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Rendering Artistic Line Drawings
Using Off-the-Shelf 3-D Software
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Abstract

Most commercial 3-D software packages used for animated films and still picture production offer merely rudi-
mentary support for non-photorealistic rendering. However, nearly all of these packages possess interfaces which
allow the user to add custom shader programs. We present a solution which uses a custom shader combined with
post-processing software in order to draw outlines and creases of 3-D scenes in a way which simulates artistic
tools like pencils and ink brushes.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

Aside from artistic uses, pen-and-ink renderings of 3-D
scenes are often created to increase the comprehensibility of
illustrations and to reduce technical demands—for instance
in print or electronic media. However, the majority of com-
mercial 3-D software packages—neither low-range applica-
tions nor high-end studio solutions—do not include satisfy-
ing solutions for non-photorealistic renderings. Even pack-
ages which include cartoon-style renderers such as Hash An-
imation:Master and NewTek Lightwave 3D(R) produce only
simple outlines and flat-color fills. Software add-ons to other
applications rarely improve on this; most just manage to give
other 3-D software packages a basic level of pen-and-ink
rendering. There are very few exceptions from this rule, such
as the “Sketch Designer” of Curious Labs’ Poser(R) 4 and the
plug-in solution NPR1 Reyes(R) from Infografica.

Since virtually all 3-D software, commercial or not, al-
lows to define custom shaders, we developed a solution us-
ing a such a shader to deliver geometry data to a post-
processing application. This shader renders depth data and
direction of the normal vector into the picture. It can easily
be implemented for different 3-D software packages. Our
implementation prototype has been written for Maxon Cin-
ema 4D XL; it consists of merely 200 lines of Maxon’s
JavaTM-like scripting language C.O.F.F.E.E.

Most of the work is done by our post-processing software

Figure 1: The post-processing software “12point0”. The
graphical user interface is built with OpenGL(R) as well as
the GLUT and GLUI libraries.

(see figure1). In an attempt to avoid potential trademark con-
flicts, it has been named “12point0” for the atomic weight of
carbon, the main ingredient of pencil leads. This software re-
ceives single pictures or animated picture sequences which
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Figure 2: Data flow and intermediate products of the system.

have been rendered with help of the custom shader. This data
then undergoes four processing steps (see figure2):

1. extraction of object silhouettes and creases
2. fitting of Bézier curves to the extracted pixel sequences
3. rendering of silhouette and crease curves in artistic styles,

optionally with different styles for both types of curves,
e. g. creases thinner than the surrounding silhouettes

4. compositing the curves with a regular rendering done by
the 3-D software

The final composite is stored as a single image file or as a
sequence of image files. The Bézier curves, even though they
are an intermediate result, can be written to disk as well.
They are exported as EPS vector graphics file so that they
can serve as a starting point for usual illustration software.

Our prototype of the post-processing software is imple-
mented in ISO-standard C++ using OpenGL(R), linked to the
libraries GLUT and GLUI for the graphical user interface.
This should facilitate porting the software from its present
platform Microsoft(R) Windows(R) to other systems.

The next section outlines previous work done in this area:
section3 describes how the silhouettes and creases are ex-
tracted and approximated by curves; section4 contains de-
tails about artistic style rendering. In section5 we discuss
strengths and issues of the approach. Section6 closes with
ideas of how to improve the presented solution.

2. Previous Work

Saito and Takahashi20 demonstrate image-precision silhou-
ette generation by using depth data for every pixel, rendered
along with RGB data and stored in a “G”-buffer. They de-
tect creases by calculating second-order differences of depth.
Storing the surface parametersu,v and the direction of the
normal vector in the G-buffer, they can apply curved hatch-
ing to shade 3-D objects.

Winkenbach and Salesin24 convert a 3-D scene into a 2-D
mesh representation to construct object outlines. The paths
of outline and texture strokes (placed according to surface
parametrization) are, however, initially generated as 3-D ob-
jects. Gooch et al.8 propose several algorithms for silhou-
ette extraction, most prominently a hardware solution which
uses the OpenGL(R) stencil buffer, and a software solution
using a Gauss map, much like Benichou and Elber1. Another
OpenGL(R)-based solution for drawing silhouettes has been
put forward by Raskar and Cohen17. Recently, Raskar18 has
extended these ideas to treat creases, too.

Lake et al.11 present a real-time system which produces
flat cartoon colors or pencil sketches with rectilinear hatch-
ing textures. Their silhouette extraction detects which edges
belong to both a front- and to a back-facing polygon. Ap-
plying curvature-driven textures, they render these polygo-
nal lines as rounded curves. Hertzmann and Zorin9 compute
silhouettes of subdivision surfaces using dual surfaces and
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hatch them along smoothed versions of the principal curva-
ture directions. Rössl and Kobbelt19 also perform hatching
along these directions. However, they store the two princi-
pal curvature directions in a G-buffer, along with the normal
vectors they use to detect silhouettes. Deussen et al.4 apply
OpenGL(R) clipping to extract hatching lines with image pre-
cision by merely approximating the principal curvature di-
rections.

Northrup and Markosian’s12 randomized silhouette ex-
traction algorithm uses spatial and temporal coherence to
speed up the process. The found edges are connected to long
paths and drawn like the skeletal strokes of Hsu et al.10 With
the tree illustration system of Deussen and Strothotte6, styl-
ized lines are possible as well. They use image precision sil-
houette extraction with a 16 bit depth buffer to render trees.
The result is vectorized using the least square fitting method.
An object ID buffer can be applied to vectorize each primi-
tive separately.

One of the first realistic simulations of graphic tools is
Strassmann’s22 ink painting by moving a linear bristle brush
along cubic spline strokes. The bristles leave a trail of color,
spread according to pressure and eventually run out of ink
along the stroke. A detailed model of pencils and erasers,
along with illustration techniques, has been developed by
Sousa and Buchanan21. A physical fluid model forms the ba-
sis of the watercolor simulation developed by Curtis et al.2.
In another work, Curtis3 achieves sketchy illustrations by
rendering randomly dragged particles as line segments.

Several authors propose system architectures: Mohr and
Gleicher14 describe how to add stylized rendering capa-
bilities by catching and re-interpreting an application’s
OpenGL(R) calls. The design of the “Sketch” system by
Strothotte et al.23 separates the modeling work from the non-
photorealistic renderer.

3. Curve Extraction

The intention to support as many 3-D software packages
as possible naturally leads to an image-precision approach
where the geometry data is delivered via pixel-based image
files20. To use a geometry-based format like 3DS, as imple-
mented by e. g. Masuch et al.13, requires the off-the-shelf
3-D software to export such a file format without alteration
of the objects, their motion, and their deformation. However,
this condition is unlikely to be met. This is partly a conse-
quence of the complex modeling, texturing, and animation
tools provided by the software. Most such effects cannot eas-
ily be expressed in a common file format shared by different
packages.

For each pixel, our solution stores the depth (more pre-
cisely, the ray length) and the direction of the normal vector
of the underlying geometry. With this approach, there is no
need to evaluate the second derivatives of depth data, which
can be very inaccurate if the pixel resolution is not very high

in comparison to the sizes of the pictured objects. Instead,
we use differences of depth data only to detect silhouettes;
creases are found using differences of normal vectors. It also
helps to know the normal vector to distinguish silhouettes
from the steep depth variation which occurs in strongly fore-
shortened objects.

Normal vectors help with the extraction and are rather
easy to obtain: Typical 3-D software packages make them
readily available for custom shaders. Even a hardware-
accelerated solution could use them: State-of-the-art con-
sumer graphics cards allow the use of normal vectors to cal-
culate programmer-defined shaders.

Depth and normal vector data could be stored in additional
graphics buffers along with the usual RGB data produced by
the 3-D software package. However, to keep our solution as
flexible as possible, we have chosen the following alterna-
tive: The scene is rendered twice in the 3-D software pack-
age, once writing regular RGB data, the second time encod-
ing depth and normal vector data into 24 bit pseudo-RGB
with the help of a custom shader (see figure3).

Figure 3: The custom shader with its minimalist user inter-
face encodes the depth into the 16 bit provided by the red and
green picture channels; the direction of the normal vector is
encoded in the 8 bits of the blue channel.

The 16 bits of R and G are used for depth data, while
the 8 bits of B contain information about the normal vector.
To fully exhaust the 16 bits’ range for depth, the user can
adjust minimal and maximal depth in the custom shader. The
shader reports the actual minimal and maximal depth of the
scene to the user, but instead of using these values directly
it relies on manual input. This is useful e. g. for animations
where an object flies into seemingly infinite depths.

To encode the normal vector in eight bits, it is rounded to
the nearest of 253 fixed directions. These are distributed al-
most uniformly across the half sphere pointing at the viewer.
The resulting error is smaller than 8 angular degrees, which
means that creases above 16 angular degrees will still be de-
tected, which suffices for this application.
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The pixels with discontinuities in depth value and/or nor-
mal vector are collected and used as the starting point for the
determination of the objects’ silhouettes and creases. These
collections are subjected to a standard thinning algorithm.
The next processing step identifies curves formed by the re-
maining pixels. It makes use of the known depth data: The
depths of neighboring pixels on the same silhouette or crease
line cannot be too different.

In the last extraction step, the paths—up to this point col-
lections of pixels—are approximated by Bézier curves. This
not only results in a great reduction in data and allows EPS
export, but it is also the key feature to draw softly bowed
strokes instead of the exact polygonal shapes of the 3-D
scene. Fitting Bézier curves is a standard problem in com-
puter graphics15. However, for reasons of robustness and
speed we employ an new experimental algorithm which does
not work iteratively. This will be published separately.

4. Artistic Rendering

The Bézier curves generated for silhouettes and creases can
be drawn using a selection of simulated art tools. At the time
of writing, our software offers a simple pen, an ink brush, a
pencil, and sketchy-looking wiggly lines. These are all first
rendered into a finer grid (using up to 4×4 supersampling)
and then sampled down to the actual resolution, taking into
account the gamma value of a typical display. To draw lines
into the fine grid, circular disks are placed along the Bézier
curves. By considering the derivative vector of the curve, the
dot centers of the circular discs are placed approximately one
pixel apart on the finer grid. Since the width of the curve is
not necessarily constant along its length, this drawing pro-
cess cannot easily be sped up by an algorithm like Posch
and Fellner’s16.

Figure 4: The silhouettes have been rendered with a simu-
lated ink brush, the creases with a simple pen. The lines were
composited with a pastel colored rendering of the scene cre-
ated with the 3-D software package.

Figure 5: Silhouettes and creases have been rendered with
a pencil. Note how the spatial depth controls both pressure
and stroke width.

Figure 6: Silhouettes and creases have been rendered as
multiple wiggly lines. The wiggle deformations depend on
the screen position and are therefore consistent across im-
age sequences.

Most of our virtual art tools allow the depth data to influ-
ence the size of the dots, so that far-away objects are drawn
with thinner lines. The ink brush (see figure4) uses an ad-
justable number of dots of irregular but fixed sizes and po-
sitions drawn around the position on the curve. Similar to
Strassmann’s “Hairy Brushes”22, this creates the look of a
brush with several bunches of bristles clinging together. To
simulate the ink depletion along a brush stroke, the sizes of
the dots are diminished accordingly.

The pencil simulation (see figure5) can be viewed as a
much-simplified version of the model developed by Sousa
and Buchanan21. It uses a paper texture produced by lin-
early interpolated lattice noise added over two octaves (see
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e. g. Ebert et al.7). A pixel is set if the “pressure” exceeds the
local value of the paper texture. This pressure depends on
the depth—therefore distant objects are drawn in a lighter
style—and on the distance to the center line, brightening up
the edges of the stroke.

The “wiggly lines” (see figure6) produce a sketch-style
look by drawing a bundle of curves where each is distorted
slightly. These curves are rendered as described above. How-
ever, each dot is displaced by an pseudo-random offset vec-
tor. In order to produce smooth curves, this offset vector is
generated by lattice noise interpolated quadratically across
the image. Each curve of the bundle is deformed by a noise
of its own, to create differing distortions. The wiggling style
can by controlled through the noise’s grid size—visually, the
wavelength of the wiggles—and the noise’s influence on the
curves.

5. Discussion

Figures4, 5, and6 illustrate the performance of our solution
with a typical scene. These results show a clear improvement
over the cartoon rendering functionality of most of today’s
3-D software packages. By using the post-processing appli-
cation and only developing a small custom shader, this so-
lution can easily be adapted to other packages than our test
case, Maxon’s Cinema 4D XL. However, the user must de-
activate dithering and antialiasing when rendering with the
custom shader—otherwise the data hidden in pseudo-RGB
would be destroyed.

The resolution of 16 bits for the depth and 8 bits for the
normal vector proves to be sufficient for cartoon-like post-
processing. Photorealistic rendering and other soft shading
effects would need much higher precision. To fulfill the de-
mands of such applications, one could make use of the 48 bit
RGB output of some off-the-shelf 3-D software. Another op-
tion would be to render two differently encoded sets of 24 bit
RGB data in order to output 48 bits of data per pixel.

The silhouette detection is improved by taking the normal
vector into account. This helps to solve ambiguities when
3-D faces lie almost along a viewing line, causing a high
depth variation from pixel to pixel even though there is no
silhouette.

When objects are in close contact, our algorithm doesn’t
separate them using silhouette lines, but with crease lines in-
stead. This can be seen e. g. in the right foot of the puppet of
figure4. If such an effect is not intended, one could use the
same drawing tool for silhouettes and creases, thereby elim-
inating the difference. Another solution could be to store an
object ID for each pixel. Neighboring pixels with different
object IDs would then indicate a silhouette.

Even though the source code has been optimized for com-
prehensibility instead of speed, the post-processing time per
picture for the ink brush rendering of the test scene (640×

480 pixels) with 4×4 antialiasing amounts to 18 seconds on
a 500 MHz Pentium(R)-III PC. By storing and reusing inter-
mediate results, on a Gigahertz-class PC parameter changes
can be visualized almost interactively.

When processing image sequences, rendering variations
from frame to frame can cause the animation to look fid-
gety. This is a lesser problem for the pen, pencil, and wiggle
line drawing tools. The ink brush tool, however, is of limited
use for animation because the thick, inky end of a curve can
jump around an object or the brush stroke can even alter its
direction.

6. Summary and Future Work

We have demonstrated a solution to create artistically ren-
dered line-drawings which can easily be implemented as
an add-on for most 3-D software packages. Work is under-
way to adapt this software to different operating systems,
especially to Apple Mac OS X, and to different 3-D soft-
ware packages, starting with Alias|Wavefront(R) MayaTM and
NewTek Lightwave 3D(R).

It would be rewarding to spend further development work
on these extensions:

• Each object could be drawn with an individually styled
outline, e. g. by storing an object ID along with geometry
data in the G-buffer6.

• A custom shader could apply hatching19 or stippling5 to
the 3-D objects instead of soft, continuous shading.
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