
Short Presentation short32

Page 1

SAVANT: A new efficient approach to generating the visual hull
Alex Lyons, Adam Baumberg and Aaron Kotcheff

Canon Research Centre Europe Ltd, The Braccans, London Road, Bracknell, Berkshire, UK

Abstract
We present a new approach to generating a boundary representation (a polygonal mesh) of the visual hull
from a set of silhouettes of an object taken from known camera positions. The approach uses spatial
subdivision to compute the positions of vertices and then traverses the vertices around planar faces to
produce a facetted representation of the visual hull. We show that, unlike standard approaches, the method
is practical even for a large number of complex silhouettes. It is applicable to any 3D modeling system that
uses the “shape-from-silhouette” approach to generating 3D models of objects. The approach can also be
extended to efficiently compute polygonal mesh representations of the intersection of a set of arbitrary
polyhedral models. This extends its applicability to CAD systems.

Keywords: Solid Modeling, Computational Geometry, Polygonal Modeling, Mesh Generation, Geometric
Modeling, Computer Vision, CAD.

1. Introduction

Many 3D modeling systems use the “shape from silhouette”
approach to computing the shape of an object from a set of
images taken from known positions (e.g. Niem1, Matusik et
al2). The approach uses the “visual hull” approximation to
the shape, which is the maximum volume that reproduces
all the silhouettes of an object3,4. A good approximation to
the visual hull can be obtained by intersecting the
back-projection of a finite set of silhouette images.
Alternative approaches, such as those using stereo5 or voxel
coloring6 rely on matching feature correspondences or on
photo-consistency across images. However, the silhouettes
can be easily obtained in controlled environments (e.g. with
a chroma keying technique7). The shape from silhouette
approach is therefore capable of producing robust results in
a wide-baseline system, where obtaining feature
correspondences is difficult, and incorporates information
from multiple images in a natural way. In addition, 3D
modeling systems are often required to produce a boundary
representation of the shape, that is a representation of the
boundary as a polygonal mesh, rather than a volumetric
representation, in order to efficiently render the model using
standard graphics hardware. This can be easily obtained
using the shape from silhouette approach. There are two
commonly used approaches to generating a mesh
representation of the visual hull: volumetric sampling and
direct intersection.

The volumetric sampling approach typically uses a voxel
grid surrounding the object to produce a “voxel carve”8,9.
The voxels are often stored in an octree structure to speed

Figure 1: Drawbacks of the volumetric sampling
approach. Top: Example image. Left: Mesh produced by
sampling approach. Right: Mesh produced by direct
intersection. Bottom: Close-up of long thin structure for
the two approaches highlighting the aliasing problem
for the volumetric sampling approach.

http://www.eg.org
http://diglib.eg.org

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32

Page 2

up calculations. Nodes in the octree are projected into the
silhouette images to determine if they are fully inside or
outside the visual hull. In this way a volumetric
representation of the visual hull is generated. The
volumetric representation is then converted to a boundary
representation using the Marching Cubes algorithm (or
some variant of it)10 or simply smoothing the mesh obtained
from the visible node faces. Approaches based on voxel
carving have the problem that, due to the use of a regular
grid, there are often severe alias artifacts at sharp features
on the extracted surface (see Figure 1). Recent advances
have attempted to overcome these limitations by
incorporating a feature detection step that attempts to treat
sharp edges and corners separately (see Kobbelt et al11).
This solution works as long as the object has obvious sharp
edge features. However for models obtained from real
images it is not always easy to determine the correct
threshold for detection of sharp edges and corners. An
additional problem with volumetric sampling methods is
that they tend to generate models containing an excessive
number of faces and vertices. These methods can be very
slow when run on a high-resolution grid. They can lead to a
large memory requirement and do not efficiently represent
the surface in low curvature regions. To avoid this, the
model can be post-processed using a mesh optimization
algorithm (eg Hoppe et al12). However this can produce
additional artifacts and is inefficient in low curvature parts
of the surface.

Direct intersection avoids these problems by directly
generating a polygonal mesh representation of the visual
hull without using a regular grid (see Loehlein13, Matusik et
al14). This is generated by first approximating each
silhouette by a polygon (e.g. using Eu and Toussaint15) and
then back-projecting each polygonal silhouette to form a set
of “polygon cones”. The polygon cones are then intersected
in a pairwise fashion. This generates the visual hull
incrementally. At each step the current polyhedral
approximation of the visual hull is intersected with the next
polygon cone to obtain a new approximation.

However, we will show that existing direct intersection
methods are often too time consuming for a large number of
complex silhouettes. This is because the complexity of
adding a new silhouette increases with each silhouette
added. We have therefore recognised that it is desirable to
generate the visual hull using an efficient batch method
rather than generating it incrementally. The new approach
presented in this paper achieves this by using a spatial
subdivision method to directly generate the visual hull from
a set of silhouettes of an object taken from known camera
positions, taking into account all of the polygon cones
simultaneously. We call the approach SAVANT (Silhouette
Approximation, Vertex ANalysis and Triangulation). This
paper compares the SAVANT algorithm with a standard
volumetric sampling approach and with the pairwise

intersection approach. SAVANT is shown to be practical
even when there are a large number of complex silhouettes.
It is applicable to any 3D modeling system that uses shape
from silhouettes to generate 3D models of objects. We will
also show how the SAVANT algorithm can be extended to
efficiently compute boundary representations of the
intersection of a set of general polyhedral models. This
extends the applicability of the algorithm to CAD systems.

2. Previous Work

2.1 Background

The discussion that follows will consider previous work
that provides the context for the SAVANT algorithm.
Algorithms for directly generating the visual hull require a
set of silhouette images of an object from known camera
positions (with known camera parameters). These are
approximated by polygons using a standard polygon
approximation algorithm (e.g. Eu and Toussaint15). The
polygon cones are then intersected to generate a mesh
representation of the visual hull. The situation is shown in
Figure 2 for the simplest case of two silhouette images.

In the case illustrated in Figure 2 the calculation of the
visual hull is extremely simple. All of the vertices of the
visual hull are obtained by intersecting one of the rays
formed by back projecting a polygon vertex in one image
with one of the infinite triangles formed by back-projecting
a polygon edge in the other image. Therefore by testing for
intersections of rays from one of the cameras with infinite
triangles from the other camera, all of the vertices can be
found. The polygonal faces can then be traversed using a
boundary traversal algorithm (e.g. Szilvasi-Nagy16).

2.2 Intersection of two polyhedra

Szilvasi-Nagy16 describes an algorithm for determining the

R S1

S2

C1
C2

V

v

Figure 2: Intersection of two polygon cones. The
polygonal boundary of the visual hull is shown in bold
face. The ray R, formed by back-projecting a polygon
vertex v in camera C1 intersects with the infinite
triangle formed by the rays S1 and S2 in camera C2 to
produce the vertex V.

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32

Page 3

boundary representation of the intersection of two
polyhedra using a “plane sweep” approach. The vertices of
the intersection (where a face from one of the polyhedra is
intersected by an edge from the other one, or where one of
the polyhedra has vertices inside the other) are extracted
from the projections of the polyhedra into 2 planes. Labels
for the 3 faces are stored for each vertex. This information
is then used to polygonize the surface of the region of
intersection. Further details are explained in Section 2.3.

The approach of Szilvasi-Nagy16 does not generalize
easily to a batch method using more than 2 polyhedra.
However, Srinivasan et al17 developed a plane sweeping
algorithm for computing the intersection of multiple
polygon cones, using a contour representation, rather than a
boundary representation.

2.3 Boundary traversal

Once the vertices of the intersection of two polyhedra have
been found, the boundaries of the polygon faces of the
intersection polyhedron can then be traversed by labeling
the vertices according to triples of faces from the original
polyhedra16. Szilvasi-Nagy carried this out for only two
polyhedra, but we can generalize the approach for the
vertices of the visual hull formed from the intersection of an
arbitrary number of polygon cones. In this approach, every
polygon silhouette edge is given a unique ID. These IDs are
used to label faces in the visual hull. Triples of plane IDs
are used to label visual hull vertices. Pairs of plane IDs are
used to label visual hull edges. The polygon faces are then
obtained by using the labels to traverse the edges around
each face in order. For example, if the visual hull planes are
labeled A,B,C,…, and we are traversing the polygon face
associated with plane A, then after connecting vertex
{A,B,C} to {A,B,D}, along the {A,B} edge, the next vertex
must lie on the {A,D} edge, i.e. it must be {A,X,D} for
some new plane X. The new plane is found, suppose it is F,
then the next vertex must lie on the {A,F} edge, and so on.
This continues, until we return to the starting vertex
{A,B,C}. This traversal connects the vertices into sets of
polygon faces i.e. it generates a boundary representation of
the visual hull. There are some special cases as there is
sometimes an ambiguity that needs to be resolved. Further
details of this polygon traversal algorithm are contained in
Szilvasi-Nagy16. Note that for this traversal algorithm to
succeed there must be no coincidental meeting of more than
3 planes at a single vertex. However, this is not restrictive in
practice, as we can add a small amount of random noise to
the input data to ensure that this is always the case, without
noticeably affecting the visualization of the final result.

2.4 Incremental visual hull

The direct calculation of the boundary representation of the
visual hull can be generalized to an incremental approach
for more than two silhouette images, (see Loehlein13,

Matusik et al14). We summarize the idea, and improve on
their approaches, below.

A typical incremental visual hull algorithm starts with a
polyhedron containing the object, for example, the
polyhedron defined by intersecting the first two polygon
cones. This polyhedron is intersected with the next cone to
produce a new polyhedron. This polyhedron is then
intersected with the polygon cone from the next silhouette
image and so on. In this way the intersection of a
polyhedron with a cone can be reduced to a 2D polygon
intersection problem. The reduction is achieved by
projecting the polyhedron into the view from which the next
silhouette image was taken.

Loehlein’s original treatment13 is complicated by the fact
that his method involves wiring up the polygon faces in 2D
and then filling in the gaps in the surface. Matusik et al14
use an edge-bin data structure, and the subsequent
calculation of the visual hull faces produces a mesh that
contains multiple vertices and may contain T-junctions. We
have found that a simpler approach is to find all the vertices
in the intersection of the polyhedron and the polygon cone,
then use triples of faces to label them, and finally traverse
the polygon faces using the triples of IDs, in the manner of
Szilvasi-Nagy16 (described in Section 2.3). This is
guaranteed to produce a mesh without T-junctions and is
considerably simpler than other approaches13,14.

All the vertices in the intersection of the polyhedron and
the polygon cone arise from one of the following 3 cases,
which may all be reduced to 2D calculations:

1. Vertices from the original polyhedron that are inside the
new polygon cone. To find these in 2D, test whether the
projection of the vertex lies inside the new polygon.

2. Intersections of edges of the original polyhedron with
planes from the new polygon cone. These are found in
2D by intersecting the projection of the polyhedron edge
with an edge of the new polygon.

3. Intersections of edges from the new polygon cone with
faces from the original polyhedron. These are found in
2D by carrying out point-in-polygon tests of vertices of
the new polygon against the polygons formed by
projecting the faces of the original polyhedron.

Figure 3 shows each of the 3 types of vertex, labeled by
their type, for the case of the intersection of a cube and a
four-sided cone.

For each vertex that has been found, the labels of the 3
planes meeting at the vertex are recorded and the 3D
position of the vertex is calculated. Once all the vertices
have been found, the boundaries of the polygon faces can
then be traversed by using the IDs of the planes, as

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32

Page 4

described in section 2.3. This generates a new polyhedron
that may be intersected with further polygon cones in
exactly the same way, until all of the polygon cones have
been incorporated.

Finally, once all the polygon cones have been
incorporated into the model, the faces of the final
polyhedron can be triangulated, if required (e.g. using
Seidel18), and the faces can be texture mapped using image
data from the original images, (e.g. in a similar way to
Niem1).

3. SAVANT: Batch Visual Hull

We have found that the incremental calculation of the visual
hull is often too time consuming for a large number of
complex silhouettes. This is because the complexity of
adding a new silhouette increases as the number of faces
and vertices of the current polyhedral approximation of the
visual hull increases. In addition the method involves
computing a large number of intermediate vertices that may
be later discarded by intersecting the polyhedron with the
new polygon cone. We recognize that it is therefore
desirable to generate the visual hull using an efficient batch
method, which takes into account all the polygon cones
simultaneously.

A basic “brute force” batch method proceeds by
“generate-and-test” as follows. We note that every vertex in
the final model can only arise from the intersection of 3 of
the polygon cone faces, and that the intersection must lie
inside all the polygon cones. Therefore we can generate the
complete set of candidate vertices by back-projecting triples
of polygon edges, and only keep the candidate vertices
whose projection is inside the silhouette in all of the
images.

However this method is extremely computationally
expensive: if the total number of polygon edges is n, and

the total number of images is m, this approach would
require O(mn3) point-in-polygon tests. Clearly this
“generate-and-test” approach quickly becomes impractical
as n and m become large.

The SAVANT algorithm efficiently finds all of the
vertices of the visual hull simultaneously, by combining a
bottom-up generate-and-test search with a top-down spatial
subdivision to prune the search. The bottom-up search
consists of generating and testing candidate vertices, which
are formed from triples of polygon cone faces. The
top-down pruning consists of projecting 3D regions into the
images and eliminating any regions that project to a 2D
region that is completely outside any of the silhouettes.

The search for the vertices of the visual hull therefore
proceeds by starting with a large initial volume enclosing
the visual hull. For simplicity, this may be specified by a set
of cubes. Each cube is then processed by either subdividing
it, discarding it, or enumerating the vertices within it, on the
basis of the projections of the cube into the silhouette
images. The subdivided cubes are then processed in the
same way and the calculation continues until the entire
initial region has been processed. The advantage of
proceeding in this way is that large regions can be discarded
without further calculation, therefore avoiding the
combinatory explosion of brute force calculation. Further
implementation details are discussed in Sections 4 and 5.

Once the vertices of the visual hull have been obtained,
the boundary of the polygonal faces of the visual hull can
be traversed, by using the IDs of the planes, as has already
been described in section 2.3.

3.1 Summary

To summarize, SAVANT is a new algorithm for efficiently
computing the boundary representation of the visual hull.
The steps in the SAVANT algorithm are as follows:

1. Approximate the silhouettes with polygons and give
each polygon edge a unique ID.

2. Calculate the vertices of the visual hull and label them
with triples of IDs.

3. Generate the polygon faces of the visual hull.

The SAVANT algorithm makes step (2) efficient by
searching for the vertices of the visual hull using a
combination of a bottom-up search with a top-down spatial
subdivision to prune the search. This makes the algorithm
for batch visual hull computation practical, even for a large
number of complex silhouette images.

The next section describes the steps involved in
calculating the vertices of the visual hull in more detail.

Figure 3: Intersection of a cube and a four-sided cone.
The projected polyhedron is shown (solid line) and the
new polygon is shown (dashed line) in the new image.
Each of the 3 types of vertex is labeled by their type: (1)
vertices from the original polyhedron that are inside the
new polygon cone; (2) intersections of edges of the
original polyhedron with planes from the new polygon
cone; (3) intersections of edges from the new polygon
cone with faces from the original polyhedron.

1

1

2

2
2
2

3

2

2

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32

Page 5

4. Calculating the vertices

4.1 Finding the initial volume

An initial volume needs to be defined which encloses the
visual hull. Since SAVANT uses projections of 3D regions
into the images to infer information about what is contained
within the region, the initial volume needs to lie completely
in front of all of the camera optical centers.

One way to define the initial volume is to define it as the
union of a set of cubes. First a very large cube is found
which encloses the object, but which may not lie
completely in front of all the cameras. This initial cube is
placed on a stack.

Cubes are taken from the stack and processed as follows:

- If the cube lies behind any camera or the cube is
smaller than some predetermined size, it is
discarded;

- else, if the cube is in front of all the cameras, it is
added to the initial volume;

- else the cube is subdivided and its children are
placed on the stack.

This continues until the stack is empty. In this way the
initial volume is defined, consisting of the union of a set of
cubes, and is guaranteed to lie entirely in front of all the
cameras and to be the largest such region up to the tolerance
given by the minimum cube size.

4.2 Processing cubes

The region being processed consists of a set of cubes that
can be processed in any order. It is therefore convenient, as
in the calculation of the initial volume, to place the cubes in
a stack-like structure. A cube is taken from the stack and is
then either subdivided, discarded, or the vertices within it
are calculated, on the basis of the projections of the cube
into the silhouette images. If a cube is subdivided its
children are placed onto the stack. The calculation
terminates when there are no more cubes on the stack.

In the simplest version of the algorithm we carry on
subdividing cubes until there is at most one candidate
vertex in the cube. To determine whether there is a
candidate vertex in the cube we note that each vertex arises
from the intersection of 3 of the polygon cone faces and it
must lie within all of the other polygon cones. We therefore
count the total number of polygon cone faces that intersect
the cube. This can be done by projecting the cube into all of
the images and counting the total number of polygon edges
that intersect with the projections of the cube.

There is one candidate vertex if both the following
conditions hold:

1

2

c

n
p
th
te
w
v
la
c

e
ru

d
a
o
e
in
th
c
to
h
c

…

Image 2 Image 3 All the other images Image 1

…

Case A: vertex from 2 images

Case B: vertex from 3 images

Image 2 Image 3 All the other images Image 1
Figure 4: Candidate vertex from 2 or 3 images. The
projected cube in each image is shown as a solid line
and the polygon edges are shown as a dashed line.

. There are exactly 3 polygon edges that intersect with
the projection of the cube, involving edges in at least
2 images.

. There are no images in which the projection of the
cube is completely outside the silhouette.

The two cases for condition (1) that need to be
onsidered are shown schematically in Figure 4.

Before a candidate vertex can be accepted, the algorithm
eeds to calculate whether the back-projections of the 3
olygon edges intersect, and if they do intersect, whether
e intersection point is within the cube. This is the only 3D
st that needs to be done. If the intersection point lies
ithin the cube then we have found a true vertex of the
isual hull. The vertex is stored (i.e. its position and the
bels of the 3 polygon edges which generated it) and the

ube is then discarded.

Cubes that do not contain a single candidate vertex are
ither subdivided or discarded according to the following
le:

Any cube that has less than 3 planes intersecting it is
iscarded, as it cannot contain a vertex of the visual hull. In
ddition, any cube whose projection in any of the images is
utside the silhouette is also discarded, as it must then lie
ntirely outside the visual hull. Also, if the projected cube
tersects with polygon edges only in a single image then
e cube is discarded, as the intersection of the polygon

one faces would be at the optical center, which is assumed
 be outside the initial region. If none of these conditions

olds, the cube is subdivided. In its simplest version, the
ube subdivision produces 8 child cubes, which are placed

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32
on the stack. The calculation continues until the stack is
empty.

The SAVANT algorithm for calculating the vertices of
the visual hull cubes may be summarized by the following
pseudo-code:

the polygon edges in a quad tree. Many of the
intersection tests can be avoided by first carrying out a
“conservative test” for collisions of the bounding box
of the projection of the cube against this quad tree. If
the conservative test shows that there is no collision,
then the cube cannot intersect the polygon edge and so
there is no need to carry out the full intersection test19.

3. We have found that it is more efficient for the
algorithm to stop subdividing cubes before the number
of candidate vertices drops to a single candidate. We
stop subdividing and start exhaustively generating
candidate vertices when the total number of
intersections between the projected cube and the
polygon edges drops below some suitable threshold, n.
When this occurs we enumerate all the triples of
polygon edges that intersect the projections of the cube
in two or three images. For each triple we generate the
candidate vertex and test whether its position is inside
the cube. We then output a list of vertices within the
cube rather than a single vertex. Our experiments have
shown that, for our implementation, a suitable value for
n is 15.

4. Many unnecessary calculations can be avoided by early
termination of the tests. For instance as soon as the
algorithm has found a silhouette image in which the
projection of the cube lies entirely outside the
silhouette, then the cube can be discarded without
Define initial region enclosing visual hull
Push cubes in initial region onto stack
While stack not empty
{
Pop cube from stack
Project cube into silhouette images
If one of the 2 cases in Figure 4 holds
{
There is a candidate vertex
Generate position P of candidate vertex
If P is in the cube
{

Store verified vertex position and labels
}
Discard cube

}
Else if (there are less than 3 planes intersecting the cube

OR the cube projects outside one of the silhouettes
OR cube intersects silhouette in exactly one image)

{
There are no candidate vertices in the cube
Discard cube

}
Else
{
Subdivide cube
Push children onto stack

}
}

Page 6

Figure 5: Pseudo-code for SAVANT vertex calculation.

5. Implementation

We have implemented a number of extensions to the basic
algorithm that speed it up considerably. These are
described below.

1. In the simple version described above the cube is
projected into all the silhouette images. However this is
unnecessary, as the projection of a parent cube provides
information about its descendants. In particular, we can
reduce the number of times cubes need to be projected
into images by realizing that, if the projection of a cube
is entirely within a silhouette then the projection of all
its children will also lie within that silhouette.
Therefore that silhouette image no longer needs to be
tested for that cube or any of its descendants. We can
therefore exploit this by storing a list of “active
images” with each cube. The children of the cube
inherit this list. Initially every image is on the active
image list, but if a cube projects to a region entirely
within a silhouette then that image is removed from
that cube’s active image list.

2. There are potentially a large number of intersection
tests between polygon edges and the projections of a
cube into the images. These intersection tests can be
sped up considerably by storing the bounding boxes of

further calculation. Also, during the enumeration of the
intersections between the projections of the cube and
the silhouette boundaries, as soon as the number of
intersections becomes greater than the threshold, n, the
cube can be subdivided without further processing of
that cube.

6. Extensions

The SAVANT approach is not restricted to computations of
the intersection of a set of polygon cones. It can be
generalized to calculate the intersection of a set of general
polyhedral models. This extends the applicability of the
SAVANT to CAD modeling systems, in which boundary
representations of unions and intersections of polyhedral
models can be computed. The key difference from the
polygon cone case is that there is no longer a set of
silhouette images to project the cubes into. Instead all the
calculations are carried out in 3D. We give every face of
every polyhedron a unique ID. Then the algorithm proceeds
by building an octree to store the faces of the polyhedra.
The tests as to whether to discard, subdivide, or generate
candidate vertices at a node in the octree are carried out
while the octree is being built. We calculate the number of
faces in the octree node and only subdivide if there are
more than 3 faces and the cube representing the node is
inside all the remaining polyhedra. If there are exactly 3
faces we generate the intersection point and test that it is

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32

Page 7

within the cube representing the node and within all the
remaining polyhedra. If it is we add the vertex to the list
and label it with the triple of IDs of faces that intersect there.
Once the vertices have been found, the boundary of the
intersection polyhedron can be traversed, using the labels of
the vertices, as described in Section 2.3.

All the extensions described in Section 5 to speed up the
algorithm (except extension (2)) can also be implemented in
the generalization of SAVANT to the intersection of a set of
polyhedra. To generalize extension (1), the “active image”
list is replaced by an “active polyhedron” list, which is
stored at each node. If a cube is entirely within a
polyhedron, then the polyhedron is removed from the
“active polyhedron” list for that node and all of its
descendents. Extension (3) also generalizes: we can stop
subdividing a node when the number of faces in the node
drops below a threshold, n, and then generate and test a list
of candidate vertices in that node, rather than a single one.
Extension (4) also generalizes: as soon as the node is found
to be completely outside a polyhedron then the node can be
discarded, without further calculation, and during the
enumeration of the intersections between the node and the
polyhedra, as soon as the number of intersections becomes
greater than n, the node can be subdivided without further
processing.

7. Results

7.1 Comparison with incremental method

We carried out tests comparing the runtime performance of
the SAVANT visual hull algorithm with the incremental
visual hull algorithm described in Section 2 on both real
and synthetic image sequences. We observed how the
performance depends on the complexity of the model and
on the number of images in the sequence. All timings were
obtained using a 650MHz Pentium III PC with 128MB
memory.

The tests used automatically segmented silhouettes from
images taken using a conventional digital camera. Figure 6
shows typical examples of the data sets used and the
meshes obtained (rendered with smooth shading). These are
the raw results from direct intersection so the meshes are
quite irregular and the shading algorithm shows up a few
artifacts in the meshes. The meshes can be made more
regular if required using a mesh fairing algorithm, such as
described by Taubin20.

 A table comparing the timings for the two algorithms
for each of these examples is shown in Figure 7. The table
shows the number of images, the total number of edges in
all the input polygon silhouettes, the triangle count of the
final model and timings for the incremental algorithm and
the SAVANT algorithm for each example. For a very simple
example, such as the Duck, the two algorithms perform

simil
than
betw

triang
the
incre
mode
the S
algor

W
as a
imag
of th
appro
show
imag
posit

 Duck Helmet Fan
Number of images 15 31 88
Input polygon edge
count

1666 7656 28412

Output model triangle
count

6188 23956 15028

Incremental
algorithm timing (sec)

16.1 519 921

SAVANT algorithm
timing (sec)

15.8 102 282

Figure 6: Example data sets. Top: original images.
Bottom: Meshes produced by direct intersection (smooth
shaded).
Figure 7: Timing comparisons between SAVANT and
incremental algorithm for real data sets.
arly. The other two examples, which are more complex
the Duck example, show that SAVANT performs

een 3-5 times faster than the incremental algorithm.

For the most complex model (in terms of output
le count) the Helmet, the SAVANT algorithm exhibits
greatest improvement in performance over the
mental algorithm. We have found that generally, as the
l complexity increases, so does the advantage of using
AVANT algorithm, compared with the incremental

ithm.

e then compared the behaviour of the two algorithms
function of model complexity, keeping the number of
es in the sequence fixed while varying the complexity
e final model by varying the threshold used to
ximate the input silhouettes with polygons. Figure 8
s the results for a synthetically generated set of 30
es of a sphere, with randomly located camera
ions.

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32

Page 8

The comparisons with the incremental algorithm show
that, while the incremental algorithm is acceptable for
silhouettes of low complexity, as the complexity of the
silhouette images increases, the runtime of the incremental
algorithm increases substantially more rapidly than the
SAVANT algorithm.

Further results were generated using real data. The graph
in Figure 9 shows similar behaviour to Figure 8, but for a
more complex real model, in this case the Helmet data set,
not simply a synthetic sphere model. This shows that, in
contrast to the incremental algorithm, whose performance
depends on the complexity of all the intermediate polyhedra
generated during the processing, the complexity of
SAVANT is roughly linear with the complexity of the final
model, as measured by the number of triangles. This shows
that the greater the complexity of the model, the greater is
the performance improvement of SAVANT over the
incremental algorithm.

Finally we compared the performance of the two
algorithms as a function of the number of images in the
sequence. The results are shown in Figure 10, for the
synthetically generated sphere data set.

 The behavior of the incremental algorithm can be
explained as follows. As the number of images increases,
the complexity of the model also increases. Therefore the
runtime of the incremental algorithm is actually worse than
linear in the number of images, as the later images have a
more complex mesh to intersect and this dominates the
runtime behavior. In contrast, the runtime of the SAVANT
algorithm is roughly linear in the complexity of the final
model. This explains why the SAVANT performance
improvement is greater as the number of input images
increases.

7.2 Comparison with volumetric sampling approaches

There are two commonly used volumetric sampling
approaches to generating a boundary representation of the
visual hull. The first approach typically uses a voxel grid
surrounding the object to produce a “voxel carve”8, 9. The
voxels are often stored in an octree structure to speed up
calculations. Nodes in the octree are projected into the
silhouette images to determine whether they are fully inside
or outside the visual hull. In this way a volumetric
representation of the visual hull is generated. The
volumetric representation is then converted to a boundary
representation using the Marching Cubes algorithm (or
some variant of it)10 or simply by smoothing the mesh
obtained from the visible node faces. The second approach,
which is similar, avoids the full octree, and should be more
accurate for a given cube size. This uses the fact that the
“inside” function, determining whether a point lies inside
the visual hull, is defined continuously everywhere in space,
not just on a voxel grid. Therefore, the Marching Cubes
algorithm can be used to find a boundary representation of
the zero crossings of this function, without first calculating
the full volumetric representation of the visual hull. When a
cube is found which has an edge along which the “inside”
function changes, then the intersection of the zero crossing

Number of
triangles in final
model

Incremental
algorithm timing
(seconds)

SAVANT
algorithm timing
(seconds)

5996 18 33
13804 86 53
26364 291 76

Figure 8: Dependence on complexity of model with
number of images fixed (synthetically generated
sphere data set).

Figure 9: Dependence on complexity of model with
number of images fixed (Helmet data set).

0

100

200

300

400

500

600

0 10000 20000 30000 40000

number of triangles in final model

pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

) Incremental algorithm
SAVANT algorithm

0
200
400
600
800

1000
1200
1400
1600

0 10 20 30
number of images

pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

) Incremental algorithm
SAVANT algorithm

Figure 10: Dependence of SAVANT and incremental
algorithm on number of images in sequence
(synthetically generated sphere data set).

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32

Page 9

surface with that edge can be found by binary intersection.
These intersection points are then used as the vertices of the
triangulation produced by Marching Cubes.

We compared the quality of the results obtained from the
SAVANT algorithm with those obtained from the second of
these sampling approaches. A typical image used and the
meshes produced by the two algorithms (shown as
wireframes) are shown in Figure 1.

The results clearly show the problems associated with
sampling approaches. Firstly, there is an aliasing problem,
which means that in order to approximate the long thin
structure to the same degree of accuracy as SAVANT, the
sampling approach requires an extremely small grid size.
This is not alleviated by intersecting the zero crossing
surface with the edges of the cubes, as the positions of the
vertices are still quantized in the other two directions and so
the method suffers the same aliasing problem as the voxel
carving approach. The SAVANT algorithm is able to
approximate the long thin structure much more efficiently
because it directly uses the polygonal approximation of the
silhouette images. Secondly, the use of a small grid size
produces an excessive number of triangles in the final
model. This can be very slow, leads to a large memory
requirement, and requires the use of a mesh optimization
algorithm.

In conclusion, the volumetric sampling approach
produces more triangles but the result is less accurate than a
direct intersection approach, such as SAVANT.

8. Conclusions

We have developed an algorithm for directly computing a
boundary representation (a polygonal mesh) of the visual
hull from a set of silhouette images. This avoids the aliasing
problems associated with methods based on a volumetric
sampling, such as those using Marching Cubes. There do
exist direct incremental methods for generating the visual
hull that avoid the aliasing artifacts associated with
sampling-based methods, but these are slow for complex
models. The advantage of SAVANT over these is that ALL
the cones are intersected simultaneously, giving a
significant efficiency gain over incremental approaches,
particularly when dealing with a large number of complex
silhouettes.

The key to the success of the SAVANT algorithm is that
it combines a bottom-up generate-and-test search for the
vertices of the visual hull with a top-down spatial
subdivision to prune the search. This is ultimately what
makes batch computation of the visual hull practical.

Several extensions of SAVANT have been described and
implemented. In these, information about the projections of
regions into silhouette images is cached, quad trees are used

to speed up the intersection tests and there is control over
the point at which the algorithm stops subdividing regions
and starts generating candidate vertices.

We have also described how the SAVANT approach of
combining bottom-up generate-and-test with top-down
region pruning can be extended to calculations of the
intersection of a set of polyhedra, rather than just the visual
hull. This extends its applicability to CAD systems.

In conclusion our new SAVANT algorithm has been
shown to provide a more efficient and practical method than
standard approaches for computing the visual hull from a
set of silhouette images and for computing polyhedron
intersections. SAVANT gives more accurate results than
volumetric sampling methods and is faster than other direct
methods with no loss of accuracy.

Acknowledgements
The work was supported by Canon Europa NV and Canon
Inc. The authors would like to thank Simon Rowe for some
helpful discussions at the beginning of this work and for
useful comments during the drafting of this paper. Special
thanks go to James Stevenson of the Victoria and Albert
museum for providing the Helmet data.

References
1. Niem, W., Automatic Reconstruction of 3D Objects

using a mobile camera, Image and Vision Computing
(17) 1999, 125-134.

2. Matusik, W., Buehler, C., Raskar, R., Gortler, S. J.,
McMillan, L., Image based visual hulls, ACM
SIGGRAPH Computer Graphics, Annual Conference
Series, 2000, 369-374.

3. Laurentini, A. "The Visual Hull Concept for Silhouette
Based Image Understanding." IEEE PAMI 16,2 (1994),
150-162.

4. Vaillant, R. and Faugeras, O. D., Using extremal
boundaries for 3D object modelling, IEEE PAMI 14,2
(1992), 157-173.

5. Okutomi, M. and Kanade, T., A Multiple-Baseline
Stereo. IEEE Trans. On Pattern Analysis and Machine
Intelligence volume 15 no.4, April 1993, 353-363.

6. Seitz, S. M. and Dyer, C., Photorealistic Scene
Reconstruction by Voxel Coloring, CVPR 97,
1067-1073.

7. Smith, A. R. and Blinn, J. F., Blue Screen Matting,
ACM SIGGRAPH Computer Graphics, Annual
Conference Series, 1996, 259-268.

8. Potmesil, M., Generating octree models of 3D objects
from their silhouettes in a sequence of images,
Computer Vision, Graphics and Image Processing 40
(1987), 1-29.

Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32

Page 10

9. Szeliski, R., Rapid octree construction from image
sequences, CVGIP: Image Understanding, Vol 58, No 1,
1993, 23-32.

10. Lorensen, W. E., Cline H. E., Marching cubes: A high
resolution 3D surface construction algorithm, ACM
SIGGRAPH Computer Graphics, Annual Conference
Series, 1987, 163-169.

11. Kobbelt, L. P., Botsch, M., Schwanecke, U., Seidel,
H-P, Feature sensitive surface extraction from volume
data, ACM SIGGRAPH Computer Graphics, Annual
Conference Series, 2001, 57-66.

12. Hoppe H., DeRose T., Duchamp, T., McDonald, J., and
Stuetzle, W., Mesh Optimization, ACM SIGGRAPH
Computer Graphics, Annual Conference Series, 1993,
19-26.

13. Loehlein, M., A Volumetric Intersection Algorithm for
3d-Reconstruction Using a Boundary-Representation,
http://i31www.ira.uka.de/diplomarbeiten/da_martin_loe
hlein/Reconstruction.html

14. Matusik, W., Buehler, C. and McMillan, L., Polyhedral
Visual Hulls for Real-Time Rendering, Proceedings of
the 12th Eurographics Workshop on Rendering,
London, England, June 2001, 115-125.

15. Eu, D., and Toussaint, G. T., On Approximating
Polygonal Curves in Two and Three Dimensions,
CVGIP: Graphical Models and Image Processing, Vol.
56, No. 3, 1994, 231-246.

16. Szilvasi-Nagy, M., An algorithm for Determining the
Intersection of Two Polyhedra, Computer Graphics
Forum 3 (1984), 219-225.

17. Srinivasan, P., Liang, P., and Hackwood, S,
Computational Geometric Methods in Volumetric
Intersection for 3D Reconstruction, Pattern
Recognition, Vol. 23, No. 8, 1990, 843-857.

18. Seidel, R., A simple and fast incremental randomized
algorithm for computing trapezoidal decompositions
and for triangulating polygons. Computational
Geometry: Theory and Applications, 1(1), 1991, 51-64.

19. Greene, N., Detecting Intersection of a Rectangular
Solid and a Convex Polyhedron, Graphics Gems IV
edited by Paul Heckbert, Academic Press, 1994, 74-82.

20. Taubin, G., A signal processing approach to fair surface
design, ACM SIGGRAPH Computer Graphics, Annual
Conference Series, 1995, 351-358.

