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Tree balancing for mesh simplification
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Abstract
In this paper, a tree balancing technique is presented that reduces the number of hierarchy levels in typical pair-
contraction based mesh simplification methods. A well-balanced hierarchy is essential for data structures that
explicitly represent vertices as the corresponding paths through the simplification hierarchy.
The quality of the generated meshes is evaluated by three methods. The deviation between the simplified and
the original mesh is measured by the Hausdorff distance. The shape of the individual triangles is evaluated by
Guéziec’s compactness value. Finally, a plot showing the shape distribution of all triangles in the mesh is given.
The experiments show that tree balancing has no significant impact on triangle quality.

Categories and Subject Descriptors (according to ACM CCS):
I.3.6 [Computer Graphics]: Graphics data structures and data types

1. Introduction

Due to the ever increasing sizes of 3D models, multireso-
lution techniques have been a major research interest dur-
ing the past decade. View-dependent simplification has been
identified as a powerful concept for applications requir-
ing interactive walkthroughs of large virtual environments.
Given the current viewpoint and viewing direction, the sys-
tem can determine the subset of the whole scene that con-
tributes most to the visual quality of the current frame. This
can significantly reduce the amount of data to be transmitted
and displayed, thus increasing the frame rate.

A common way to prepare an arbitrary triangle mesh for
interactive visualization is to simplify it iteratively by col-
lapsing pairs of vertices. Vertex pairs introducing the small-
est approximation error after contraction are processed first.
Then the simplification and refinement steps (see Figure
1) are reorganized to achieve any desired mesh resolution,
which doesn’t need to be uniform across the surface. A
well-known method of this kind is the Progressive Meshes
approach6 , which also supports view-dependent operation7.

The simplification procedure defines an implicit hierarchy
of pair contractions since a vertex needs to be present in the
mesh before it can be collapsed itself with another vertex.

�
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Figure 1: Basic operations for mesh simplification (edge
collapse) and refinement (vertex split) according to Hoppe7,
the more general case of simplification doesn’t require the
vertices to be connected by an edge (pair contraction, indi-
cated by dashed line)

This results in a binary tree which is uniquely defined by
the (geometrically reasoned) sequence of pair contractions in
the initial simplification phase. Methods that don’t take into
account the structure of this tree may produce a degenerate
tree. However, a well-balanced hierarchy is important for at
least two reasons:

� To obtain a portion of the mesh in highest detail, a com-
plete path from the hierarchy root to the leaf nodes corre-
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sponding to the requested region must be traversed. In a
degenerate tree, the length of this path is only bounded by
the total number of vertices in the mesh. This can cause
severe delays in transmission of the geometry, especially
if the available bandwidth is limited.

� The recently introduced CAME data structure4 identifies
vertices by their paths through the simplification hierar-
chy, allowing compact storage and transmission of adap-
tive multiresolution meshes. As in most mesh representa-
tions, a fixed number of bits of main memory is assigned
to vertex indices (i.e., paths) to avoid dynamic memory
management overheads. With 64 bits per vertex index,
meshes with up to 2 � 1015 vertices can be represented4 .
However, this number is dramatically reduced if the hier-
archy is not well-balanced. See Section 2.2 for details on
this data structure.

In Section 3, we present a method based on a modified error
metric that favors the creation of well-balanced trees to over-
come the problems mentioned above. Since this can override
the geometric decision on which pair to contract next, in Sec-
tion 4 the quality of the simplified meshes is compared be-
tween balanced and unbalanced simplification.

2. Related work

A brief review of the work on mesh simplification is given
in Section 2.1. We explain in more detail the CAME data
structure4 in Section 2.2 since it is one of the main appli-
cations of the method proposed in this paper. Finally some
techniques for triangle quality evaluation are reviewed in
Section 2.3.

2.1. Mesh simplification

Many view-dependent refinement schemes require a pre-
vious (non view-dependent) simplification procedure. We
therefore separately consider the simplification process and
the creation of a hierarchical data structure in the following
subsections.

2.1.1. Simplification sequence

In contrast to early mesh optimization techniques, where
only the final mesh is important8, more recent algorithms
try to achieve optimal quality at each simplification step.

In the Progressive Meshes approach6 , careful attention is
paid to preserve mesh appearance during simplification. A
sophisticated energy metric is defined, which takes into ac-
count the distance between the simplified and the original
mesh and attributes such as color and surface creases.

The simplification procedure based on the quadric error
metric2 uses a local accumulative error criterion to select the
next vertex pair to be contracted. While this method is simple
to implement, it also allows topological modifications of the
mesh.

2.1.2. Simplification hierarchy

Xia and Varshney propose the merge tree13, which is built
bottom-up by collapsing as many independent edges per
level as possible. While this avoids excessive degeneration,
the trees resulting from this method are rather sparse (see
Section 4.2.1 and the original work13 for examples).

The Progressive Meshes sequence defines an implicit hi-
erarchy of simplification steps as demonstrated in 7. Due to
the less constrained simplification procedure, hierarchies are
created with fewer levels than the merge trees13.

To prevent mesh foldovers, additional dependencies have
to be introduced. These can be stored explicitly7, implicitly1,
or be incorporated into the hierarchy, forming a directed
acyclic graph (DAG) instead of a binary tree3. Although the
tree balancing method presented in this paper doesn’t deal
with those dependencies, it is still possible (and highly rec-
ommended) to incorporate them into the data structure used
to represent the hierarchy.

Note that methods for regular meshes (such as
Lindstrom’s9) allow perfectly balanced hierarchies by def-
inition. However, such methods are restricted to heightfields
(e.g., digital terrain models).

2.2. Compressed adaptive multiresolution encoding

In the CAME data structure4, mesh vertices are referenced
such that triangle adjacency relations are maintained implic-
itly. In fact, neither at the decompression stage nor at the
rendering stage it is required to store information about a tri-
angle’s neighbors, allowing efficient storage and rendering.

In contrast to assigning more or less arbitrary indices to
mesh vertices6 or having vertex indices reflect simplification
order1, in CAME each vertex is identified by the path to be
taken in the simplification hierarchy from the root to the cor-
responding node. These node identificators are simply bit
strings with “0” for the left branch (vt ) and “1” for the right
branch (vu) as indicated in Figure 2(a).

However, the bit strings identifying the paths to the ver-
tices v1, v2, and v3 are highly redundant since they all have
a common prefix. It is therefore sufficient to store only those
portions of the strings relative to the node containing vertex
vs in Figure 2(b). This gives the relative node identificators
n1, n2, and n3, where n3 also has to include the number of
levels to go up in the hierarchy (dashed line in Figure 2(b))
to reach the common junction v

�

s of all vertex paths of tri-
angle f . Note that mesh simplification and encoding are in-
terleaved, i.e. the triangle f is removed from the mesh when
the edge between vt and vu (the ancestors of v1 and v2, re-
spectively) is collapsed. At the same time, n1, n2, and n3 are
determined and stored.

Updating triangle vertices is completely separated from
hierarchy traversal and doesn’t require any additional infor-
mation. The bit strings n1, n2, and n3 are stored together with
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Figure 2: Triangle f and the hierarchy paths to its vertices v1, v2, and v3

the vertex split record6 of vs. Therefore any information re-
quired to reconstruct triangle f is known as soon as vs is split
(see Figure 2). By evaluating the relative paths ni, each tri-
angle can autonomously update its vertices. Moving up and
down one level in the hierarchy simply corresponds to trun-
cating and appending one bit, respectively, at the end of the
bit string identifying a triangle’s vertex in the current level
of detail.

Although the relative node identificators n are kept on disk
with a variable number of bits, they are stored in main mem-
ory using fixed-sized variables to avoid dynamic memory
management overheads. Each n is packed into a 64 bit in-
teger, using six bits for n � up (see Figure 2), six bits for the
length of the bit string, and the remaining 52 bits for the bit
string itself. Assuming a well-balanced hierarchy, this is suf-
ficient to encode meshes with up to 251 � 2 � 1015 vertices.

2.3. Triangle quality

To achieve optimal image quality when rendering triangle
meshes, “well-shaped” (i.e., near equilateral) triangles are
desirable. The quality of a triangle with area a and side
lengths l0, l1, and l2 is commonly measured by its compact-
ness

c � 4
�
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Figure 3: Triangle shape plot

as defined by Guéziec5. The compactness value lies between
zero for a flat triangle (at least one inner angle is zero) and
one for an equilateral triangle (all inner angles are π

3 ).

A method for visualizing the triangle shape distribution of
the whole mesh has been proposed by Niepel et al.10. First,
each triangle’s sides are reordered such that l0 � l1 � l2.
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Figure 4: Vertex pair p with associated subtree depth d � p � ,
leaf nodes are vertices of input mesh, inner nodes are ver-
tices of simplified meshes, vs, vt , and vu refer to Figure 1

Then the triangle is scaled by 1
l2

and rotated such that the
longest edge (which obviously has unit length after scaling)
coincides with the unit vector along the x-axis (see triangle
T ��� Pa � Pb � P � in Figure 3). After these transformations, the
point P lies within the shaded area for each possible trian-
gle T . By applying this method to all triangles in the mesh,
we get an impression of the triangle shape distribution of the
mesh. Throughout the rest of this paper, only the part cor-
responding to the shaded area in Figure 3 is shown when
presenting triangle shape plots (see Figure 6 for examples).

Figure 3 also shows two special types of triangles: the

equilateral triangle Te with point Pe ��� 1
2 ��� 3

2 � T , and a right
triangle Tr with point Pr ��� 1

2 � 1
2 � T . Note also the circle Cr

which gives the locations of all possible right triangles (the-
orem of Thales). Finally, we show how Guéziec’s compact-
ness value c is related to the shape plot diagram by a set of
curves for c � 0 � 1 � � � 0 � 9.

3. Tree balancing

3.1. Modified error metric

During simplification, we want to minimize at each step the
newly introduced approximation error. This is achieved by
storing the error metric values of all possible candidate sim-
plification steps in a priority queue. The step corresponding
to the head of the queue is performed, and the procedure is
repeated until the queue is empty or any other user-defined
stop criterion is fulfilled. This strategy is found in many sim-
plification algorithms6 � 2 � 1.

Since the value of the error metric guides the simplifica-
tion process, we can easily incorporate other criteria by re-
defining the error metric. The main goal of this work is to
avoid degenerate hierarchies, so we define an error metric

that favors well-balanced hierarchies. Let E � p � be the value
of the error metric associated with contracting vertex pair p.
We then define the modified error metric

E
� � p � � 2bd 	 p 
 � E � p � � w ��� p ��� � � (1)

which contains the previous metric E � p � and the Euclidean
distance ��� p ��� of the two vertices involved. A factor is in-
cluded that penalizes deep hierarchies. The depth of the hi-
erarchy subtree below the vertex vs created after contraction
of p is called d � p � (see Figure 4), the value b is selected
by the user. If contracting p would create a deep branch in
the hierarchy, the term 2bd 	 p 
 becomes large and increases
E

� � p � . This in turn prevents p from being placed at the top
of the priority queue, allowing other pairs to be processed
first to create a well-balanced hierarchy. The exponential
penalty factor “overrides” geometric decisions for extremely
ill-balanced meshes, even at the cost of some quality degra-
dation of the resulting mesh (see also Section 4.2.2).

The pair distance ��� p ��� , weighted by another used-defined
parameter w, is included for the following reason. Several
mesh generation techniques (e.g., the marching cubes al-
gorithm) create triangles lying in the same plane. If E � p �
is chosen to approximate the geometric deviation between
the simplified and the original mesh (e.g., the quadric er-
ror metric2), then each pair contraction within the flat region
would be assigned zero error. Therefore no reasonable se-
quence of pair contractions could be found, not even after
applying the tree balancing term. Since we assume that the
input mesh doesn’t contain degenerate triangles, ��� p ����
 0
holds for all vertex pairs, allowing the tree balancing mech-
anism to work also in flat regions of the mesh

�
. Note, how-

ever, that we could choose E � p � ����� p ��� (which is done
by Xia and Varshney13), which would make the extra term
w ��� p ��� in Equation 1 superfluous.

For the experiments in Section 4 we use the parameter
values b � 1 and w � 0 � 01 unless otherwise noted.

3.2. Optimally balanced hierarchies

To evaluate the effectiveness of our tree balancing scheme,
we have to identify the optimal solution and compare it with
our results. We make use of the following properties:

� The maximum number of nodes in a binary tree of depth
d (i.e., d � 1 levels including root and leaves) is 2d � 1 � 1.

� Since each inner node in the simplification hierarchy
tree has exactly two children, the number of inner nodes
equals the number of leaf nodes minus one. Moreover, the
number of leaf nodes is the number V of vertices of the in-
put mesh. Therefore the total number of nodes is 2V � 1.

�
For the purpose of tree balancing, ��� p ��� could also be replaced by

a global constant, but this would make it difficult to assign proper
weights to the balancing term.
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We define the tree fill ratio

r � 2V � 1
2d � 1 � 1

� (2)

which equals one for a perfectly balanced binary tree (i.e., a
tree of depth d with 2d leaf nodes) and is otherwise less than
one. When applied to the CAME framework (see Section
2.2), it is very important to keep the tree fill ratio close to
one, otherwise even meshes with low primitive count could
exceed the fixed-length node identificators.

Requiring r � 1 in Equation 2 gives d � log2 V . Therefore
the minimal depth of the simplification hierarchy required
for an input mesh with V vertices is

dmin ��� log2 V � �
The experiments in Section 4.2.1 show the hierarchy depth
and the tree fill ratio r for different models.

4. Results

The six data sets in Figure 5 were used in our experiments.
Figure 5(a) is a digital city model where each building is rep-
resented as a protrusion of its ground polygon. The model in
Figure 5(c) shows an antique building that has been created
manually from reconstruction drawings. Figure 5(e) shows
a digital terrain model at low resolution, Figure 5(f) is a flat
square with a hole.

4.1. Input data evaluation

Before we examine the properties of mesh simplification al-
gorithms applied to the meshes of Figure 5, we determine
in Figure 6 their triangle shapes prior to simplification. Most
notably, there are regular patterns in Figures 6(a) to 6(c). The
circular arcs in Figures 6(a) and 6(c) are due to the fact that
most of the faces in the scene are rectangles which are di-
vided into two right triangles. Quantization in the recording
process is the reason for the pattern in Figure 6(b).

Figure 5(d) is an irregular triangle mesh, therefore its
shape plot (Figure 6(d)) doesn’t show any regularity as well.
In Figure 5(e), the number of different triangle shapes is re-
duced due to quantization, therefore Figure 6(e) is sparse.
Finally, there is only one single triangle shape in Figure 5(f),
resulting in a single dot in Figure 6(f).

4.2. Effects of tree balancing

4.2.1. Hierarchy depth

Now we examine the influence of the balancing parameter b
to the hierarchy depth. Table 1 and Figure 7 show the tree
depths depending on b for different models. Obviously the
unbalanced algorithm runs into great troubles in the more
regular cases, creating a tree with 217 levels (Figure 7(d))

for the flat model (Figure 5(f)). Similar results are obtained
for the terrain model, where 105 levels are generated by the
unbalanced algorithm (Figure 7(c)).

The problems are less severe for the other four models,
where the trees achieved by unbalanced simplification are
approximately one third deeper than the optimal solution
(see also Figures 7(a) and 7(b)). However, tree balancing re-
duces the depth close to the theoretical minimum (see Sec-
tion 3.2).

Table 2 shows the hierarchy depths for the bunny model
simplified by different algorithms. The deep hierarchy pro-
duced by the merge tree approach13 is due to the restrictive
definition of legal edge collapse transformations (edges with
overlapping regions of influence must not be collapsed at
the same level). A different (less restrictive) method to avoid
mesh folding is proposed by Hoppe7 and used in the CAME
framework4 with some modifications3, making hierarchies
with significantly fewer levels possible.

4.2.2. Mesh quality

Figures 8 and 9 explain how tree balancing affects mesh
quality in terms of triangle shapes. During simplification of
the city and bunny model, snapshots of the simplified mesh
were taken. For each of these meshes, triangle quality was
computed by Guéziec’s method, and the distributions are
shown in the histograms in Figures 8(a) to 8(d) (x-axis is
lower bound of compactness value interval, y-axis is nor-
malized number of triangles within this interval). The trian-
gle shape plots in Figures 9(a) to 9(d) and 9(e) to 9(h) refer
to the simplified city model at 3000 faces and the simplified
bunny model at 1000 faces, respectively, for different values
of the balancing parameter b.

The Figures indicate that the impact of tree balancing on
triangle shapes is neglectible for b � 1. At the same time,
b � 1 is sufficient to reduce the tree depth close to the limit,
as was demonstrated in Figure 7.

4.2.3. Approximation error

In addition to the triangle quality assessment of Section
4.2.2, we calculate the Hausdorff distance for different val-
ues of b applied during simplification. We consider a mesh
with quite uniform resolution (the bunny) and one with
largely varying resolution across its surface (the city model).
This property is illustrated in Figure 10 by the initial error
metric histograms of these two meshes.

The diagrams in Figure 11 show the Hausdorff distance
between the simplified and the original mesh as mesh sim-
plification proceeds � . Note that even for the city model the
balanced meshes are very close to the unbalanced one for
a face number of 103 (0.4% of the original size) or above.

�
Note that simplification goes from right to left in this case.
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(a) city model (248924 faces) (b) bunny (69451 faces) (c) Heroon (31372 faces)

(d) bones (4204 faces) (e) terrain (23955 faces) (f) flat surface (4022 faces)

Figure 5: Models used in this paper
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Figure 6: Triangle shape plots of the models in Figure 5
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model number of vertices depth of hierarchy tree fill ratio minimal depth
unbalanced b � 1 b � 3 unbalanced b � 1 b � 3

bones 2154 16 13 12 0.03 0.26 0.53 12

flat surface 2161 217 14 13 10 �
62 0.13 0.26 12

terrain 12246 105 15 15 3 � 10 �
28 0.37 0.37 14

Heroon 15667 27 19 17 1 � 1 � 10 �
4 0.03 0.12 14

bunny 34834 22 17 17 8 � 3 � 10 �
3 0.27 0.27 16

city 140245 24 19 18 8 � 4 � 10 �
3 0.27 0.53 18

Table 1: Depth of hierarchy and tree fill ratio for the models in Figure 5
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Figure 7: Depth of hierarchy for different models and varying balancing factor b

simplification algorithm depth of hierarchy tree fill ratio

Dynamic view-dependent simplification13 64 1 � 9 � 10 �
15

View-dependent progressive meshes7 23 0.0041

our method (b � 1) 17 0.27

Table 2: Comparison of the depth of hierarchy for the bunny model simplified by different algorithms
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Figure 8: Mesh quality (compactness value histograms)
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Figure 9: Mesh quality (triangle shape plots)
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Figure 10: Initial error metric histograms (x-axis is decadic logarithm of approximation error as defined by Garland and
Heckbert2, y-axis is number of edges in the original mesh within the corresponding approximation error interval)

Figure 11 also confirms the observation of Section 4.2.2 that
b � 1 is a good choice to keep the impact of mesh balancing
on geometry low.

5. Conclusions and future work

A modified error metric has been presented that can be used
as a replacement of common distance-based metrics in tradi-
tional priority queue guided mesh simplification algorithms.
The effects of the new metric have been studied with respect
to hierarchy depth and mesh quality. It has been shown that
tree degeneration, which occurred with unbalanced meth-
ods, can be avoided. Moreover, the hierarchies created by
our method are close to the optimal solution.

Mesh quality is evaluated by Gueziec’s compactness
value, a normalized shape plot, and by Hausdorff distance.
Our experiments show that the quality of the produced
meshes is not significantly degraded, although the modified

error metric can override geometric decisions during simpli-
fication.

The tree balancing method has been evaluated only during
creation of the multiresolution data structure. It would also
be interesting to examine its consequences in the much more
complex case of adaptive (view-dependent) simplification.
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