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Abstract
We extend recent techniques for the automated capture of surface normal maps or bump maps from real-world
material samples. In contrast to recent systems, which have required cumbersome laboratory setups with careful
calibration, we propose a moving-camera system which requires only one light source, rigidly attached to the
camera. We describe a simple but accurate image-based calibration technique which allows the construction of an
approximation to the standard photometric stereo setup. We show how to optimally estimate the system geometry
during capture, and demonstrate that the accuracy of the new system is sufficient to allow normals to be computed.

Categories and Subject Descriptors(according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—modeling and recovery of physical attributes. I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—color, shading, shadowing, and texture.

1. Introduction

More and more, computer graphics depends on capture of
real-world data for the accurate rendering of real-world ob-
jects. Examples include laser scanning, lighting capture1 and
the subject of this paper—the recovery of material properties
expressed as BRDF samples2, 3, 4 or bump maps5, 6. However,
in many applications such capture is difficult because the re-
quired equipment is specialized, bulky, or must remain care-
fully calibrated and thus cannot be moved. This paper shows
how one such system can be redesigned using computer vi-
sion techniques to permit more flexible bump map capture
using readily available hardware.

Bump mappingis a generic term grouping techniques
which use 2D texture to apply 3D detail to a surface. The
core idea is that shapes and materials may be geometri-
cally approximated relatively coarsely (for example, by large
polygons in 3D), with 2D texel maps applying intricate sur-
face detail. Currently, most renderers using bump mapping
can be grouped into one of two categories:

• Displacement mapping: Here each texel specifies a
(signed) micro distance from the 3D object to which it is
applied. Renderers can store this information more com-
pactly and/or render it more quickly than is possible with
a dense polygon mesh.
• Normal mapping: Each texel defines the normal to the sur-

face of the object at that point, to be combined with the

direction of the general surface normal at that point to
give an overall local normal. Performing lighting calcu-
lations using this modified normal creates the impression
of surface texture or roughness without explicit geometric
modelling of surface detail.

Rendering of 3D objects with bump mapping can be a
computationally expensive operation—few modern graph-
ics pipelines can can directly support bump mapping within
hardware, which requires per-pixel lighting calculation
rather than traditional per-vertex operations. OpenGL itself
requires the use of language extensions to support per-pixel
shading, this combined with the computational load of multi-
pass software rendering has led to halfway houses, such as
‘light mapping’, where precomputed lighting effects are ap-
plied to objects statically, for given lighting conditions7.

Bump maps are traditionally generated procedurally, us-
ing strategies which are designed to emulate the generic be-
haviour of certain classes of surface variation. Modelling
from the real world can be achieved by obtaining high reso-
lution 2D surface detail from a physical object, but this is an
involved process. An alternative strategy, is to use the real
world as a source of models—sampling surface shape, or
more accurately, surface normal estimates by observing the
effect of lighting variation6, 8.
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Photometric stereo

By considering the standard Lambertian lighting model with
no ambient light, we observe that the normal to a surface at a
given location can be found by observation of the intensity of
the point on the image over different lighting conditions. By
recording the intensity of the image of the object illuminated
with a single light at three different known positions, solu-
tion of a system of linear equations yields the normal at that
point. BelowLo represents a constant—light intensity mul-
tiplied by lambertian reflectivity,l[1,2,3],[1,2,3] denotes three
sets of light directions,n[1,2,3] the normal vector, andi[1,2,3]
the observed intensities at the points on the surface up to
scaleα.

Lo

l1,1 l1,2 l1,3
l2,1 l2,2 l2,3
l3,1 l3,2 l3,3

n1
n2
n3

=

αi1
αi2
αi3


If relative light and object positions are known, and the cam-
era is fixed relative to the object, these equations are readily
solved. In the case where the Lambertian approximation is
poor, or shadowing must be accounted for, extensions to the
model allow accurate reconstruction of the surface normals.
Our goal in this paper is to satisfy the geometric conditions:
in testing we use only the simplest lighting model. Although
more complex models would be expected to provide more
accurate normals, the simple model is adequate to test our
geometry.

Existing techniques for bump map capture

A typical experimental set up, as exemplified by Rushmeier
et al6, uses a fixed camera and object with a set of identical
lights at known relative positions to the object to provide the
required illumination. Figure1 sketches such a setup. The
accuracy of this model is of course limited by the ability of
the Lambertian lighting model to predict actual lighting ef-
fects. Three common properties of physical objects which
can produce non-Lambertian conditions are specular high-
lights, reflection and self-shadowing. Highlights and shad-
ows are avoided by discarding particularly low or high in-
tensity values. For accurate results, images must be captured
under several lighting configurations, requiring a complex
rig with limited portability. Rushmeier et al use 5 lights, and
suggest that at least this number are required for accurate
capture. In their extension of the process to a moving rig9,
the rig retains 5 lights, rigidly attached to the camera, and is
still somewhat cumbersome.

Flexible bump map capture

We propose an alternative capture rig, requiring only a sin-
gle light and camera, which is moved relative to the sample
(or vice versa). Its limitation is that it requires that the sam-
ple to be analysed will be modelled as a single planar sur-
face. However, many samples of interest satisfy this approx-
imation, particularly as the intent of bump map capture is

Figure 1: A conventional rig for bump map capture. The
positions of the camera and several light sources must be
accurately calibrated, and the work area is limited in size.

to allow coarse planar approximations to be combined with
dense normal maps. Figure2 illustrates two equivalent em-
bodiments of such a system. For our experiments, we use a
fixed light and camera, with the sample being moved; but for
more flexible capture, rigidly attaching a light to the camera
would allow an extremely portable capture system. A sum-
mary of the system follows. The rest of the paper describes
these steps in more detail.

In operation, a (video) sequence of images of the object is
taken, with the relative position of the camera and light fixed.
Four calibration markers are placed on or near the sample,
and by application of computer vision techniques the relative
position of the light/camera rig is calculated, and an inverse
perspective transformation applied to re-render the image of
the object as fronto-parallel (see Figure3). The resulting im-
age sequence is analogous to the situation of a static camera
and object with several lights6. We observe that, in terms of
the relative geometry of the capture rig the two situations:
static object, moving rig; and static rig, moving object are
equivalent. Furthermore, the relative positions of camera and
light are fixed, so a single calibration step suffices for capture
of a large number of light-direction samples.

2. Details

The following subsections detail the design and construc-
tion of a prototype of our system. We divide the discussion
into two parts. In the first, we do not refer to light source
position, and describe only the recovery of camera position
relative to the object’s markers. This will allow us, in §2.3,
to describe an easy technique for calibrating the relative po-
sition of the camera and light source. The guiding principle
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Figure 2: Two equivalent single-light-and-camera rigs. The rig on the left has fixed camera and light, with the sample moving
on a planar backplate. On the right, the light is attached to the camera, and the combined light/camera rig is moved. In this
case, the light is shown on an extension to ensure sufficient baseline between its centre and the optical centre.

.

Figure 3: Inverse perspective mapping. The markers placed
on the sample are tracked from frame to frame, and the ob-
ject re-rendered to appear fronto-parallel. The resulting im-
ages approximate the appearance of a fixed object with mov-
ing light source, so photometric stereo may be applied to
compute normals.

of these steps is that any measurements or construction re-
quired of the user should be as insensitive to human error
as possible. For example, we assume it is straightforward to
accurately place markers on a measured rectangle, but not
to measure the distance from the light source centre to the
(poorly defined) optical centre of the camera. For concrete-
ness we shall describe the system from the point of view of
figure2a, with a fixed camera and light, and moving sample
on a planar backing plate.

2.1. Estimating camera position

Reference to figure3 will reveal four high-contrast mark-
ers placed on the sample’s planar backing plate. The posi-
tions of these markers is assumed known (although assuming
them approximately known is an easy extension). This sec-
tion describes how the camera-to-sample transformation is
computed, which in combination with the calibration infor-
mation of the next section, gives the sample-to-light vector.

Several techniques are possible for the recovery of camera
position from known 3D points, and the book by Hartley
and Zisserman10 provides a review. We use the technique of
Simon et al11, which is fast and accurate for coplanar mark-
ers.

We may temporarily choose world coordinates in the sam-
ple’s plane coordinate system, which we arbitrarily define
to be thexy plane. Denote the four marker positions in that
plane byp1..4 wherepi = (pi ,qi ,0,1)> is the representation
in homogeneous coordinates. We note also that we may write
these as homogeneous 2D points in the plane by omitting the
third component, givinḡpi = (pi ,qi ,1)>.

We are given a video sequence of images of the object
in various positions, and observe the 2D image coordinates
x̄1..4 of the projections of the 3D points. The camera position
is defined by the 3×4 projection matrix

P = K [R | t]

whereR is a 3×3 rotation matrix, andt is the translation of
the camera. The matrixK represents the internal calibration
parameters of the camera:

K =

 f s u0
0 a f v0
0 0 1

 { f is focal length;
(u0,v0) is principal point;
a is aspect ratio;s is skew

We assume thatK is approximately known—for the DV cam-
corder used in our experiments, it was sufficient to guess a
focal length of 1000, and assume square pixels (a= 1,s= 0),
with principal point at the image centre. We will need to
work with the columns ofR, which we denote byr1..3, so
R = [r1 | r2 | r3].

Observing the action ofP on the markersp1..4, we may
write

x̄i = K [r1r2r3t]


pi
qi
0
1

 .
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Noting that the third column ofP is always multiplied by the
(zero)z coordinate ofp, the transformation becomes a 2D
homography

x̄i = K [r1 r2 t] p̄i

= Hp̄i

Where the 3×3 matrixH parametrizes the homography. Effi-
cient linear methods exist10 to computeH from the four point
correspondences̄xi ↔ p̄i .

On computingH, the remaining column ofR is then com-
puted as follows. In the absence of noise, the matrixM =
K−1H has columns[r1 r2 t] so r3 may be computed as the
cross productr1× r2. In practice, due to inaccuracies in
the measurements of the image positionsxi , the columns
of M, now denoted[m1 m2 m3] will not satisfy the or-
thonormality constraints on the columns of a rotation ma-
trix: ‖m1‖ = ‖m2‖ = 1 andm1 ·m2 = 0. A more accurate
estimate of the rotation may be obtained by first truncatingM

to the special form where these constraints are satisfied. Fig-
ure4 illustrates the process, i.e. construction of an orthonor-
mal basis set from a pair of 3D directions. As the homogra-
phy is defined only up to scale (as it is a mapping between
projective spaces), the matrix may be assumed scaled so that
(‖m1‖+‖m2‖) = 2. Then the following steps yield a matrix
which satisfies the appropriate constraints.

1. Normalizem1, m2 i.e.mi = mi/‖mi‖.
2. r3 = m1×m2. Normalizer3.
3. tmpa = m1 + m2. Normalizetmpa.
4. tmpb = r3× tmpa. Normalizetmpb.
5. Setr1 = tmpb + tmpa. Normalizer1.
6. Setr2 = tmpb− tmpa. Normalizer2.

Assembling the columnsr1,2,3 into R completes the process.

2.2. Nonlinear refinement of reprojection error

The preceding paragraphs describe the estimation of cam-
era position from measured 2D point positions, and pro-
vide reliable solutions via closed-form (or provably con-
vergent) algorithms such as eigenvalue computation or the
singular value decomposition12. However, the estimates can
be significantly improved at small computational cost by a
maximum likelihood estimation of the parameters10. This is
a process of nonlinear minimization of the forward model
which generates the 2D point tracks. This process optimizes
the error in the system not by least-squares approximations
of matrices as above, but at its source, namely the image
plane. The free parameters of the system are the six param-
eters of camera pose, and one for focal length. Given the
known marker positions and image points, written~xi in non-
homogeneous coordinates, the objective function to be min-
imized is

ε(R, t, f ) =
4

∑
i=1
‖~xi −π(K [R t]pi)‖2

Figure 4: Constructing an orthonormal basis.Given a pair
of 3D directions(M1,M2), the closest orthonormal pair
(R1,R2) and their cross product R3 are computed.

Where the projection functionπ([x,y,z]>) = (x/z,y/z).
Parametrization of the rotationR avoids the singularites of
Euler angles or equivalent three-parameter forms by using
a quaternion. The gauge freedom introduced by this over-
parametrization is handled via a publically available im-
plementation of the Levenberg-Marquardt algorithm13. This
minimization of thereprojection errordirectly reduces the
image-plane difference between the projected 3D points and
their associated 2D markers, computing the optimal trans-
formation in terms of registering the images.

Typical performance is exemplified by the images in fig-
ure3, where the RMS distance of markers to the reprojected
points is typically around 25 pixels before the nonlinear op-
timization, reducing to around 5 in total afterwards.

2.3. Estimating light position

The system as described to this point covers the estima-
tion of camera position andrectificationof the image into
an approximation to the fronto-parallel view. The remain-
ing task is to compute the position of the light source for
each rectified image, which is the focus of this section. The
primary constraint on light source position is that the rel-
ative positions of light source and camera are fixed during
the acquisition—only the relative position of the light and
camera system changes. Therefore, if we know the position
of the light source in camera coordinates before acquisition,
we can transform this position to sample coordinates to ob-
tain a light-source direction for each of the registered fronto-
parallel views.

Given accurate measuring equipment, and accurate
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Figure 5: Calibration of light-source positions. Green crosses show the detected points, red the reprojections from the model.
The model is estimated by minimizing the reprojection error of all five points in all images simultaneously.

knowledge of the 3D position of the effective optical centre
of the camera, it would be possible to physically measure the
light’s position in camera coordinates. However, such mea-
surements are inconvenient, time-consuming to obtain, and
extremely difficult to do accurately. Fortunately a more ac-
curate solution can be obtained with less effort by adopting
an image-based calibration procedure. By placing a mirror
on the sample backing plate, the plate can be moved in front
of the camera so that the reflection of the light source is visi-
ble. Figure5 shows several images of this procedure. In each
image, the position of (the reflection of) the light source is
manually specified using the mouse.

From one such image, the relative position of the sample
plane and the camera coordinate system can be computed as
described in §2.1, and it is a matter of straightforward geom-
etry to go from the 2D coordinates of the image of the light
centre to determine the 3D line (in camera coordinates) on
which the light source must lie. From two such images, two
such 3D lines are obtained, in camera coordinates, both of
which include the light source—Figure6 shows a typical ar-
rangement. In exact geometry, the intersection of these lines
provides the light-source position, and calibration is com-
plete. We observe that the calibration remains valid as long
as the parameters of the light-camera system (most impor-
tantly their relative position) remains constant. This means
that calibration can be carried out ‘off-line’ for portable cap-
ture rigs, such as the second system in Figure2.

Figure 6: Geometry of calibration of light position. At least
two mirror positions are required to calculate the light po-
sition. Note that in this picture, we consider the camera and
light to be fixed while the mirror moves. The two mirrors in-
dicate mirror position at two different times. Combining the
information at more than two mirror positions allows a more
accurate least-squares estimate to be obtained.

c© The Eurographics Association 2002.



Paterson and Fitzgibbon / Flexible bump map capture

In practice, of course, the lines are not accurately com-
puted, due to inaccuracies in the localization of the backing
plane corners and the manual indication of the light-source
centre. By using more than the minimum of two images, a
least-squares estimate14 of the intersection point can be com-
puted, which will improve accuracy. However, the estimate
will be biased unless the errors in the 3D lines are accurately
modelled. The optimal estimate is obtained10 using an exten-
sion of the nonlinear estimator described in §2.2.

SupposeV views are available. The parameters of the
system are:V camera positions(Ri , t i)

V
i=1, the camera focal

length f , and the light positionL . These parameters deter-
mine the light position with optimal camera transformations.
Let~x[k]i be the image ofpi in thekth image. The reflection
of the light through thexyplane may be writted as a constant
transformation matrixF premultiplyingL , and the 2D image
coordinates of the center of the light in imagek are denoted
~x[k]5. The objective function to be minimised is then:

ε(R1 . . .RV , t1 . . . tV , f ,L) =
V

∑
k=1

εk

whereεk, the error in imagek, is

εk =

(
4

∑
i=1
‖~x[k]i −π(K [Rk tk]p[k]i)‖

2︸ ︷︷ ︸
Reprojection error of pointi in view k

)
+

+ ‖~x[k]5−π(K [Rk tk]FL)‖2︸ ︷︷ ︸
Reprojection error of light in viewk

This minimization has the effect of optimally distributing
the 2D localization error of the 3D components. The 3D rays
are guaranteed to intersect, as they all emerge from the light
sourceL . This means thatad hocschemes for 3D error prop-
agation are not needed.

To demonstrate the accuracy of light position estimation,
V = 6 different images of the mirror were used. Figure5 is
used to demonstrate the effectiveness of the non-linear op-
timisation. In each calibration image, green crosses indicate
~x[k]i , and red crossesπ(K [R t]p[k]i). Again the reduction in
average reprojection error is from 7 pixels at the initial esti-
mate to around 1 to 2 pixels at convergence. Execution time
for the calibration stage is a few seconds on a modern desk-
top PC.

2.4. Tracking the markers

Whilst digital still cameras offer much better resolution than
a DV camcorder, one major advantage of video over stills is
that it is easy to capture large quantities of frames in very
little time. By automating the detection of the position of
the high-contrast markers in each sample image, we can eas-
ily capture data for hundreds of camera positions. A simple
‘brute force’ search for the marker points has proved rel-
atively effective so far. This works by storing the images

and positions of the markers in the first image (the posi-
tions of the markers having been manually defined for the
first frame). The search then examines each possible loca-
tion for the markers in the following images and the loca-
tions which give minimal root-sum-squared pixel difference
from the new image are returned. The computational over-
head of this method can be large, and is reduced by limiting
the search to within a specfied radius of pixels from the po-
sition of the center of the marker in the previous image. One
possible improvement to this method is to use an adaptive
search, i.e. to update the stored images of the markers after
finding them in the new image.

2.5. The capture process

Our experimental setup followed the first arrangement sug-
gested in figure2, i.e. a static light and camera with moving
sample. Equipment comprised a Canon DV camcorder, tri-
pod, a standard office angle-poise lamp, along with a roughly
140mm by 110mm rectangular sample. A handle was at-
tached to the back of the sample so it could be manipulated
within the camera view manually.

Calibration was carried out under room lighting. For cap-
ture, we needed the capture sequence of the sample to be as
close to zero ambient light as possible, so only the desk lamp
illuminated the scene.

Identification of the corners of the mirror in the image is
facilitated by the having the observed size of the mirror in
the image as large as possible. A reasonably sized mirror
proved rather ungainly to manipulate, and so instead a small
much lighter mirror was attached to the reverse of a larger
plastic case.

Once the light position relative to the cameraL and focal
length f has been computed, the system is calibrated. We are
now able to calculate the direction of the light for any point
Q on the object, given the camera position. (We observe that
Q will be of the formQ = (x,y,0,1)>):

Direction=
[
R t
0 1

]−1

L −Q

Figure 7 shows the set of inverse perspective mappings
from Figure3, overlaying a 2D projection of the calculated
direction to the light from the center point of the sample.

The final stage is to collate the inverse perspective map-
pings and use them to create normals as described in §1. The
density of the field is in real terms limited by the resolu-
tion of the camera—the quality of the reconstructed fronto-
parallel view is reduced as the angle between the object and
the camera increases. Even so, Figure3 shows that a rea-
sonably good re-rendering is possible despite fairly severe
foreshortening in the image.

For the purposes of demonstration, a 20 by 18 grid of nor-
mals was constructed from 3 images of the sample. These
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Figure 7: Calculated light direction.The light direction, projected into the fronto-parallel view, is superimposed on the rectified
images. This is the input to a photometric stereo algorithm which recovers surface normals. Comparing the light source direction
to the shadow directions indicates that the direction is qualitatively well estimated.

Figure 8: Calculated normal map.Computed surface normals are superimposed onto the five captured images of the sample
used to generate the map. Because of the deviation from Lambertian imaging conditions, there is a systematic error in the
normals, but their local consistency gives us confidence that flexible capture is as accurate as traditional, laboratory-bound
systems.

were then overlaid on the input sample image for inspection.
As noted by Rushmeier et al6, highlights and shadowing
mean that some of the calculated intensity values must be re-
jected, leaving some positions on the object with fewer than
the required three values for normal computation. Inclusion
of additional images of the sample provides the necessary
data—a topic for further investigation is how to optimise the
choice of which fronto-paralllel views are used in the nor-
mal calculation. Even a short captured sequence will contain
many hundreds of images—we would intend to maximise
the range of object orientations used during the computation
of the surface normals, whilst avoiding images containing
extremely large object-camera angles due to the suspected
loss in re-rendering quality. Typical processing time on a
desktop PC is around 5 seconds per image, leading to a total
time of approximately 2 hours for a 60 second sequence.

3. Conclusions

We see in Figure8 a set of well formed calculated nor-
mals, with a generally smooth continuity of direction over
the board. A more effective way to examine the results is
to re-render the sample as a normal mapped quadrilateral,
which can be observed in Figure9. Examination of these im-
ages reveals a relatively good representation of the sample—
the sample has been successfully approximately as discussed

in §1. As with all bump mapping techniques, secondary sur-
face effects such as self-shadowing are not modelled. This
characteristic is shared by our computed bump maps—the
rendered surface is less convincing at acute angles to the
camera, such in as the second image in Figure9.

Although non-Lambertian effects on the surface mean
there is a systematic error in normal direction at the ex-
tremities, we are confident that this error is common to
both fully calibrated6 and flexible bump map capture. Ongo-
ing work includes the implementation of more sophisticated
techniques to estimate the normal map in order to accurately
quantify the system’s efficacy.

An interesting extension is to the case where the marker
positions on the planar surface are known only approxi-
mately. This might happen if only archive footage is avail-
able, and four arbitrary high-contrast points are tracked.
Then approximate world coordinates for the markers can be
guessed, but must be refined in order to obtain an accurate
normal map. Given enough images, we can in fact include
the positions of the markers in the nonlinear optimization,
noting thatp1 andp2 may be arbitrarily assigned the origin
andx-axis direction, but the remaining pair must be added to
the parametrization of the error functionε.

This paper has shown that recent systems for bump map
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Figure 9: Rendered normal map.By applying the Lambertian lighting model (computing the angle between the light and
surface normal for each texel in the normal map) we can render the normal map and overlay it in the corresponding image
in the input sequence. Red pixels indicate there was insufficient data to compute a normal at that point, showing the need for
greater than 5 input images.

capture using calibrated light sources and static cameras
may be made more flexible by allowing the movement of
a light/camera rig, if the surface to be sampled is of low cur-
vature. We have introduced a novel technique for calibration
of such a rig and demonstrated the computation of surface
normals from the system’s output. We expect that future en-
hancements will allow the extension of the system to highly
curved samples.
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