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Abstract 
We present an adaptive method for tessellating the trimmed NURBS surface in the parametric domain. Given a 
model space tolerance ε, the algorithm first splits the NURBS surface in both the U and V directions to fit 
within the bounding box of the outer trimming loop. Then we subdivide the surface into Bézier patches 
recursively until the control net of the Bézier patch is flat enough and within the tolerance ε. By building up the 
quadtrees of inner trimming loops, we use the scanline algorithm to remove the patches inside the inner 
trimming loops. Finally, we close the inner trimming loops with a set of triangles. The resulting tessellation 
contains both quadrilaterals and triangles. 
 
1. Introduction 
 
Trimmed surfaces have played a fundamental role 
in Computer Aided Design and Computer Graphics 
for many years. Most complex geometrical objects 
are generated from some sort of trimming process 
such as fillet, blend and chamfer operations. 
Trimmed surfaces are the result of a Boolean 
operation on the solid objects, which is bounded by 
a set of trimmed NURBS surfaces. Both in 
Computer Aided Design and Computer Graphics, 
the trimmed surfaces are tessellated into a set of 
triangles or quadrilaterals for the purpose of 
rendering for visualization, area computation and 
rapid prototyping. There are several tessellating 
methods which can be classified to two simple 
categories 1: 
 

1. Uniform subdivision. This is the simplest 
case and involves a user specifying a level 
which uniform subdivision of all patches is 
to terminate. 

2. Non-uniform subdivision. This means 
stopping the division when the subdivision 
products meet a patch flatness criterion. 

 
The second category is theoretically preferable 
because it generates fewer polygons than the first 
one. Therefore, more subdivision takes place in the 
areas of high surface curvature. Most methods in 
the second category tessellate the trimmed NURBS 
surface in parameter space as parametric surfaces 
are widely used in the CAD/CAM domain. 
 
2. The Definition of Trimmed NURBS 
Surface 
 

A trimmed NURBS surface consists of two things: 
(1) A NURBS surface. 
(2) A set of trimming curves lying within the 
parameter domain 2.  
 
A NURBS surface of degree p in u direction and 
degree q in v direction is defined by: 
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Where the {Pi,j} is the control net, 0≤u,v≤1, the {wi,j} 
are the weights, and Ni,p(u) and Nj,q(u) are non-
rational B-spline basis functions defined on the knot 
vectors: 
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Where r = n + p + 1 and s = m + q + 1. 
 
The trimming curves are normally in NURBS form 
so that there will be uniform data structure to 
describe the whole trimmed surface. Assume that N 
such curves are given defined as 
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These curves form a set of trimming loops: one 
outer loop and several inner loops. The outer loop 
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corresponds to the outer boundary of the trimming 
region. The inner loops actually indicate holes in 
the surface. As shown in figure 1, the red loop is the 
outer trimming loop and two blue ones are the inner 
trimming loops. 
 

Figure 1 The trimming loops of the trimmed 
NURBS surface 

 
3. Previous work 
 
In this section, we give an overview of previous 
work done in the areas of tessellating the trimmed 
NURBS surface. 
 
3.1 Adaptive Forward Differencing 
 
Shantz and Chang 3 describe a direct hardware 
rendering technique of trimmed surface based on 
the adaptive forward differencing (AFD) method. 
Similar to the scanline algorithm for rendering 
polygon, this method is suitable for special graphics 
VLSI. However, it is not practical due to the 
diversity of graphics VLSI. Furthermore, the 
computation becomes very expensive, when this 
method subdivides the surface down to pixel size in 
order to render a high quality image. Finally, this 
method operates in 5 steps. 
 

1. The NURBS trimming curves are converted 
to piecewise Bézier by knot insertion. 

2. The Bézier sections are subdivided so they are 
all monotonically decreasing in u parameter 
direction. 

3. The Bézier sections are converted to forward 
difference basis. 

4. They are sorted in u parameter order by their 
minimum u value. 

5. For each AFD forward step in the u direction 
(from curve to curve) the active trimming 
curve sections are forward-stepped down to 
find intersections with the new curve. The 
appropriate portions of the surface curve are 
drawn based on the trim curve-winding rule. 

 
3.2 Tessellation Under Highly Varying 
Transformation 
 

Salim S. Abi-Ezzi and Leon A. Shirman 4 provide a 
dynamic and uniform tessellation method for 
arbitrary degree polynomial and rational Bézier 
patches. NURBS surfaces are converted into Bézier 
patches before applying this method. They design 
two approximation criteria: size criterion which 
involve placing a threshold on the size of triangles, 
and deviation criterion which involves placing a 
threshold on the deviation of these triangles from 
the actual surface. This method involves heavily 
changing modelling and viewing transformation and 
performing the complex operations of finding 
derivative bounds, computing norms of 
transformations, and factoring of views at data 
creation time. Therefore, it is expensive and not 
practical for high degree Bézier patches. It is 
obvious that the uniform tessellation generates more 
triangles than the non-uniform method.  
 
3.3 Fast Dynamic Tessellation of Trimmed 
NURBS surface 
 
Salim S. Abi-Ezzi and Srikanth Subramaniam 5 
present a dynamic and non-uniform tessellation 
method developed from the previous method 
(section 2.2). Similar to the previous one, it 
converts the NURBS surface into Bézier patches 
and the Bézier control points are used for further 
computations. Then the trimming patches are 
further simplified into monotonic regions, which 
contain several trimming curves. The next step 
contains two phases of traversal.  
 
The first phase reduces each trimming NURBS loop 
into its Bézier components, then processes each 
trimming curve to determine the maximum and 
minimum value of U and V on each trimming 
segment, then computes its intersection with the 
U/V knot line. The intersection problem can be 
solved by using a Bézier root-solving algorithm. 
Finally, it handles some special cases to ensure the 
stability of the algorithm. 
 
The aim of the second phase is to extract the 
triangles from both trimmed and untrimmed 
patches. For untrimmed patches, triangles are 
generated from two U/V isolines. For trimmed 
patches, triangles are generated from the U/V 
isolines and trimming Bézier curves.  
 
3.4 Triangulate Trimmed Surface for 
Stereolitography Application 
 
Sheng and Hirsh 6 presented a method for 
triangulation of trimmed surfaces in parameter 
space. This approach first maps the trimmed regions 
of the surface into parametric space and the 
trimmed regions are approximated by 2D polygon 
regions, which are then pre-triangulated by a 
restricted Delaunay triangulation algorithm. The 



generated triangles are subdivided further until each 
edge of the triangles is smaller than the allowed 
length that results from the surface definition and 
the specified tolerance. The algorithm contains 
three steps: 
 

1. Creation of mapping polygons. 
2. Evaluation of the flatness of a patch 7. 
3. Restricted Delaunay Triangulation. 

 
3.5 Triangulating The Trimmed NURBS 
Surface in Parameter Domain 
 
Piegl and Richard 2 propose a somewhat similar 
algorithm to triangulate trimmed NURBS surfaces: 
They use the same criterion for maximum edge 
length, but the method does not split the surface 
into several regions representing Bézier patches in 
parameter space. This tessellation method consists 
of 5 steps: Step1 is to compute the longest edge size 
in the parameter domain 8. Step 2 obtains a 
polygonal approximation of trimming curves. Step 
3 selects points inside the valid region. Step 4 
triangulates the trimmed region. The final step is to 
map the triangles onto the surface and build a 3D 
triangular database for further processing. 
 
3.6 Summary 
 
The first method is designed for the special graphic 
hardware for rendering triangles which are 
generated from the AFD method. It works for cubic 
Bézier surface only and it is not practical for 
tessellating the high degree surface. The second 
method is a uniform tessellation so that it will 
generate more triangles than non-uniform methods. 
 
The other three methods perform the tessellation in 
parametric space. The first method is both dynamic 
and non-uniform tessellation. However, it involves 
some complex algorithms which could reduce the 
stability of the whole method. The second method 
takes special care of the edges of the solid that is 
being subdivided, and guarantees the absence of 
cracks. This method has two main disadvantages: it 
is not adaptive (global bounds for second 
derivatives are found for every patch), and second, 
it does not care about the shape of the resulting 
triangles. The consequence of not being adaptive is 
that the number of required triangulation vertices is 
too large. The third method is adaptive and not 
sensitive to the complexity of the trimmed patch. 
Unlike the first method, it calculates the bound for 
second derivatives locally, therefore it achieve more 
efficient flatness testing.  
 
All three methods have common advantages and 
disadvantages as general tessellation methods in the 
parametric domain.  
Advantages: 

• Methods that operate on triangles are far 
easier and numerically more stable than those 
dealing with freeform geometry. 

• The piecewise triangular approximation is a 
parameter independent representation of the 
trimmed surface. 

Disadvantages: 
• Adequate representation of a trimmed patch 

with high curvature areas requires large 
numbers of triangles. 

• The triangulation, if not done properly, can 
result in triangles of different sizes, and, in 
particular, in long and skinny triangles which, 
in turn, can cause numerical problems. 

 
4. Our Approach 
 
Like the two tessellation methods that are discussed 
in the previous section, our method has most of the 
advantages that the other tessellation methods in the 
parametric domain have. Our approach differs by 
the way of checking the flatness of the desired 
patches, and the way of subdividing the surface. 
The subdivision and flatness checking have the 
same methodology as the solution to the problem of 
point projection for NURBS curve and surface. The 
tessellation is based on the individual Bézier patch 
that is “flat enough”. The whole algorithm consists 
of the following steps: 

• Finding the bounding box for outer 
trimming loops and spitting the surface to 
fit the bounding box. The split method 
uses knot refinement method. 

• Subdividing surface into a set of Bézier 
patches which is “flat enough”.  

• Removing the patches outside the 
boundary of the outer trimming loop and 
removing the patches inside the boundary 
of the inner trimming loops. 

• Closing the outer and inner boundary with 
a set of triangles. 

 
4.1 Tessellating The Untrimmed NURBS 
Surface 
 
Before we start to tessellate the trimmed NURBS 
surface, we give an introduction of the tessellation 
of an untrimmed NURBS surface, which is based 
on the methodology of subdividing NURBS surface 
into a set of “flat enough” Bézier patches. If we 
only accept the set of “flat enough” Bézier patches 
as the result of tessellation, some holes will appear 
between patches due to the approximation of a 
patch boundary by a straight line. An example of 
this degenerative process is shown in figure 4. 
 
The solution for this problem is to use triangles to 
approximate the Bézier patches if it has midpoints 
along its boundary. We designed an easy way to 



generate triangles from the Bézier patches, which 
have at least one midpoint (See figure 5). As the 
exception, a patch with one midpoint generates 
three triangles. Generally, the patch with n 
midpoints generates (n+4) triangles. Finally, figure 
6 shows the tessellation using this solution. 
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Figure 4 (a) The original NURBS surface. (b) “flat 
enough” Bézier patches. (c) The holes between the 
Bézier patches. (d) Rendered picture for the holes 

and patches. 

 
 
 
 

1 Point 2 Points 

4 Points 3 Points 
 Figure 5 Generating triangles from the Bézier patch 
 

 
(a) 

 
(b) 

Figure 6 (a) The wire frame of tessellation. (b) 
Rendered picture. 

 
4.2 Finding The Bounding Box and Splitting 
The Surface 
 
From the definition of a trimmed NURBS surface, 
we know that it has one outer trimming loop and 
several inner trimming loops. For the outer 
trimming loop, we define the outer bounding box in 
the parametric domain as the box which contains all 
trimming curves in the outer trimming loop. On the 
other hand, the inner bounding box is the box 
containing all trimming curves in one inner 
trimming loop. As shown in figure 7, the red 
rectangle is the outer bounding box and the blue one 
is the inner bounding box. 



 
After obtaining the outer bounding box, we split the 
surface both in U & V directions in the parametric 
domain to make the remaining surface fit the outer 
bounding box (shown in figure 8). 

Figure 7 Bounding Boxes 
 

 
(a) 

 
(b) 

 
Figure 8 (a) Original NURBS surface. (b) The 
surface trimmed with the outer bounding box 

 
4.3 Removing The Patches 
 
After we obtain the surface that fits within the outer 
bounding box, we tessellate it as an untrimmed 
NURBS surface, which is described in section 4.2. 
We now have a set of “flat enough” Bézier patches. 
By mapping these Bézier patches into parametric 
space (U, V), we get a set of small rectangles 
instead. We also have all the trimming loops in 
parametric space and separate them as one outer 
trimming loop and several inner trimming loops. By 
applying the scanline algorithm 9, 10, 11, 12, we 
remove the patches outside the outer trimming loop 
and inside the inner trimming loops. At the same 
time, we build a point array for recording all 
boundary points along inner and outer boundaries. 

These points are used to generate the triangles for 
closing the boundaries. 
 
4.3.1 Scanline Algorithm 
The scanline algorithm provides the tools to 
determine whether a Bézier patch is inside the 
trimming loops, intersects with trimming curves or 
outside the trimming loops. As shown in Figure 9, 
uniformly distributed scanline are placed in U 
direction of parameter space and the density of U 
scanlines is determined by the tolerance of the 
tessellation. The Bézier patches are created between 
the two neighbourhood scanlines. Each scanline 
may have odd or even number of intersection points 
with trimming loops. If we get odd number of 
intersection points, we can repeat the tangent point 
to generate the even number of intersection points 
(No. 4 scanline in figure 9). According to the 
sequence of the intersection points, we can divide 
the region into positive one and negative one. 
Positive one inside the trimming loops and negative 
one outside the loops (figure 10).  Finally, we can 
compare the Bézier patch with positive and negative 
regions and remove the patches inside the loops and 
create a patch to fit with the loops boundary if the 
patch intersects with the loops. 

V

Figure 9 U Scanline 

Figure 10 Positive and negative regions 
 

4.3.2 Summary 
 
In summary, we give the algorithm for detecting the 
Bézier patches outside the outer boundary. 
 
Algorithm1 Bézier_Patch_Outside_Outer_Boundary 
Input: A Bézier patch and outer trimming loop. 
Output: the result of detection. 
Begin 
    {m is the highest index of outer trimming curves} 

+ _ + 
1 2 3 4
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   for  i = 0 to i < m by i++ do 
          {Detect whether outer trimming curve intersect with the 
Bézier patch} 
     begin 
        generate a polyline to approximate the trimming curve; 
        if  (the Bézier patch intersects the polyline) then 
           Generate a new patch which fit with the outer boundary; 
            Add the boundary points into array; 
           return the result of intersection and the new patch; 
       end if 
  end {End of loop for} 
 
   Flag ← FALSE; {Flag TRUE: inside; FALSE: outside} 
    for  i = 0 to i < m by i++ do 
          {Detect whether the patch is inside the outer trimming 
loop or not.} 
     begin 
        generate a polyline to approximate the trimming curve; 
        if  (the Bézier patch is inside the trimming loop) then 
          Flag ←TRUE; 
       end if 
  end {End of loop for} 
 
if Flag == TRUE then 
  return  the patch inside the outer trimming loop; 
else 
  return the patch outside the outer trimming loop; {The patch 
will be removed;} 
End of Algorithm 1 
 
We have a similar algorithm to detect the Bézier 
patches inside the inner boundary. 
 
Algorithm 2 Bézier_Patch_Inside_inner_Boundary 
Input: A Bézier patch and inner trimming loops. 
Output: the result of detection. 
Begin 
    {m is the highest index of inner trimming loops} 
   for  i = 0 to i < m by i++ do 
          {Detect whether the Bézier patch is inside one of the inner 
trimming loops} 
     begin 
        generate a polygon to approximate the trimming loop; 
        if  (the Bézier patch is inside the polygon) then 
              return the patch is inside the polygon; {The patch will 
be removed;} 
       else if (the Bézier patch intersects with polygon) then 
               generate a new patch fitting with the inner boundary; 
              add the boundary points into array; 
             return the result of intersection and the new patch; 
       end if 
  end {End of loop for} 
 
  return the patch outside the inner trimming loops; 
 End of Algorithm 2 
 
Finally, figure 10 gives the illustration of this 
procedure. 
 
 

 
(a) 

 

 
(b) 

 
(c) 

 
Figure 10 (a) The surface trimmed with the outer 

bounding box (b) The tessellation result after 
removing all patches outside the outer boundary and 

inside the inner boundary. (c) Rendered picture 
 

4.4 Closing the Outer and Inner Boundary 
with a Set of Triangles 
 
The aim of this step is to generate the smooth 
boundaries both for outer and inner trimming loops. 
The point array that is generated in the last section 
is used to generate the triangles through the 
neighbouring points. To obtain the correct rendering 
effect, we need to set the points in anti-clockwise or 
clockwise direction in all triangles. Figure 11 gives 
the final result both in wire frame and rendering 
mode. 
 



 
 

(a) 
 
 
 
 

 
(b) 

 
(c) 

 
(d) 

Figure 11 (a)(c) Wire frame picture of final result  
(b)(d) Rendered picture 

 
4.5 Summary of the Algorithm 
 
The summary of the whole algorithm is given by 
the following the pseudo code. 
 

Algorithm 3 Tessellation_Trimmed_NURBS_Surface 
Input: A trimmed NURBS surface 
Output: a set of quadrilaterals and triangles 
Begin 

 Get the outer bounding box; 
 Split the NURBS surface to fit with outer bounding box in 
parametric space; 
 Tessellate the surface as an untrimmed NURBS surface; {The  
result is a set of Bézier patches} 
  {m is the highest index of the Bézier patches.}   

 for  i = 0 to i < m by i++ do 
 {Detect whether to remove, generate a new patch or keep 
the patch.} 

     begin 
 if  (Bézier_Patch_Outside_Outer_Boundary return 
intersection) then 

             Add the new patch into patch array; 
 else if (Bézier_Patch_Outside_Outer_Boundary return 
inside) then 

               Add the original patch into patch array; 
       end if 
 
        {n is the highest index of inner trimming loops.} 
       for  j=0 to j<n by j++ do 
           begin 

  if(Bézier_Patch_Inside_inner_Boundary return 
intersection) then 

                     Add the new patch into patch array; 
  else if (Bézier_Patch_Inside_inner_Boundary return 
outside) then 

                    Add the original patch into patch array; 
                end if 
           end {End of loop for} 
 
  end {End of loop for} 
 
Generate quadrilaterals and triangles from the patch array; 
Generate triangles from the boundary point array; 
End of Algorithm 3 
 
5. Conclusions 
 
In this paper, we have presented an algorithm for 
tessellating trimmed NURBS surface in parametric 
domain. Based on the flatness test, the method stops 
the subdivision of the surface and obtains a 
tessellation within a user specified tolerance. Future 
work is needed to improve the efficiency of the 
subdivision process. The subdivision techniques 
using knot insertion have been described by Boehm 
13 and Cohen and others ( the Oslo algorithm) 14. 
The tessellation is performed completely in 
parametric space, and furthermore this method does 
not adopt any complex methods to generate 
triangles, so that the procedure runs fast and 
reliably. 
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