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Abstract 
We present a new approach to generating a boundary representation (a polygonal mesh) of the visual hull 
from a set of silhouettes of an object taken from known camera positions. The approach uses spatial 
subdivision to compute the positions of vertices and then traverses the vertices around planar faces to 
produce a facetted representation of the visual hull. We show that, unlike standard approaches, the method 
is practical even for a large number of complex silhouettes. It is applicable to any 3D modeling system that 
uses the “shape-from-silhouette” approach to generating 3D models of objects. The approach can also be 
extended to efficiently compute polygonal mesh representations of the intersection of a set of arbitrary 
polyhedral models. This extends its applicability to CAD systems.  

Keywords: Solid Modeling, Computational Geometry, Polygonal Modeling, Mesh Generation, Geometric 
Modeling, Computer Vision, CAD. 

1. Introduction 

Many 3D modeling systems use the “shape from silhouette” 
approach to computing the shape of an object from a set of 
images taken from known positions (e.g. Niem1, Matusik et 
al2). The approach uses the “visual hull” approximation to 
the shape, which is the maximum volume that reproduces 
all the silhouettes of an object3,4. A good approximation to 
the visual hull can be obtained by intersecting the 
back-projection of a finite set of silhouette images. 
Alternative approaches, such as those using stereo5 or voxel 
coloring6 rely on matching feature correspondences or on 
photo-consistency across images. However, the silhouettes 
can be easily obtained in controlled environments (e.g. with 
a chroma keying technique7). The shape from silhouette 
approach is therefore capable of producing robust results in 
a wide-baseline system, where obtaining feature 
correspondences is difficult, and incorporates information 
from multiple images in a natural way. In addition, 3D 
modeling systems are often required to produce a boundary 
representation of the shape, that is a representation of the 
boundary as a polygonal mesh, rather than a volumetric 
representation, in order to efficiently render the model using 
standard graphics hardware. This can be easily obtained 
using the shape from silhouette approach. There are two 
commonly used approaches to generating a mesh 
representation of the visual hull: volumetric sampling and 
direct intersection.  

The volumetric sampling approach typically uses a voxel 
grid surrounding the object to produce a “voxel carve”8,9. 
The voxels are often stored in an octree structure to speed 

  
Figure 1: Drawbacks of the volumetric sampling 
approach. Top: Example image. Left: Mesh produced by 
sampling approach. Right: Mesh produced by direct 
intersection. Bottom: Close-up of long thin structure for 
the two approaches highlighting the aliasing problem 
for the volumetric sampling approach. 
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up calculations. Nodes in the octree are projected into the 
silhouette images to determine if they are fully inside or 
outside the visual hull. In this way a volumetric 
representation of the visual hull is generated. The 
volumetric representation is then converted to a boundary 
representation using the Marching Cubes algorithm (or 
some variant of it)10 or simply smoothing the mesh obtained 
from the visible node faces. Approaches based on voxel 
carving have the problem that, due to the use of a regular 
grid, there are often severe alias artifacts at sharp features 
on the extracted surface (see Figure 1). Recent advances 
have attempted to overcome these limitations by 
incorporating a feature detection step that attempts to treat 
sharp edges and corners separately (see Kobbelt et al11). 
This solution works as long as the object has obvious sharp 
edge features. However for models obtained from real 
images it is not always easy to determine the correct 
threshold for detection of sharp edges and corners. An 
additional problem with volumetric sampling methods is 
that they tend to generate models containing an excessive 
number of faces and vertices. These methods can be very 
slow when run on a high-resolution grid. They can lead to a 
large memory requirement and do not efficiently represent 
the surface in low curvature regions. To avoid this, the 
model can be post-processed using a mesh optimization 
algorithm (eg Hoppe et al12). However this can produce 
additional artifacts and is inefficient in low curvature parts 
of the surface. 

Direct intersection avoids these problems by directly 
generating a polygonal mesh representation of the visual 
hull without using a regular grid (see Loehlein13, Matusik et 
al14). This is generated by first approximating each 
silhouette by a polygon (e.g. using Eu and Toussaint15) and 
then back-projecting each polygonal silhouette to form a set 
of “polygon cones”. The polygon cones are then intersected 
in a pairwise fashion. This generates the visual hull 
incrementally. At each step the current polyhedral 
approximation of the visual hull is intersected with the next 
polygon cone to obtain a new approximation.  

However, we will show that existing direct intersection 
methods are often too time consuming for a large number of 
complex silhouettes. This is because the complexity of 
adding a new silhouette increases with each silhouette 
added. We have therefore recognised that it is desirable to 
generate the visual hull using an efficient batch method 
rather than generating it incrementally. The new approach 
presented in this paper achieves this by using a spatial 
subdivision method to directly generate the visual hull from 
a set of silhouettes of an object taken from known camera 
positions, taking into account all of the polygon cones 
simultaneously. We call the approach SAVANT (Silhouette 
Approximation, Vertex ANalysis and Triangulation). This 
paper compares the SAVANT algorithm with a standard 
volumetric sampling approach and with the pairwise 

intersection approach. SAVANT is shown to be practical 
even when there are a large number of complex silhouettes. 
It is applicable to any 3D modeling system that uses shape 
from silhouettes to generate 3D models of objects. We will 
also show how the SAVANT algorithm can be extended to 
efficiently compute boundary representations of the 
intersection of a set of general polyhedral models. This 
extends the applicability of the algorithm to CAD systems. 

2. Previous Work 

2.1 Background 

The discussion that follows will consider previous work 
that provides the context for the SAVANT algorithm. 
Algorithms for directly generating the visual hull require a 
set of silhouette images of an object from known camera 
positions (with known camera parameters). These are 
approximated by polygons using a standard polygon 
approximation algorithm (e.g. Eu and Toussaint15). The 
polygon cones are then intersected to generate a mesh 
representation of the visual hull. The situation is shown in 
Figure 2 for the simplest case of two silhouette images.  

In the case illustrated in Figure 2 the calculation of the 
visual hull is extremely simple. All of the vertices of the 
visual hull are obtained by intersecting one of the rays 
formed by back projecting a polygon vertex in one image 
with one of the infinite triangles formed by back-projecting 
a polygon edge in the other image. Therefore by testing for 
intersections of rays from one of the cameras with infinite 
triangles from the other camera, all of the vertices can be 
found. The polygonal faces can then be traversed using a 
boundary traversal algorithm (e.g. Szilvasi-Nagy16). 

2.2 Intersection of two polyhedra 

Szilvasi-Nagy16 describes an algorithm for determining the 
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Figure 2: Intersection of two polygon cones. The 
polygonal boundary of the visual hull is shown in bold 
face. The ray R, formed by back-projecting a polygon 
vertex v in camera C1 intersects with the infinite 
triangle formed by the rays S1 and S2 in camera C2 to 
produce the vertex V. 
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boundary representation of the intersection of two 
polyhedra using a “plane sweep” approach. The vertices of 
the intersection (where a face from one of the polyhedra is 
intersected by an edge from the other one, or where one of 
the polyhedra has vertices inside the other) are extracted 
from the projections of the polyhedra into 2 planes. Labels 
for the 3 faces are stored for each vertex. This information 
is then used to polygonize the surface of the region of 
intersection. Further details are explained in Section 2.3. 

The approach of Szilvasi-Nagy16 does not generalize 
easily to a batch method using more than 2 polyhedra. 
However, Srinivasan et al17 developed a plane sweeping 
algorithm for computing the intersection of multiple 
polygon cones, using a contour representation, rather than a 
boundary representation. 

2.3 Boundary traversal 

Once the vertices of the intersection of two polyhedra have 
been found, the boundaries of the polygon faces of the 
intersection polyhedron can then be traversed by labeling 
the vertices according to triples of faces from the original 
polyhedra16.  Szilvasi-Nagy carried this out for only two 
polyhedra, but we can generalize the approach for the 
vertices of the visual hull formed from the intersection of an 
arbitrary number of polygon cones. In this approach, every 
polygon silhouette edge is given a unique ID. These IDs are 
used to label faces in the visual hull. Triples of plane IDs 
are used to label visual hull vertices. Pairs of plane IDs are 
used to label visual hull edges. The polygon faces are then 
obtained by using the labels to traverse the edges around 
each face in order. For example, if the visual hull planes are 
labeled A,B,C,…, and we are traversing the polygon face 
associated with plane A, then after connecting vertex 
{A,B,C} to {A,B,D}, along the {A,B} edge, the next vertex 
must lie on the {A,D} edge, i.e. it must be {A,X,D} for 
some new plane X. The new plane is found, suppose it is F, 
then the next vertex must lie on the {A,F} edge, and so on. 
This continues, until we return to the starting vertex 
{A,B,C}. This traversal connects the vertices into sets of 
polygon faces i.e. it generates a boundary representation of 
the visual hull. There are some special cases as there is 
sometimes an ambiguity that needs to be resolved. Further 
details of this polygon traversal algorithm are contained in 
Szilvasi-Nagy16. Note that for this traversal algorithm to 
succeed there must be no coincidental meeting of more than 
3 planes at a single vertex. However, this is not restrictive in 
practice, as we can add a small amount of random noise to 
the input data to ensure that this is always the case, without 
noticeably affecting the visualization of the final result. 

2.4 Incremental visual hull 

The direct calculation of the boundary representation of the 
visual hull can be generalized to an incremental approach 
for more than two silhouette images, (see Loehlein13, 

Matusik et al14). We summarize the idea, and improve on 
their approaches, below. 

A typical incremental visual hull algorithm starts with a 
polyhedron containing the object, for example, the 
polyhedron defined by intersecting the first two polygon 
cones. This polyhedron is intersected with the next cone to 
produce a new polyhedron. This polyhedron is then 
intersected with the polygon cone from the next silhouette 
image and so on. In this way the intersection of a 
polyhedron with a cone can be reduced to a 2D polygon 
intersection problem. The reduction is achieved by 
projecting the polyhedron into the view from which the next 
silhouette image was taken.  

Loehlein’s original treatment13 is complicated by the fact 
that his method involves wiring up the polygon faces in 2D 
and then filling in the gaps in the surface. Matusik et al14 
use an edge-bin data structure, and the subsequent 
calculation of the visual hull faces produces a mesh that 
contains multiple vertices and may contain T-junctions. We 
have found that a simpler approach is to find all the vertices 
in the intersection of the polyhedron and the polygon cone, 
then use triples of faces to label them, and finally traverse 
the polygon faces using the triples of IDs, in the manner of 
Szilvasi-Nagy16 (described in Section 2.3). This is 
guaranteed to produce a mesh without T-junctions and is 
considerably simpler than other approaches13,14. 

All the vertices in the intersection of the polyhedron and 
the polygon cone arise from one of the following 3 cases, 
which may all be reduced to 2D calculations: 

1. Vertices from the original polyhedron that are inside the 
new polygon cone. To find these in 2D, test whether the 
projection of the vertex lies inside the new polygon. 

2. Intersections of edges of the original polyhedron with 
planes from the new polygon cone. These are found in 
2D by intersecting the projection of the polyhedron edge 
with an edge of the new polygon. 

3. Intersections of edges from the new polygon cone with 
faces from the original polyhedron. These are found in 
2D by carrying out point-in-polygon tests of vertices of 
the new polygon against the polygons formed by 
projecting the faces of the original polyhedron. 

Figure 3 shows each of the 3 types of vertex, labeled by 
their type, for the case of the intersection of a cube and a 
four-sided cone.  

For each vertex that has been found, the labels of the 3 
planes meeting at the vertex are recorded and the 3D 
position of the vertex is calculated. Once all the vertices 
have been found, the boundaries of the polygon faces can 
then be traversed by using the IDs of the planes, as 
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described in section 2.3. This generates a new polyhedron 
that may be intersected with further polygon cones in 
exactly the same way, until all of the polygon cones have 
been incorporated. 

Finally, once all the polygon cones have been 
incorporated into the model, the faces of the final 
polyhedron can be triangulated, if required (e.g. using 
Seidel18), and the faces can be texture mapped using image 
data from the original images, (e.g. in a similar way to 
Niem1). 

3. SAVANT: Batch Visual Hull 

We have found that the incremental calculation of the visual 
hull is often too time consuming for a large number of 
complex silhouettes. This is because the complexity of 
adding a new silhouette increases as the number of faces 
and vertices of the current polyhedral approximation of the 
visual hull increases. In addition the method involves 
computing a large number of intermediate vertices that may 
be later discarded by intersecting the polyhedron with the 
new polygon cone. We recognize that it is therefore 
desirable to generate the visual hull using an efficient batch 
method, which takes into account all the polygon cones 
simultaneously.  

A basic “brute force” batch method proceeds by 
“generate-and-test” as follows. We note that every vertex in 
the final model can only arise from the intersection of 3 of 
the polygon cone faces, and that the intersection must lie 
inside all the polygon cones. Therefore we can generate the 
complete set of candidate vertices by back-projecting triples 
of polygon edges, and only keep the candidate vertices 
whose projection is inside the silhouette in all of the 
images.  

However this method is extremely computationally 
expensive: if the total number of polygon edges is n, and 

the total number of images is m, this approach would 
require O(mn3) point-in-polygon tests. Clearly this 
“generate-and-test” approach quickly becomes impractical 
as n and m become large.  

The SAVANT algorithm efficiently finds all of the 
vertices of the visual hull simultaneously, by combining a 
bottom-up generate-and-test search with a top-down spatial 
subdivision to prune the search. The bottom-up search 
consists of generating and testing candidate vertices, which 
are formed from triples of polygon cone faces. The 
top-down pruning consists of projecting 3D regions into the 
images and eliminating any regions that project to a 2D 
region that is completely outside any of the silhouettes. 

The search for the vertices of the visual hull therefore 
proceeds by starting with a large initial volume enclosing 
the visual hull. For simplicity, this may be specified by a set 
of cubes. Each cube is then processed by either subdividing 
it, discarding it, or enumerating the vertices within it, on the 
basis of the projections of the cube into the silhouette 
images. The subdivided cubes are then processed in the 
same way and the calculation continues until the entire 
initial region has been processed. The advantage of 
proceeding in this way is that large regions can be discarded 
without further calculation, therefore avoiding the 
combinatory explosion of brute force calculation. Further 
implementation details are discussed in Sections 4 and 5. 

Once the vertices of the visual hull have been obtained, 
the boundary of the polygonal faces of the visual hull can 
be traversed, by using the IDs of the planes, as has already 
been described in section 2.3. 

3.1 Summary 

To summarize, SAVANT is a new algorithm for efficiently 
computing the boundary representation of the visual hull. 
The steps in the SAVANT algorithm are as follows: 

1. Approximate the silhouettes with polygons and give 
each polygon edge a unique ID. 

2. Calculate the vertices of the visual hull and label them 
with triples of IDs. 

3. Generate the polygon faces of the visual hull. 

The SAVANT algorithm makes step (2) efficient by 
searching for the vertices of the visual hull using a 
combination of a bottom-up search with a top-down spatial 
subdivision to prune the search. This makes the algorithm 
for batch visual hull computation practical, even for a large 
number of complex silhouette images. 

The next section describes the steps involved in 
calculating the vertices of the visual hull in more detail. 

Figure 3: Intersection of a cube and a four-sided cone. 
The projected polyhedron is shown (solid line) and the 
new polygon is shown (dashed line) in the new image.
Each of the 3 types of vertex is labeled by their type: (1) 
vertices from the original polyhedron that are inside the 
new polygon cone; (2) intersections of edges of the 
original polyhedron with planes from the new polygon 
cone; (3) intersections of edges from the new polygon 
cone with faces from the original polyhedron. 

  
1 
  

1   

2 

2   
2 
2 

3 

2 

2 



Lyons, Baumberg and Kotcheff / SAVANT – Short presentation short32 

Page 5

4. Calculating the vertices 

4.1 Finding the initial volume 

An initial volume needs to be defined which encloses the 
visual hull. Since SAVANT uses projections of 3D regions 
into the images to infer information about what is contained 
within the region, the initial volume needs to lie completely 
in front of all of the camera optical centers. 

One way to define the initial volume is to define it as the 
union of a set of cubes. First a very large cube is found 
which encloses the object, but which may not lie 
completely in front of all the cameras. This initial cube is 
placed on a stack. 

Cubes are taken from the stack and processed as follows: 

- If the cube lies behind any camera or the cube is 
smaller than some predetermined size, it is 
discarded; 

- else, if the cube is in front of all the cameras, it is 
added to the initial volume; 

- else the cube is subdivided and its children are 
placed on the stack. 

This continues until the stack is empty. In this way the 
initial volume is defined, consisting of the union of a set of 
cubes, and is guaranteed to lie entirely in front of all the 
cameras and to be the largest such region up to the tolerance 
given by the minimum cube size. 

4.2 Processing cubes 

The region being processed consists of a set of cubes that 
can be processed in any order. It is therefore convenient, as 
in the calculation of the initial volume, to place the cubes in 
a stack-like structure. A cube is taken from the stack and is 
then either subdivided, discarded, or the vertices within it 
are calculated, on the basis of the projections of the cube 
into the silhouette images. If a cube is subdivided its 
children are placed onto the stack. The calculation 
terminates when there are no more cubes on the stack. 

In the simplest version of the algorithm we carry on 
subdividing cubes until there is at most one candidate 
vertex in the cube. To determine whether there is a 
candidate vertex in the cube we note that each vertex arises 
from the intersection of 3 of the polygon cone faces and it 
must lie within all of the other polygon cones. We therefore 
count the total number of polygon cone faces that intersect 
the cube. This can be done by projecting the cube into all of 
the images and counting the total number of polygon edges 
that intersect with the projections of the cube.  

There is one candidate vertex if both the following 
conditions hold: 
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Image 2 Image 3 All the other images Image 1

… 

Case A: vertex from 2 images 

Case B: vertex from 3 images 

Image 2 Image 3 All the other images Image 1
Figure 4: Candidate vertex from 2 or 3 images. The 
projected cube in each image is shown as a solid line
and the polygon edges are shown as a dashed line. 
 

. There are exactly 3 polygon edges that intersect with 
the projection of the cube, involving edges in at least 
2 images. 

. There are no images in which the projection of the 
cube is completely outside the silhouette. 

The two cases for condition (1) that need to be 
onsidered are shown schematically in Figure 4.  

Before a candidate vertex can be accepted, the algorithm 
eeds to calculate whether the back-projections of the 3 
olygon edges intersect, and if they do intersect, whether 
e intersection point is within the cube. This is the only 3D 
st that needs to be done. If the intersection point lies 
ithin the cube then we have found a true vertex of the 
isual hull. The vertex is stored (i.e. its position and the 
bels of the 3 polygon edges which generated it) and the 

ube is then discarded. 

Cubes that do not contain a single candidate vertex are 
ither subdivided or discarded according to the following 
le: 

Any cube that has less than 3 planes intersecting it is 
iscarded, as it cannot contain a vertex of the visual hull. In 
ddition, any cube whose projection in any of the images is 
utside the silhouette is also discarded, as it must then lie 
ntirely outside the visual hull. Also, if the projected cube 
tersects with polygon edges only in a single image then 
e cube is discarded, as the intersection of the polygon 

one faces would be at the optical center, which is assumed 
 be outside the initial region. If none of these conditions 

olds, the cube is subdivided. In its simplest version, the 
ube subdivision produces 8 child cubes, which are placed 
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on the stack. The calculation continues until the stack is 
empty. 

The SAVANT algorithm for calculating the vertices of 
the visual hull cubes may be summarized by the following 
pseudo-code: 

the polygon edges in a quad tree. Many of the 
intersection tests can be avoided by first carrying out a 
“conservative test” for collisions of the bounding box 
of the projection of the cube against this quad tree. If 
the conservative test shows that there is no collision, 
then the cube cannot intersect the polygon edge and so 
there is no need to carry out the full intersection test19.  

3. We have found that it is more efficient for the 
algorithm to stop subdividing cubes before the number 
of candidate vertices drops to a single candidate. We 
stop subdividing and start exhaustively generating 
candidate vertices when the total number of 
intersections between the projected cube and the 
polygon edges drops below some suitable threshold, n. 
When this occurs we enumerate all the triples of 
polygon edges that intersect the projections of the cube 
in two or three images. For each triple we generate the 
candidate vertex and test whether its position is inside 
the cube. We then output a list of vertices within the 
cube rather than a single vertex. Our experiments have 
shown that, for our implementation, a suitable value for 
n is 15. 

4. Many unnecessary calculations can be avoided by early 
termination of the tests. For instance as soon as the 
algorithm has found a silhouette image in which the 
projection of the cube lies entirely outside the 
silhouette, then the cube can be discarded without 
Define initial region enclosing visual hull
Push cubes in initial region onto stack
While stack not empty
{
Pop cube from stack
Project cube into silhouette images
If one of the 2 cases in Figure 4 holds
{
There is a candidate vertex
Generate position P of candidate vertex
If P is in the cube
{

Store verified vertex position and labels
}
Discard cube

}
Else if (there are less than 3 planes intersecting the cube

OR the cube projects outside one of the silhouettes
OR cube intersects silhouette in exactly one image)

{
There are no candidate vertices in the cube
Discard cube

}
Else
{
Subdivide cube
Push children onto stack

}
}

Page 6 

 
Figure 5: Pseudo-code for SAVANT vertex calculation. 

5.  Implementation 

We have implemented a number of extensions to the basic 
algorithm that speed it up considerably.  These are 
described below.  

1. In the simple version described above the cube is 
projected into all the silhouette images. However this is 
unnecessary, as the projection of a parent cube provides 
information about its descendants. In particular, we can 
reduce the number of times cubes need to be projected 
into images by realizing that, if the projection of a cube 
is entirely within a silhouette then the projection of all 
its children will also lie within that silhouette. 
Therefore that silhouette image no longer needs to be 
tested for that cube or any of its descendants. We can 
therefore exploit this by storing a list of “active 
images” with each cube. The children of the cube 
inherit this list. Initially every image is on the active 
image list, but if a cube projects to a region entirely 
within a silhouette then that image is removed from 
that cube’s active image list. 

2. There are potentially a large number of intersection 
tests between polygon edges and the projections of a 
cube into the images. These intersection tests can be 
sped up considerably by storing the bounding boxes of 

further calculation. Also, during the enumeration of the 
intersections between the projections of the cube and 
the silhouette boundaries, as soon as the number of 
intersections becomes greater than the threshold, n, the 
cube can be subdivided without further processing of 
that cube. 

6.  Extensions 

The SAVANT approach is not restricted to computations of 
the intersection of a set of polygon cones. It can be 
generalized to calculate the intersection of a set of general 
polyhedral models. This extends the applicability of the 
SAVANT to CAD modeling systems, in which boundary 
representations of unions and intersections of polyhedral 
models can be computed. The key difference from the 
polygon cone case is that there is no longer a set of 
silhouette images to project the cubes into. Instead all the 
calculations are carried out in 3D. We give every face of 
every polyhedron a unique ID. Then the algorithm proceeds 
by building an octree to store the faces of the polyhedra. 
The tests as to whether to discard, subdivide, or generate 
candidate vertices at a node in the octree are carried out 
while the octree is being built. We calculate the number of 
faces in the octree node and only subdivide if there are 
more than 3 faces and the cube representing the node is 
inside all the remaining polyhedra. If there are exactly 3 
faces we generate the intersection point and test that it is 
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within the cube representing the node and within all the 
remaining polyhedra.  If it is we add the vertex to the list 
and label it with the triple of IDs of faces that intersect there. 
Once the vertices have been found, the boundary of the 
intersection polyhedron can be traversed, using the labels of 
the vertices, as described in Section 2.3. 

All the extensions described in Section 5 to speed up the 
algorithm (except extension (2)) can also be implemented in 
the generalization of SAVANT to the intersection of a set of 
polyhedra. To generalize extension (1), the “active image” 
list is replaced by an “active polyhedron” list, which is 
stored at each node. If a cube is entirely within a 
polyhedron, then the polyhedron is removed from the 
“active polyhedron” list for that node and all of its 
descendents. Extension (3) also generalizes: we can stop 
subdividing a node when the number of faces in the node 
drops below a threshold, n, and then generate and test a list 
of candidate vertices in that node, rather than a single one. 
Extension (4) also generalizes: as soon as the node is found 
to be completely outside a polyhedron then the node can be 
discarded, without further calculation, and during the 
enumeration of the intersections between the node and the 
polyhedra, as soon as the number of intersections becomes 
greater than n, the node can be subdivided without further 
processing. 

7.  Results 

7.1 Comparison with incremental method 

We carried out tests comparing the runtime performance of 
the SAVANT visual hull algorithm with the incremental 
visual hull algorithm described in Section 2 on both real 
and synthetic image sequences. We observed how the 
performance depends on the complexity of the model and 
on the number of images in the sequence. All timings were 
obtained using a 650MHz Pentium III PC with 128MB 
memory. 

The tests used automatically segmented silhouettes from 
images taken using a conventional digital camera. Figure 6 
shows typical examples of the data sets used and the 
meshes obtained (rendered with smooth shading). These are 
the raw results from direct intersection so the meshes are 
quite irregular and the shading algorithm shows up a few 
artifacts in the meshes. The meshes can be made more 
regular if required using a mesh fairing algorithm, such as 
described by Taubin20. 

 A table comparing the timings for the two algorithms 
for each of these examples is shown in Figure 7. The table 
shows the number of images, the total number of edges in 
all the input polygon silhouettes, the triangle count of the 
final model and timings for the incremental algorithm and 
the SAVANT algorithm for each example. For a very simple 
example, such as the Duck, the two algorithms perform 

simil
than 
betw

  
triang
the 
incre
mode
the S
algor

W
as a 
imag
of th
appro
show
imag
posit

 Duck Helmet Fan 
Number of images 15 31 88 
Input polygon edge 
count 

1666 7656 28412 

Output model triangle 
count 

6188 23956 15028 

Incremental 
algorithm timing (sec) 

16.1 519 921 

SAVANT algorithm 
timing (sec) 

15.8 102 282 

 

Figure 6: Example data sets. Top: original images. 
Bottom: Meshes produced by direct intersection (smooth 
shaded). 
Figure 7: Timing comparisons between SAVANT and
incremental algorithm for real data sets.
arly. The other two examples, which are more complex 
the Duck example, show that SAVANT performs 

een 3-5 times faster than the incremental algorithm. 

For the most complex model (in terms of output 
le count) the Helmet, the SAVANT algorithm exhibits 
greatest improvement in performance over the 
mental algorithm. We have found that generally, as the 
l complexity increases, so does the advantage of using 
AVANT algorithm, compared with the incremental 

ithm. 

e then compared the behaviour of the two algorithms 
function of model complexity, keeping the number of 
es in the sequence fixed while varying the complexity 
e final model by varying the threshold used to 
ximate the input silhouettes with polygons. Figure 8 
s the results for a synthetically generated set of 30 
es of a sphere, with randomly located camera 
ions. 
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The comparisons with the incremental algorithm show 
that, while the incremental algorithm is acceptable for 
silhouettes of low complexity, as the complexity of the 
silhouette images increases, the runtime of the incremental 
algorithm increases substantially more rapidly than the 
SAVANT algorithm. 

Further results were generated using real data. The graph 
in Figure 9 shows similar behaviour to Figure 8, but for a 
more complex real model, in this case the Helmet data set, 
not simply a synthetic sphere model. This shows that, in 
contrast to the incremental algorithm, whose performance 
depends on the complexity of all the intermediate polyhedra 
generated during the processing, the complexity of 
SAVANT is roughly linear with the complexity of the final 
model, as measured by the number of triangles. This shows 
that the greater the complexity of the model, the greater is 
the performance improvement of SAVANT over the 
incremental algorithm. 

Finally we compared the performance of the two 
algorithms as a function of the number of images in the 
sequence. The results are shown in Figure 10, for the 
synthetically generated sphere data set.  

 The behavior of the incremental algorithm can be 
explained as follows. As the number of images increases, 
the complexity of the model also increases. Therefore the 
runtime of the incremental algorithm is actually worse than 
linear in the number of images, as the later images have a 
more complex mesh to intersect and this dominates the 
runtime behavior. In contrast, the runtime of the SAVANT 
algorithm is roughly linear in the complexity of the final 
model. This explains why the SAVANT performance 
improvement is greater as the number of input images 
increases. 

7.2 Comparison with volumetric sampling approaches 

There are two commonly used volumetric sampling 
approaches to generating a boundary representation of the 
visual hull. The first approach typically uses a voxel grid 
surrounding the object to produce a “voxel carve”8, 9. The 
voxels are often stored in an octree structure to speed up 
calculations. Nodes in the octree are projected into the 
silhouette images to determine whether they are fully inside 
or outside the visual hull. In this way a volumetric 
representation of the visual hull is generated. The 
volumetric representation is then converted to a boundary 
representation using the Marching Cubes algorithm (or 
some variant of it)10 or simply by smoothing the mesh 
obtained from the visible node faces. The second approach, 
which is similar, avoids the full octree, and should be more 
accurate for a given cube size. This uses the fact that the 
“inside” function, determining whether a point lies inside 
the visual hull, is defined continuously everywhere in space, 
not just on a voxel grid. Therefore, the Marching Cubes 
algorithm can be used to find a boundary representation of 
the zero crossings of this function, without first calculating 
the full volumetric representation of the visual hull. When a 
cube is found which has an edge along which the “inside” 
function changes, then the intersection of the zero crossing 

Number of 
triangles in final 
model 

Incremental 
algorithm timing 
(seconds) 

SAVANT 
algorithm timing 
(seconds) 

5996 18 33 
13804 86 53 
26364 291 76 

Figure 8: Dependence on complexity of model with 
number of images fixed (synthetically generated 
sphere data set). 

Figure 9: Dependence on complexity of model with 
number of images fixed (Helmet data set). 
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Figure 10: Dependence of SAVANT and incremental 
algorithm on number of images in sequence 
(synthetically generated sphere data set). 
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surface with that edge can be found by binary intersection. 
These intersection points are then used as the vertices of the 
triangulation produced by Marching Cubes.  

We compared the quality of the results obtained from the 
SAVANT algorithm with those obtained from the second of 
these sampling approaches. A typical image used and the 
meshes produced by the two algorithms (shown as 
wireframes) are shown in Figure 1. 

The results clearly show the problems associated with 
sampling approaches. Firstly, there is an aliasing problem, 
which means that in order to approximate the long thin 
structure to the same degree of accuracy as SAVANT, the 
sampling approach requires an extremely small grid size. 
This is not alleviated by intersecting the zero crossing 
surface with the edges of the cubes, as the positions of the 
vertices are still quantized in the other two directions and so 
the method suffers the same aliasing problem as the voxel 
carving approach. The SAVANT algorithm is able to 
approximate the long thin structure much more efficiently 
because it directly uses the polygonal approximation of the 
silhouette images. Secondly, the use of a small grid size 
produces an excessive number of triangles in the final 
model. This can be very slow, leads to a large memory 
requirement, and requires the use of a mesh optimization 
algorithm.  

In conclusion, the volumetric sampling approach 
produces more triangles but the result is less accurate than a 
direct intersection approach, such as SAVANT. 

8.  Conclusions 

We have developed an algorithm for directly computing a 
boundary representation (a polygonal mesh) of the visual 
hull from a set of silhouette images. This avoids the aliasing 
problems associated with methods based on a volumetric 
sampling, such as those using Marching Cubes. There do 
exist direct incremental methods for generating the visual 
hull that avoid the aliasing artifacts associated with 
sampling-based methods, but these are slow for complex 
models. The advantage of SAVANT over these is that ALL 
the cones are intersected simultaneously, giving a 
significant efficiency gain over incremental approaches, 
particularly when dealing with a large number of complex 
silhouettes. 

The key to the success of the SAVANT algorithm is that 
it combines a bottom-up generate-and-test search for the 
vertices of the visual hull with a top-down spatial 
subdivision to prune the search. This is ultimately what 
makes batch computation of the visual hull practical.  

Several extensions of SAVANT have been described and 
implemented. In these, information about the projections of 
regions into silhouette images is cached, quad trees are used 

to speed up the intersection tests and there is control over 
the point at which the algorithm stops subdividing regions 
and starts generating candidate vertices.  

We have also described how the SAVANT approach of 
combining bottom-up generate-and-test with top-down 
region pruning can be extended to calculations of the 
intersection of a set of polyhedra, rather than just the visual 
hull. This extends its applicability to CAD systems. 

In conclusion our new SAVANT algorithm has been 
shown to provide a more efficient and practical method than 
standard approaches for computing the visual hull from a 
set of silhouette images and for computing polyhedron 
intersections. SAVANT gives more accurate results than 
volumetric sampling methods and is faster than other direct 
methods with no loss of accuracy. 
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