

Adaptive Tessellation for Trimmed NURBS Surface

Ma YingLiang 1 and Terry Hewitt2

Manchester Visualization Centre, University of Manchester, Manchester, M13 9PL, U.K.

1may@cs.man.ac.uk 2W.T.Hewitt@man.ac.uk

Abstract
We present an adaptive method for tessellating the trimmed NURBS surface in the parametric domain. Given a
model space tolerance ε, the algorithm first splits the NURBS surface in both the U and V directions to fit
within the bounding box of the outer trimming loop. Then we subdivide the surface into Bézier patches
recursively until the control net of the Bézier patch is flat enough and within the tolerance ε. By building up the
quadtrees of inner trimming loops, we use the scanline algorithm to remove the patches inside the inner
trimming loops. Finally, we close the inner trimming loops with a set of triangles. The resulting tessellation
contains both quadrilaterals and triangles.

1. Introduction

Trimmed surfaces have played a fundamental role
in Computer Aided Design and Computer Graphics
for many years. Most complex geometrical objects
are generated from some sort of trimming process
such as fillet, blend and chamfer operations.
Trimmed surfaces are the result of a Boolean
operation on the solid objects, which is bounded by
a set of trimmed NURBS surfaces. Both in
Computer Aided Design and Computer Graphics,
the trimmed surfaces are tessellated into a set of
triangles or quadrilaterals for the purpose of
rendering for visualization, area computation and
rapid prototyping. There are several tessellating
methods which can be classified to two simple
categories 1:

1. Uniform subdivision. This is the simplest
case and involves a user specifying a level
which uniform subdivision of all patches is
to terminate.

2. Non-uniform subdivision. This means
stopping the division when the subdivision
products meet a patch flatness criterion.

The second category is theoretically preferable
because it generates fewer polygons than the first
one. Therefore, more subdivision takes place in the
areas of high surface curvature. Most methods in
the second category tessellate the trimmed NURBS
surface in parameter space as parametric surfaces
are widely used in the CAD/CAM domain.

2. The Definition of Trimmed NURBS
Surface

A trimmed NURBS surface consists of two things:
(1) A NURBS surface.
(2) A set of trimming curves lying within the
parameter domain 2.

A NURBS surface of degree p in u direction and
degree q in v direction is defined by:

)1(
)()(

)()(
),(

0 0
,,,

0
,,

0
,,

∑∑

∑∑

= =

= == n

i

m

j
jiqjpi

n

i
jiji

m

j
qjpi

wvNuN

PwvNuN
vuS

Where the {Pi,j} is the control net, 0≤u,v≤1, the {wi,j}
are the weights, and Ni,p(u) and Nj,q(u) are non-
rational B-spline basis functions defined on the knot
vectors:

{

{}1,...,1,...,,0,...,0{

}1,...,1,,...,,0,...,0{

1
,11

1

1
11

1

+
−−+

+

+
−−+

+

=

=

q
psq

q

p
prp

p

vvV

uuU

321

321

Where r = n + p + 1 and s = m + q + 1.

The trimming curves are normally in NURBS form
so that there will be uniform data structure to
describe the whole trimmed surface. Assume that N
such curves are given defined as

)2(,...,2,1

)())(),(()(,
0

Nk

tNPtvtutC ji

n

i

k
ikkk

=

== ∑
=

These curves form a set of trimming loops: one
outer loop and several inner loops. The outer loop

http://www.eg.org
http://diglib.eg.org

corresponds to the outer boundary of the trimming
region. The inner loops actually indicate holes in
the surface. As shown in figure 1, the red loop is the
outer trimming loop and two blue ones are the inner
trimming loops.

Figure 1 The trimming loops of the trimmed
NURBS surface

3. Previous work

In this section, we give an overview of previous
work done in the areas of tessellating the trimmed
NURBS surface.

3.1 Adaptive Forward Differencing

Shantz and Chang 3 describe a direct hardware
rendering technique of trimmed surface based on
the adaptive forward differencing (AFD) method.
Similar to the scanline algorithm for rendering
polygon, this method is suitable for special graphics
VLSI. However, it is not practical due to the
diversity of graphics VLSI. Furthermore, the
computation becomes very expensive, when this
method subdivides the surface down to pixel size in
order to render a high quality image. Finally, this
method operates in 5 steps.

1. The NURBS trimming curves are converted
to piecewise Bézier by knot insertion.

2. The Bézier sections are subdivided so they are
all monotonically decreasing in u parameter
direction.

3. The Bézier sections are converted to forward
difference basis.

4. They are sorted in u parameter order by their
minimum u value.

5. For each AFD forward step in the u direction
(from curve to curve) the active trimming
curve sections are forward-stepped down to
find intersections with the new curve. The
appropriate portions of the surface curve are
drawn based on the trim curve-winding rule.

3.2 Tessellation Under Highly Varying
Transformation

Salim S. Abi-Ezzi and Leon A. Shirman 4 provide a
dynamic and uniform tessellation method for
arbitrary degree polynomial and rational Bézier
patches. NURBS surfaces are converted into Bézier
patches before applying this method. They design
two approximation criteria: size criterion which
involve placing a threshold on the size of triangles,
and deviation criterion which involves placing a
threshold on the deviation of these triangles from
the actual surface. This method involves heavily
changing modelling and viewing transformation and
performing the complex operations of finding
derivative bounds, computing norms of
transformations, and factoring of views at data
creation time. Therefore, it is expensive and not
practical for high degree Bézier patches. It is
obvious that the uniform tessellation generates more
triangles than the non-uniform method.

3.3 Fast Dynamic Tessellation of Trimmed
NURBS surface

Salim S. Abi-Ezzi and Srikanth Subramaniam 5
present a dynamic and non-uniform tessellation
method developed from the previous method
(section 2.2). Similar to the previous one, it
converts the NURBS surface into Bézier patches
and the Bézier control points are used for further
computations. Then the trimming patches are
further simplified into monotonic regions, which
contain several trimming curves. The next step
contains two phases of traversal.

The first phase reduces each trimming NURBS loop
into its Bézier components, then processes each
trimming curve to determine the maximum and
minimum value of U and V on each trimming
segment, then computes its intersection with the
U/V knot line. The intersection problem can be
solved by using a Bézier root-solving algorithm.
Finally, it handles some special cases to ensure the
stability of the algorithm.

The aim of the second phase is to extract the
triangles from both trimmed and untrimmed
patches. For untrimmed patches, triangles are
generated from two U/V isolines. For trimmed
patches, triangles are generated from the U/V
isolines and trimming Bézier curves.

3.4 Triangulate Trimmed Surface for
Stereolitography Application

Sheng and Hirsh 6 presented a method for
triangulation of trimmed surfaces in parameter
space. This approach first maps the trimmed regions
of the surface into parametric space and the
trimmed regions are approximated by 2D polygon
regions, which are then pre-triangulated by a
restricted Delaunay triangulation algorithm. The

generated triangles are subdivided further until each
edge of the triangles is smaller than the allowed
length that results from the surface definition and
the specified tolerance. The algorithm contains
three steps:

1. Creation of mapping polygons.
2. Evaluation of the flatness of a patch 7.
3. Restricted Delaunay Triangulation.

3.5 Triangulating The Trimmed NURBS
Surface in Parameter Domain

Piegl and Richard 2 propose a somewhat similar
algorithm to triangulate trimmed NURBS surfaces:
They use the same criterion for maximum edge
length, but the method does not split the surface
into several regions representing Bézier patches in
parameter space. This tessellation method consists
of 5 steps: Step1 is to compute the longest edge size
in the parameter domain 8. Step 2 obtains a
polygonal approximation of trimming curves. Step
3 selects points inside the valid region. Step 4
triangulates the trimmed region. The final step is to
map the triangles onto the surface and build a 3D
triangular database for further processing.

3.6 Summary

The first method is designed for the special graphic
hardware for rendering triangles which are
generated from the AFD method. It works for cubic
Bézier surface only and it is not practical for
tessellating the high degree surface. The second
method is a uniform tessellation so that it will
generate more triangles than non-uniform methods.

The other three methods perform the tessellation in
parametric space. The first method is both dynamic
and non-uniform tessellation. However, it involves
some complex algorithms which could reduce the
stability of the whole method. The second method
takes special care of the edges of the solid that is
being subdivided, and guarantees the absence of
cracks. This method has two main disadvantages: it
is not adaptive (global bounds for second
derivatives are found for every patch), and second,
it does not care about the shape of the resulting
triangles. The consequence of not being adaptive is
that the number of required triangulation vertices is
too large. The third method is adaptive and not
sensitive to the complexity of the trimmed patch.
Unlike the first method, it calculates the bound for
second derivatives locally, therefore it achieve more
efficient flatness testing.

All three methods have common advantages and
disadvantages as general tessellation methods in the
parametric domain.
Advantages:

• Methods that operate on triangles are far
easier and numerically more stable than those
dealing with freeform geometry.

• The piecewise triangular approximation is a
parameter independent representation of the
trimmed surface.

Disadvantages:
• Adequate representation of a trimmed patch

with high curvature areas requires large
numbers of triangles.

• The triangulation, if not done properly, can
result in triangles of different sizes, and, in
particular, in long and skinny triangles which,
in turn, can cause numerical problems.

4. Our Approach

Like the two tessellation methods that are discussed
in the previous section, our method has most of the
advantages that the other tessellation methods in the
parametric domain have. Our approach differs by
the way of checking the flatness of the desired
patches, and the way of subdividing the surface.
The subdivision and flatness checking have the
same methodology as the solution to the problem of
point projection for NURBS curve and surface. The
tessellation is based on the individual Bézier patch
that is “flat enough”. The whole algorithm consists
of the following steps:

• Finding the bounding box for outer
trimming loops and spitting the surface to
fit the bounding box. The split method
uses knot refinement method.

• Subdividing surface into a set of Bézier
patches which is “flat enough”.

• Removing the patches outside the
boundary of the outer trimming loop and
removing the patches inside the boundary
of the inner trimming loops.

• Closing the outer and inner boundary with
a set of triangles.

4.1 Tessellating The Untrimmed NURBS
Surface

Before we start to tessellate the trimmed NURBS
surface, we give an introduction of the tessellation
of an untrimmed NURBS surface, which is based
on the methodology of subdividing NURBS surface
into a set of “flat enough” Bézier patches. If we
only accept the set of “flat enough” Bézier patches
as the result of tessellation, some holes will appear
between patches due to the approximation of a
patch boundary by a straight line. An example of
this degenerative process is shown in figure 4.

The solution for this problem is to use triangles to
approximate the Bézier patches if it has midpoints
along its boundary. We designed an easy way to

generate triangles from the Bézier patches, which
have at least one midpoint (See figure 5). As the
exception, a patch with one midpoint generates
three triangles. Generally, the patch with n
midpoints generates (n+4) triangles. Finally, figure
6 shows the tessellation using this solution.

(a)

(b)

(c)

(d)

Figure 4 (a) The original NURBS surface. (b) “flat
enough” Bézier patches. (c) The holes between the
Bézier patches. (d) Rendered picture for the holes

and patches.

1 Point 2 Points

4 Points 3 Points
 Figure 5 Generating triangles from the Bézier patch

(a)

(b)

Figure 6 (a) The wire frame of tessellation. (b)
Rendered picture.

4.2 Finding The Bounding Box and Splitting
The Surface

From the definition of a trimmed NURBS surface,
we know that it has one outer trimming loop and
several inner trimming loops. For the outer
trimming loop, we define the outer bounding box in
the parametric domain as the box which contains all
trimming curves in the outer trimming loop. On the
other hand, the inner bounding box is the box
containing all trimming curves in one inner
trimming loop. As shown in figure 7, the red
rectangle is the outer bounding box and the blue one
is the inner bounding box.

After obtaining the outer bounding box, we split the
surface both in U & V directions in the parametric
domain to make the remaining surface fit the outer
bounding box (shown in figure 8).

Figure 7 Bounding Boxes

(a)

(b)

Figure 8 (a) Original NURBS surface. (b) The
surface trimmed with the outer bounding box

4.3 Removing The Patches

After we obtain the surface that fits within the outer
bounding box, we tessellate it as an untrimmed
NURBS surface, which is described in section 4.2.
We now have a set of “flat enough” Bézier patches.
By mapping these Bézier patches into parametric
space (U, V), we get a set of small rectangles
instead. We also have all the trimming loops in
parametric space and separate them as one outer
trimming loop and several inner trimming loops. By
applying the scanline algorithm 9, 10, 11, 12, we
remove the patches outside the outer trimming loop
and inside the inner trimming loops. At the same
time, we build a point array for recording all
boundary points along inner and outer boundaries.

These points are used to generate the triangles for
closing the boundaries.

4.3.1 Scanline Algorithm
The scanline algorithm provides the tools to
determine whether a Bézier patch is inside the
trimming loops, intersects with trimming curves or
outside the trimming loops. As shown in Figure 9,
uniformly distributed scanline are placed in U
direction of parameter space and the density of U
scanlines is determined by the tolerance of the
tessellation. The Bézier patches are created between
the two neighbourhood scanlines. Each scanline
may have odd or even number of intersection points
with trimming loops. If we get odd number of
intersection points, we can repeat the tangent point
to generate the even number of intersection points
(No. 4 scanline in figure 9). According to the
sequence of the intersection points, we can divide
the region into positive one and negative one.
Positive one inside the trimming loops and negative
one outside the loops (figure 10). Finally, we can
compare the Bézier patch with positive and negative
regions and remove the patches inside the loops and
create a patch to fit with the loops boundary if the
patch intersects with the loops.

V

Figure 9 U Scanline

Figure 10 Positive and negative regions

4.3.2 Summary

In summary, we give the algorithm for detecting the
Bézier patches outside the outer boundary.

Algorithm1 Bézier_Patch_Outside_Outer_Boundary
Input: A Bézier patch and outer trimming loop.
Output: the result of detection.
Begin
 {m is the highest index of outer trimming curves}

+ _ +
1 2 3 4

1 2 3 4

 1
2
3
4

U

 for i = 0 to i < m by i++ do
 {Detect whether outer trimming curve intersect with the
Bézier patch}
 begin
 generate a polyline to approximate the trimming curve;
 if (the Bézier patch intersects the polyline) then
 Generate a new patch which fit with the outer boundary;
 Add the boundary points into array;
 return the result of intersection and the new patch;
 end if
 end {End of loop for}

 Flag ← FALSE; {Flag TRUE: inside; FALSE: outside}
 for i = 0 to i < m by i++ do
 {Detect whether the patch is inside the outer trimming
loop or not.}
 begin
 generate a polyline to approximate the trimming curve;
 if (the Bézier patch is inside the trimming loop) then
 Flag ←TRUE;
 end if
 end {End of loop for}

if Flag == TRUE then
 return the patch inside the outer trimming loop;
else
 return the patch outside the outer trimming loop; {The patch
will be removed;}
End of Algorithm 1

We have a similar algorithm to detect the Bézier
patches inside the inner boundary.

Algorithm 2 Bézier_Patch_Inside_inner_Boundary
Input: A Bézier patch and inner trimming loops.
Output: the result of detection.
Begin
 {m is the highest index of inner trimming loops}
 for i = 0 to i < m by i++ do
 {Detect whether the Bézier patch is inside one of the inner
trimming loops}
 begin
 generate a polygon to approximate the trimming loop;
 if (the Bézier patch is inside the polygon) then
 return the patch is inside the polygon; {The patch will
be removed;}
 else if (the Bézier patch intersects with polygon) then
 generate a new patch fitting with the inner boundary;
 add the boundary points into array;
 return the result of intersection and the new patch;
 end if
 end {End of loop for}

 return the patch outside the inner trimming loops;
 End of Algorithm 2

Finally, figure 10 gives the illustration of this
procedure.

(a)

(b)

(c)

Figure 10 (a) The surface trimmed with the outer

bounding box (b) The tessellation result after
removing all patches outside the outer boundary and

inside the inner boundary. (c) Rendered picture

4.4 Closing the Outer and Inner Boundary
with a Set of Triangles

The aim of this step is to generate the smooth
boundaries both for outer and inner trimming loops.
The point array that is generated in the last section
is used to generate the triangles through the
neighbouring points. To obtain the correct rendering
effect, we need to set the points in anti-clockwise or
clockwise direction in all triangles. Figure 11 gives
the final result both in wire frame and rendering
mode.

(a)

(b)

(c)

(d)

Figure 11 (a)(c) Wire frame picture of final result
(b)(d) Rendered picture

4.5 Summary of the Algorithm

The summary of the whole algorithm is given by
the following the pseudo code.

Algorithm 3 Tessellation_Trimmed_NURBS_Surface
Input: A trimmed NURBS surface
Output: a set of quadrilaterals and triangles
Begin

 Get the outer bounding box;
 Split the NURBS surface to fit with outer bounding box in
parametric space;
 Tessellate the surface as an untrimmed NURBS surface; {The
result is a set of Bézier patches}
 {m is the highest index of the Bézier patches.}

 for i = 0 to i < m by i++ do
 {Detect whether to remove, generate a new patch or keep
the patch.}

 begin
 if (Bézier_Patch_Outside_Outer_Boundary return
intersection) then

 Add the new patch into patch array;
 else if (Bézier_Patch_Outside_Outer_Boundary return
inside) then

 Add the original patch into patch array;
 end if

 {n is the highest index of inner trimming loops.}
 for j=0 to j<n by j++ do
 begin

 if(Bézier_Patch_Inside_inner_Boundary return
intersection) then

 Add the new patch into patch array;
 else if (Bézier_Patch_Inside_inner_Boundary return
outside) then

 Add the original patch into patch array;
 end if
 end {End of loop for}

 end {End of loop for}

Generate quadrilaterals and triangles from the patch array;
Generate triangles from the boundary point array;
End of Algorithm 3

5. Conclusions

In this paper, we have presented an algorithm for
tessellating trimmed NURBS surface in parametric
domain. Based on the flatness test, the method stops
the subdivision of the surface and obtains a
tessellation within a user specified tolerance. Future
work is needed to improve the efficiency of the
subdivision process. The subdivision techniques
using knot insertion have been described by Boehm
13 and Cohen and others (the Oslo algorithm) 14.
The tessellation is performed completely in
parametric space, and furthermore this method does
not adopt any complex methods to generate
triangles, so that the procedure runs fast and
reliably.

6. Acknowledgements

The authors wish to thank Robert McNeel &
Associates for providing the OpenNURBS source
code. Thanks are also due to all the members of
MVC for their help at various stage of this work,
particularly to Robert Haines for proof reading this
paper. We are also grateful to the department of
Computer Science for their financial support.

References

1. Alan Watt, 3D Computer Graphics (Third

Edition), Addison-Wesley, pp 128 –129, 2000.

2. Piegl, L.A. and Richard, A.M., Tessellating

trimmed NURBS surface, Computer-Aided
Design 27(1), 16-26, 1995.

3. Michael Shantz and Sheue-Ling Chang.,

Rendering trimmed NURBS with adaptive
forward differencing, Computer Graphics
Proceedings of Siggraph’88, 1988.

4. Salim S. Abi-Ezzi and Leon A. Shirman. ,

Tessellation of curved surfaces under highly
varying transformation, Proceedings of
EUROGRAPHICS ’93, pp385-397, 1991.

5. Salim S. Abi-Ezzi and Srikanth Subramaniam,

Fast tessellation of trimmed NURBS surface,
Proceedings of EUROGRAPHICS ’94, 1994.

6. Sheng, X and Hirsh, B.E. , Triangulation of

trimmed surfaces in parametric space,
Computer-Aided Design 24(8), 437-444, 1992.

7. Filip, D, Magedson, R and Markot, R, Surface

algorithm using bounds on derivatives,
Computer-Aided Geometric Design Vol. 3,
295-311, 1986.

8. Vigo, M., Directional adaptive surface

triangulation, Computer-Aided Design 16,
107-126, 1999.

9. Jonathan E. Steinhart and James Arvo,

Graphics Gems II, ISBN 0-12-064480-0,
Academic Press, Inc, 1991.

10. Samet, Hanan, Applications of Spatial Data

Structures, ISBN 0-201-50300-X, Addison-
Wesley, Reading, MA. (I.9 Scanline Coherent
Shape Algebra; IV.7 Quadtree /Octree-to-
Boundary Conversion), 1990.

11. Samet, Hanan, The Design and Analysis of

Spatial Data Structures. ISBN 0-201-50255-0,
Addison-Wesley, Reading, MA (I.9 Scanline
Coherent Shape Algebra), 1990.

12. Atkinson, William D., Method and Apparatus

for Image Compression and Manipulation,
United States Patent Number 4,622,545. (I.9
Scanline Coherent Shape Algebra), 1986.

13. Wolfgang Boehm, Inserting New Knots into

B-Spline Curves, Computer Aided Design 12,
199-201, 1980.

14. Elaine Cohen, Tom Lyche, and Richard

Riesenfeld, Discrete B-Splines and
Subdivision Techniques in Computer-Aided
Geometric Design and Computer Graphics,
Computer Graphics and Image Processing 14,
1980.

	Abstract
	1. Introduction
	2. The Definition of Trimmed NURBS Surface
	3. Previous work
	4. Our Approach
	5. Conclusions
	6. Acknowledgements
	References

