users can place boundaries at a given zoom fac-
tor where operator bias, and variability in human input limit
both accuracy and reproducibility. With manual selection
tools, the user is mainly concerned with the details of ob-
ject delineation rather than high-level object identification.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Intelligent Paint connect-and-collect object selec-
tion and object-centered image editing. (a) Original boat im-
age, with insets. Size: 490x630. (b) Sailboat selected from com-
plex background of similar objects [18 clicks, 25 seconds] green
circle � mouse-down, red circle � mouse-up, solid line � mouse
drag, dashed line � mouse move. (c) Selection of part of mast and
sail in progress. (d) Original chairs image. Size: 370x580. (e) Se-
lected chair. [22 clicks, 30 seconds] (f) Image editing with Intelli-
gent Paint (in-progress) — painting plaids (dye on-the-fly).

Automated segmentation3, clustering, and classifica-
tion techniques such as watersheds4 � 5 � 6 Laplacian zero-
crossings7, Bayesian classifiers8, k-means7 that do not al-
low human input have proven useful in automating certain
segmentation tasks. But, such applications typically require
controlled lighting, restricted image content, or other con-
straints in order to produce meaningful results. A general
purpose selection tool must be able to process scenes of ar-
bitrary complexity to separate foreground objects of interest
from the remaining image background.

Vision assisted tools such as magic wands1 � 2, snakes9 � 10,
active contours11, and balloons12 combine human interac-
tion and vision algorithms by allowing interactive initial-
ization prior to computing borders or regions. Magic wands
and other region growing approaches typically allow manual
specification of a sample seed or region after which the al-
gorithm iteratively adds neighboring pixels based on homo-
geneity criteria13 � 14. Snakes allow manual initialization of
an approximate boundary which the algorithm later refines
by converging toward detected boundaries. Local boundaries
may be nudged and refined until the desired segmentation is
achieved.

Most prior work in vision-assisted interactive object se-
lection has taken the form of iterative adjustment of seed
points, boundaries, thresholds, tuning parameters, or heuris-
tics to incrementally refine a selection toward the desired
result. These “initialize-then-process” schemes require the
interface (user-input) to entirely precede the algorithm pre-
venting coordination of human-computer interaction. Be-
cause all input is required prior to receiving any visual feed-
back, it can be difficult to determine a priori how much in-
put is needed and what trouble spots may require extra in-
put. Consequently, minimally interactive approaches can re-
quire too much input, produce unexpected results, and gen-
erally cannot be guided or steered by the operator. Hence,
intelligent segmentation tools that interactively exploit high-
level visual expertise but require minimal user interaction,
become appealing.

Intelligent Scissors15 is a boundary-based selection tool
that allows the user to sweep the cursor around an object
while a live-wire automatically snaps to, and wraps around
detected object boundaries with real-time visual feedback16 .
While the scissors metaphor is ideal for edge-based ob-
ject extraction, by intelligently cutting along object borders,
it can require greater effort when applied to complex ob-
jects with interior holes or intricate boundaries as in Fig-
ures 1, 15, and 9).

Intelligent Paint adopts the interactive style of Intelligent
Scissors in a region-based context using a paint metaphor
to provide real-time interactivity and visual feedback 17. The
“intelligence” of the paint lies in its ability to adapt to re-
gions within an object without spilling into similar, neigh-
boring background objects or regions. This region-based
approach allows the operator to perform high-level object
recognition by dragging the cursor through the object with
little attention toward interior holes and boundary complex-
ity while the underlying segmentation algorithms handle
the delineation of object boundaries. While boundary-based
techniques must finalize the entire closed contour before any
part of the region can be identified or edited, Intelligent Paint
provides a feedback mechanism allowing filters and effects
to be applied directly during the selection.

2. Intelligent Paint: a Selection Tool

Using Intelligent Paint is like pouring object-specific paint
from a bucket (flood-fill) with important enhancements de-
signed to improve accuracy and visual feedback while mini-
mizing human input. The interface is very simple. The only
input that is required is to press the mouse button (Button1)
to begin painting at the cursor position, and then release the
button when finished painting. While the button remains de-
pressed, Intelligent Paint does three things: 1) it samples the
image underneath the cursor (initial seed point), 2) it proac-
tively flows the paint from this initial seed point toward ob-
ject boundaries with real-time, pixel-by-pixel visual feed-
back, and 3) it interactively responds to mouse movement
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Intelligent Paint Interactive Connect and Collect Segmentation
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Figure 2: Intelligent Paint implementation of automated connec-
tion and interactive collection with on-the-fly training.

by resampling the image and reflowing the paint along the
entire input path treating each point along the path as a seed
point. Painting terminates when the region sufficiently sim-
ilar to the sample(s) has been painted, or when the mouse
button is released. If the flow of paint terminates while the
button remains depressed, subsequent movement without re-
leasing the button indicates that additional painting is re-
quired and the process starts again.

We illustrate this process in the selection of the sailboat in
Figure 1[a-b]. Figure 1[a-inset] shows a portion of the boat
with corresponding TRAPs and three separate selections il-
lustrated in Figure 1[c]. Note that the green circle indicates
mouse-down, red circle: mouse-up, solid line: mouse drag,
and dashed line: mouse move. For example, Figure 1[c-left]
shows mouse-down followed by mouse-up, and the corre-
sponding selection of the mast. Note that without mouse
movement the red circle obscures the green and the flow
of paint terminates automatically. Figure 1[c-middle]: ob-
ject selection is extended with mouse movement. Figure 1[c-
right]: additional movement captures entire object, again
with automatic termination. Extending this process, with ap-
propriate mouse drags and releases, allows the entire sailboat
(and sailor) to be selected.

Intelligent Paint can be applied at the pixel level, but it
is well known that pixel-based region growing algorithms
tend to produce selections with small holes and irregu-
lar boundaries. Furthermore, selecting a single pixel sam-
ple/seed is not robust to variability in human input. If an
outlier is chosen, the final result can be wildly unpredictable
as with magic wands. Hence, we adopt a connect and col-
lect strategy using an hierarchical segmentation algorithm to
automatically connect (bottom-up) pixels into TRAPs, pro-
ducing a fine-to-coarse hierarchy of segmentations. Mean-
while, a dynamic, cost-ordered accumulation algorithm al-
lows the user to interactively collect (top-down) regions that
define the object of interest. Together, these algorithms co-

ordinate human-computer interaction, providing simultane-
ous object selection and object-centered image editing (Fig-
ure 2). Our approach automates tedious and error prone low-
level boundary localization, while the user always retains in-
teractive high-level control of object selection.

2.1. Automatically Connect

Automated segmentation techniques such as watersheds
nicely partition images into relatively homogeneous regions
and establish boundaries between dissimilar neighboring
regions. The boundaries of objects in the original image
are most likely delineated by crestlines separating the wa-
tershed catchment basins. The problem is that watersheds
produce highly over-segmented partitions so that there are
many unwanted crestline boundaries even within objects
of interest. Many seeded, marker-based, region-merging18,
graph-based19 , scale-space20, hierarchical21 � 5, pyramid22 and
multi-scale23 approaches have been presented that effec-
tively reduce unwanted boundaries and even provide hier-
archies of progressively higher-level segmentations.

For our purposes in interactive object selection, we re-
quire a partitioning scheme that is 1) fast, 2) locally adap-
tive, 3) free of heuristic tuning parameters or thresholds, and
4) does not require a priori knowledge as to the number and
placement of seeds or markers. It is also desirable to create
an hierarchy of segmentations without generating and pro-
cessing scaled copies of the original image. We produce a
fine-to-coarse hierarchy of candidate segmentations largely
associated with image objects at multiple resolutions (Fig-
ures 3 and 4) using our implementation of an efficient water-
shed (tobogganing) algorithm. Tobogganing was introduced
by Fairfield24 and extended by Yao and Hung25. With im-
provements in accuracy and efficiency, tobogganing was first
used for interactive object selection in Intelligent Paint17 � 26

and subsequently applied to Intelligent Scissors27.

2.1.1. Tobogganing

Tobogganing over-segments an image into small regions by
"sliding in the derivative terrain". Given a discontinuity mea-
sure such as gradient magnitude, a slide direction (dashes
in Figure 3 [top-right]) is computed for each pixel point-
ing toward the neighboring pixel with the lowest discontinu-
ity. Pixels that "slide" to the same local minimum (dots) are
grouped together forming a TRAP. TRAPs are similar to the
catchment basins produced by watersheds, yet tobogganing
is far more computationally efficient. In addition, toboggan-
ing can be applied to a local region of interest whereas fast
watershed algorithms must be applied globally, processing
the entire image before meaningful results are obtained6.

We compute discontinuity using a family of multi-scale
derivative-of-Gaussian kernels to fit edges in a wide range of
images. Using a two-dimensional normal distribution with a
standard deviation of σ,
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Figure 3: Top-right: Tobogganing applied to zoomed square re-
gion of image (top-left). Dashes within each TRAP indicate gradi-
ent flow toward base point (local minimum). Below: 6 level fine-to-
coarse TRAP hierarchy preserves similarity in region size at each
level while retaining sub-object detail (e.g. “8”, “U”, block).
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the multi-scale gradient magnitude is given by

G
�
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�
Gσ
�
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Gσ � ∑
b

���
Ib � ∂Nσ

∂x � 2 � �
Ib � ∂Nσ

∂y � 2 �
(3)

is the squared gradient magnitude summed over each color
band Ib of the image I, computed by convolving each Ib with
a first-derivative-of-Gaussian kernel of scale σ. We interpret
the discontinuity measure, D

�
p � q � between two neighboring

pixels, p and q, as the gradient magnitude at q,

D
�
p � q ��� G

�
q � (4)

and the minimum discontinuity neighbor of p is

M
�
p ��� min

qεN � p � � D � p � q ��� (5)

where N
�
p � defines the 4-connected neighborhood of p (in-

cluding p itself).

Figure 4: “Bird’s eye” view of TRAP hierarchy from (Figure 15).
Left: initial TRAPs. Middle: second level TRAPs obtained by hier-
archical tobogganing. Right: Third level TRAPs. Note preservation
of sub-object detail (pupil, level 2; eye, level 3).

Previous tobogganing24 � 25 and watershed6 methods use
an 8-connected neighborhood but fail to account for the in-
creased Euclidean distance to the diagonal neighbors. This
leads to spatially inaccurate region boundaries since pixels
on or near a gradient ridge may "tunnel" diagonally through
the ridge, where pixel corners touch, and slide down the
wrong side. While a 4-connected neighborhood produces
more and smaller regions, it isolates fine detail better and is
about twice as fast. In our implementation, smaller regions
are merged into larger regions using hierarchical toboggan-
ing Section 2.1.2.

Given a discontinuity measure and a neighborhood, to-
bogganing partitions the image by assigning a unique la-
bel to each of the tobogganed regions as described in Al-
gorithm 1.

Algorithm 1: 4-Connected Tobogganing
Input:

I(p) Image to be partitioned by tobogganing

Output:

L(p) Labeled TRAPs (initialized to 0 for all p)

Methods:

D(p,q) Discontinuity measure between p and q

M(p) Minimum cost neighbor of p

Algorithm:

count := 0; Init number of regions to 0

label := 0; Init current region label to 0

for each p { Scan pixels p in row-major order

if (L(p)) continue; Skip any previously labeled p

label:=count+1; Anticipate new local min label

q:=p; Set q to begin sliding at p

while (L(q)==0) { Slide until q is labeled or a min

L(q):=label; Assign new label anticipating min

push q; Store q in case we need to relabel

q:=M(q); Slide toward lowest cost neighbor

} Done sliding

if (L(q)==label) { If q is a min the path is labeled

empty stack; Clear stack for next slide-path

count:=count+1; Increment the number of regions

else { If q is labeled, relabel slide-path

label:=L(q); Set the label to match q

while (stack) { Relabel all q on the stack

pop q; Get next q along slide-path

L(q):=label; Relabel with encountered label

} Done relabeling

} Done labeling

} Done tobogganing

c
�

The Eurographics Association 2002.



Reese and Barrett / Image Editing with Intelligent Paint

The image is scanned in row-major order. When an unla-
beled pixel is found, its neighborhood is searched to iden-
tify and slide toward the minimum discontinuity neighbor.
Sliding continues until the slide-path encounters a previ-
ously labeled pixel or a local minimum. If a labeled pixel
is encountered, sliding stops because the monotonically de-
creasing path toward the minimum has already been labeled.
Hence, the encountered label is assigned to each pixel along
the slide-path. If instead, the slide-path reaches an unlabeled
local minimum, a unique label is assigned for this minimum
and those pixels along the slide-path leading to it. We have
modified the original tobogganing algorithm24 � 25 to begin la-
beling each slide-path with a new label anticipating a new
local minimum so that we only relabel the slide-path if an
old label is encountered. This results in a speed-up of ap-
proximately 20 percent since the first slide-path encountered
for a new region is traversed only once.

2.1.2. Hierarchical Tobogganing

Tobogganing at pixel resolution creates highly over-
segmented regions. However, by applying the tobogganing
algorithm to TRAPs rather than pixels, we can produce a
fine-to-coarse hierarchy of segmentations. Since we com-
bine existing TRAPs rather than recomputing new regions
with a looser grouping criterion or threshold, boundaries in
subsequent levels correspond exactly to a subset of the prior
boundaries (Figure 3).

Hierarchical tobogganing proceeds in the same fashion
as pixel-based tobogganing with the exception that we are
grouping TRAPs rather than pixels. We simply redefine
the neighborhood and the discontinuity measure for Algo-
rithm 1. We define the neighborhood N

�
p � of TRAP p as

the set of all TRAPs q �� p such that q is 4-connected to p.
The discontinuity measure D

�
p � q � between TRAPs p and q

is computed using the student’s t-distribution28 which esti-
mates the probability that two measured distributions have
different means. As the probability of different means be-
tween TRAPs p and q increases, so does the discontinuity
between TRAPs p and q. D

�
p � q � is computed using the stu-

dent’s t-distribution as

D
�
p � q ��� p

�
t � ν ��� Γ

� ν � 1
2 �

Γ
� ν

2 � � πν ���t  1
� t2

v ! 	 � ν � 1
2 �

(6)

where t is the student’s t-score and ν is the degrees of free-
dom given by

t � xp " xq#
σ2

p $ Np

�
σ2

q $ Nq

(7)

and

ν � % σ2
p

Np

�
σ2

q
Nq & 2'

σ2
p ( Np ) 2

Np 	 1

� '
σ2

q ( Nq ) 2
Nq 	 1

(8)

respectively. For TRAPs p and q, variables x, σ2, and N are
the mean, variance, and number of samples of each TRAP.
In our implementation, we automatically compute the first
six levels of the hierarchy and allow the user to select the
appropriate level of object detail (level two is the default).

2.2. Interactively Collect

Once the appropriate level of detail has been selected, the
task is to collect, in cost order, with minimal user input, the
TRAPs corresponding to the object of interest. Cost-ordered
TRAP collection begins (Algorithm 2) when the operator
points, clicks and drags the cursor within the object of in-
terest as illustrated in Figure 1[c]. All sampled TRAP(s)
touched along the cursor path are placed at the head of a
cost-ordered list referred to as the wavefront, W , to seed the
graph expansion.

Cost-ordered TRAP collection is begun by initializing a
3D histogram or look-up-table (LUT) with the RGB values
of the pixels within the TRAP first pointed to. The LUT is
immediately augmented by pixels from TRAPs collected in
the expansion, and subsequently updated with pixels from
TRAPs touched by the drag. Adjacent traps are added in cost
order, where the (local) cost of a TRAP is determined based
on the similarity of its RGB values to those found in the
LUT. In our current implementation the local cost L

�
p � is

computed as

L
�
p �
� 1

N ∑
x * T

1
LUT

�
xr � xg � xb � (9)

where the RGB value (xr, xg, xb ) of each of the N pixels
x in TRAP T indexes the LUT. Thus, if T ’s histogram re-
sembles the current LUT, the cost L

�
p � of adding T will be

comparatively small.

In our implementation, the LUT is a 3D (64x64x64) his-
togram (initialized to 1). We implement W as a circular,
double-linked list with one element (bin) for each possi-
ble discrete local cost L

�
p � . Interactively sampled TRAPs

are assigned zero cost and inserted into the bin at the head
of the sorted wavefront. Local costs L

�
p � are computed for

neighboring TRAPs N
�
p � not yet collected or on the wave-

front. Neighbors are then added into the bin at position
head

�
L
�
p � .

Once initialized, the expansion continues by removing
lowest cost TRAPs from the head of the list, marking them
as collected, and adding any new neighboring TRAPs as be-
fore. When the bin at the head of the list is empty, the head is
advanced to the next non-empty bin until W is empty or the
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mouse button is released. As the head advances through the
circularly-linked list, it is always positioned at the current
cumulative cost so that adding new entries at head

�
L
�
p �

maintains the cumulative-cost ordering of the list. The lo-
cal cost L

�
p � is computed using a dynamically updated cost

look-up-table (Section 2.3).

Algorithm 2: Cost-ordered TRAP Collection
Input:

s Seed or sample TRAP

Output:

L(p) Label TRAP p (BG, FG, Wavefront, Cooled)

Methods:

W Wavefront cumulative cost-ordered list of TRAPs

N(p) Neighbors of TRAP p

L(p) Local cost to add TRAP p to wavefront

C(p) Cumulative cost to add TRAP p to wavefront

M(Ti,Tg) Min(intensity Ti,gradient Tg) cooling thresholds

Algorithm: Cost-ordered TRAP Collection
C(s):=0; Init cumulative cost of s to 0

L:=BG; Init output labels to BG

W:=s; Place TRAP s on the Wavefront

while W { While TRAPs are on Wavefront

p:=min(W); Remove min cost TRAP from W

L(p):=FG; Mark TRAP p as FG (collected)

for q in N(p) { For each neighbor q of p

if L(q)==BG { If q has not yet been processed

if L(q)>M(Ti,Tg) Test if q should be cooled

L(q):=Cooled; If so, then mark q as Cooled

else { Compute cost and add q to W
C(q):=C(p)+L(q); Assign cumulative cost to q

L(q):=Wavefront Insert q to W in sorted order

} Done adding q to Wavefront

} Done processing neighbor q

} Done expanding neighbors

} Done collecting TRAPs

Steerable, interactive region accumulation with cost-
ordered TRAP collection and in-process visual feedback al-
lows the operator to guide the object recognition process. A
cumulative cost ordering C provides a sense of local control
in proximity to the user-positioned cursor not found in most
region growing techniques.

Our cumulative, cost-ordered region expansion is adapted
from the unrestricted graph expansion used by the original
Intelligent Scissors15 � 16 with a few important distinctions.
First, we raise the granularity and operate within the TRAP-
based framework rather than at pixel-level17. Second, we use
the graph expansion to collect TRAPs within the desired ob-
ject rather than to select boundary segments from a collec-
tion of piecewise optimal paths27. Third, the weighted graph
is formulated by treating TRAPs as weighted nodes with
edges connecting neighboring TRAPs. Fourth, we use lo-
cal region-based costs. Fifth, we do not need to expand the
graph throughout the entire image, thus TRAP collection ter-
minates either interactively by releasing the mouse button or
automatically via adaptive cooling (Section 2.3). And sixth,
the user is provided real-time visual feedback and steers the
graph expansion process itself rather than only interacting
with pre-computed results.

2.3. On-the-fly training

On-the-fly training employs several methods that enable In-
telligent Paint to dynamically adapt to non-homogeneous re-
gions of interest, thereby improving overall efficiency, ac-
curacy, and robustness in obtaining the desired selection.
These methods include the use of a dynamically updated cost
look-up-table, adaptive cooling, interactively spawned seed
or sample TRAPs, and automatic cursor snapping.

1. Dynamically Updated Cost Look-Up-Table (LUT) allows local
trap costs to vary throughout the process based on the current
statistical composition of the expanding region using what is
learned at early stages of the segmentation to guide subsequent
processing.

2. Adaptive Cooling freezes, or curtails growth at given positions
along the wavefront by removing from the wavefront, those
TRAPs whose costs (intensity or gradient) are too high relative
to the sampled and collected region.

3. Dynamically Spawned Seed TRAPs allows paint to immediately
and automatically flow from every TRAP touched by human in-
put as the user interactively paints the object of interest.

4. Automatic Cursor Snapping automatically warps (translates)
the cursor small distances to assist in painting fine-detail regions
that are not yet processed.

3. Intelligent Paint: for Image Editing

For the most part, editing image objects with Intelligent
Paint by applying filters and effects directly into intelligently
selected regions is straightforward. The user simply chooses
the desired effect and begins painting. Intelligent Paint ex-
pands the effect until it reaches object boundaries giving the
visual impression of intelligently pouring the effect into the
desired region. This novel aspect of Intelligent Paint also
provides immediate visual feedback as to the appropriate-
ness of the filter used.

A complete discussion of implementation details for the
many filters and effects possible with Intelligent Paint is not
included here, but we note several important observations.
First, applying point effects such as brightness, contrast, hue,
and saturation adjustments is straightforward. Instead of tint-
ing or flood-filling the region during selection, the effect is
simply drawn into the image instead, and the visual feedback
is in the effect. Second, neighborhood operators such as blur
or sharpening (convolutions in general) require special pro-
cessing along selection boundaries within half of the width
of the neighborhood size so that background regions are not
contaminated in the processing. Third, the user may choose
constrained or cumulative application of effects to either 1)
limit processing of each pixel to one application of the effect
(one coat of paint), or 2) apply the effect repeatedly each
time the pixel is selected (multiple coats of paint). Finally,
multiple filters and effects can be applied simultaneously by
cascading or stacking filters to combine them into a single
operation.
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Figure 5: Summary of user-study results with 6 participants, and 504 object selection tasks (Figure 15). Accuracy (spatially correct placement)
and Reproducibility (inter-user and intra-user consistency)[left]. Efficiency (amount of time)[middle]. Usability (number of inputs; mouse
clicks, undos, and parameter adjustments)[right].

4. Results and Discussion

The basic operation of Intelligent Paint is to identify and se-
lect image objects by pointing at, and dragging the cursor
through the object with little or no user effort required to lo-
calize object boundaries (Figures 6 - 9). The simplest effect
is to repaint a previously edited region with original image
data thereby erasing any previously applied effect(s). This
provides a powerful Intelligent Eraser tool that can be used
to remove unwanted effects, or spills that may have crossed
through object boundaries. The use of Intelligent Paint to
simulate depth-of-field by selectively applying a Gaussian
blur to the background (crowd) is illustrated in Figure 10.
Figure 11 demonstrates the direct application of a hue shift
painted onto the body of the colorful parrot (left), a brick tex-
ture poured onto the background (“behind”) the bird (mid-
dle), and a more convincing “stacked-filter” that simultane-
ously paints and desaturates the brick wall for greater real-
ism. These effects are accomplished with 3 to 8 clicks in 5
to 10 seconds. Application of a variety of well known digi-
tal filters is demonstrated in Figure 12. An Intelligent Clone
tool is illustrated in Figure 13 where the user simply clicks a
target location (red “x”), then starts painting from the source
region (green “x”). The selection obtained from the source
is auto-magically painted into the offset (translated) coor-
dinates at the destination. Finally, if cloning is not contro-
versial enough and one wants to really make waves, artistic
distortions such as ripples or waves may be painted directly
into otherwise peaceful bodies of water Figure 14.

In a study consisting of a variety of selection tasks, In-
telligent Paint was compared (as a selection tool) with the
popular magic wand and magnetic lasso tools in Adobe Pho-
toshop. These tools were evaluated in terms of accuracy, re-
producibility, efficiency, and usability (Figure 5). The selec-
tion tasks were performed in random order by 6 participants
accustomed to using both magic wand and magnetic lasso.

504 object selection tasks (84 tasks for each of the 6 par-
ticipants) were used in the study. Participants were required
to extract 12 objects of interest (Figure 15) from synthetic

and real-world images, with each of the 3 selection tools, 3
times with each tool.

The synthetic image (Part 1) contains shapes with varying
degrees of boundary curvature and region complexity. The
original binary synthetic image is processed (blur and noise
added) to simulate the blurring and noise of image capture
hardware and to test the robustness of Intelligent Paint. Two
processed images computed from the binary original with
increasing levels of noise and blur are tested. The still-life
(Part 2) image contains objects that may be selected fairly
quickly. Other real-world images (Part 3) contain objects of
varying complexity and background which were segmented
in a few seconds to a few 10’s of seconds with only a few
mouse clicks. Furthermore, for an experienced user these
times decrease by a factor of two.

Hierarchical Tobogganing is well suited to Intelligent
Paint because it produces segmentations that do not depend
on heuristic parameters or thresholds, it is sensitive to local
features in the image data, it is computationally efficient, it
is terminally order independent so that it may be parallelized
or computed on-the-fly as needed for local regions, and it
tends to produce similarly sized regions at each level of the
hierarchy (Figure 4). Incrementally raising the granularity of
the basic unit of operation above the pixel level provides a
richer feature set to more accurately delineate boundaries at
subsequent higher-level segmentations.

The problem with automated hierarchical techniques (in-
cluding this one) is that as the granularity increases, mean-
ingful boundaries are eventually lost. Intelligent Paint allows
the operator to interactively specify a granularity within the
hierarchy (using the up and down arrow keys) based on the
size and detail of objects to be selected.

5. Conclusion and Future Work

We have introduced a tool that performs object selection and
editing by simply dragging the cursor through the region of
interest. High accuracy in segmentation is achieved by auto-
matically establishing a fine-to-coarse hierarchy of spatially
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accurate boundaries between regions. High reproducibility
is obtained by allowing the user to direct the segmentation
while the algorithm snaps to, and localizes the object bound-
ary. Selections require less time and fewer inputs as the pro-
cess proceeds automatically where no guidance is needed,
but responds immediately to input when steering is provided.
In addition to simplifying the process of object selection, In-
telligent Paint provides a common framework for Intelligent
Eraser and Intelligent Clone (rubber-stamp) tools. Finally,
Intelligent Paint provides a novel tool for object selection
with simultaneous application of digital effects.

Object selection through collection of TRAPs in cumula-
tive cost order avoids the pitfalls, including holes and ragged
boundaries, of strictly local connected component region
growing schemes, while providing a type of globally optimal
robustness in object definition. Unlike many semi-automated
approaches to segmentation, Intelligent Paint uses a “direc-
tive” rather than a “corrective” metaphor, tightly interleav-
ing, and judiciously balancing user guidance and algorithmic
boundary localization. Thus, rather than engaging the user in
repetitive compute-object, correct-object cycles, Intelligent
Paint shows great respect for all user input, supporting econ-
omy of effort, so that object selection almost always occurs
in one pass.

Work is ongoing to explore simultaneous interaction at
multiple levels within the TRAP hierarchy to capture fine
detail on the perimeter of the expanding wavefront while
still operating on higher-level components within the ob-
ject. Selection boundaries could be processed using an edge-
model27 to compute sub-pixel accuracy and alpha channel.
Modes of interaction for extending this technique to video
sequences and volume data are being considered.
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Figure 6: Sequence of images (row-major) showing input (green
circle:mouse-press, red circle:mouse-release, solid line:mouse-drag,
dashed line:mouse-move) to select object (or sub-objects) in upto
8 clicks with little mouse-dragging (interactive sampling). Short
strokes sample fewer TRAPs into the LUT resulting in more con-
trolled painting.

Figure 7: Continuous mouse drag samples many TRAPs into the
LUT resulting in broader painting. On mouse-press: green circle
(left), paint immediately starts to flow. TRAPs touched by brush
stroke are immediately added to the expanding wavefront tinted red
(left). Expanding region tinted green continues to grow (middle).
Selected region tinted blue when finished (right).

Figure 8: Lumbar spine original (left), selected preserving hole
[1 click, < 1 second] (middle), and filling hole [1 click, < 1 second]
with a little more sampling (right).

Figure 9: Selection of eagle head; trivial with Intelligent Paint,
tedious with Magnetic Lasso, exhausting with Magic Wand. Note
that we do not trivially select the background then invert.

Figure 10: Simulating depth-of-field by painting with blur effect.
Background of original image (left) blurred by simultaneous selec-
tion/painting with Gaussian filter (right).

Figure 11: Recoloring using hue-shift effect painted onto parrot
(left). Brick texture being painted onto background (middle). More
believable background with brick texture simultaneously painted
and desaturated with stacked filters (right). See Figure 15 for origi-
nal bird image.
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Figure 12: In row-major order: original image [Size: 540x420],
tinted selection, chalk, fresco, craquelure, and plastic wrap effects
painted directly onto the pepper without separate selection. [2 to
3 clicks, 3 to 5 seconds]

Figure 13: CTRL-click at red “x” to mark target destination:
then intelligently clone from source starting at green “x”. Cloning
Dolly’s clone (top) [9 clicks, 20 seconds], 3 little-pigs, or 4, or 5, or
6, ... (bottom) [5 clicks, 10 seconds] (bottom-right).

Figure 14: Artistic distortion (ripple or wave filter) painted di-
rectly onto selection.

Figure 15: Images from user study Part 1 (top-left) and Part 2
(top-right) with samples of user-input and extracted objects from
Part 2 (middle), and images from Part 3 (bottom).
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