
EUROGRAPHICS 2002 / I. Navazo and Ph. Slusallek Short Presentations
(Guest Editors)

 The Eurographics Association 2002.

Texture Mapping on Doo-Sabin Subdivision Surfaces Using Multiple Images

Zhiyong Huang1 and Chee Seng Neo2
1Department of Computer Science, School of Computing

National University of Singapore, Singapore 117543
E-mail: huangzy@comp.nus.edu.sg

2Network infrastructure Systems Division, DSTA, Singapore 118253

E-mail: ncheesen@dsta.gov.sg

Abstract

We propose a texture mapping method on subdivision surfaces using multiple images and have implemented it on Doo-
Sabin scheme. At the beginning, one texture map is specified for each control mesh face respectively. In a subdivision
process, a new face of control meshes may fall into a region of multiple texture maps. To correctly texture map on such
faces, we need to further split the new faces into multiple parts so that each of them falls into a region of only one texture
map. A splitting algorithm is devised. The novelty of our work is on a generalization of the method of DeRose et al. for the
treatment of the use of multiple images.

Subject Descriptions:
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Surfaces Representation

Keywords:
Texture mapping, Subdivision surfaces, Multiple images

1. Introduction

Subdivision surfaces are important in geometric modeling
[7]. Modeling with subdivision surfaces, complex models
can be modeled with the efficiency of polygons and the
smoothness of NURBS and other spline surfaces without
trimming. Texture mapping is an important technique in
computer graphics [5]. The major texture mapping
method on subdivision surfaces was proposed by DeRose
et al. [2] and implemented on Catmull-Clark subdivision
surfaces using only one image as the texture map. In this
short presentation, we extend the algorithm to texture
mapping on subdivision surfaces using multiple images.
We implemented our method on Doo-Sabin subdivision
surfaces because their new faces of control meshes may
fall into a region of multiple texture maps, where the
method of DeRose et al. can not be directly applied. To
correctly texture map on such faces, we need to further
split the new faces into multiple parts so that each part
falls into a region of only one texture map. We have
addressed the problem of maintaining smoothness of
texture between any adjacent faces because of the use of
multiple images. The novelty of our work is on a

generalization of the method of DeRose et al. for the
treatment of the use of multiple images.

Problem formulation: At the beginning, multiple images
(texture maps) are defined for each face of the Doo-Sabin
initial control meshes respectively. In a subdivision
process, a new face of control meshes may fall into a
region of multiple texture maps. A splitting algorithm is
devised to further split the new face into multiple parts so
that each of them falls into a region of only one texture
map. Then, the method of DeRose et al. can be applied.

2. Background

Subdivision surfaces have been studied for about 20 years
for representing complex surfaces. The first two schemes
were given by Catmull and Clark (Catmull-Clark) [1] and
Doo and Sabin (Doo-Sabin) [3]. Different subdivision
surfaces proposed later include Loop [6] and Butterfly
scheme [4]. Recently, these techniques have received
more attention in computer graphics because of the many
benefits of subdivision [7].

We briefly describe the Doo-Sabin subdivision surfaces
because it will introduce the problem for the texture

http://www.eg.org
http://diglib.eg.org

Huang and Neo/ Texture Mapping on Doo-Sabin Subdivision Surfaces

 The Eurographics Association 2002.

mapping using more than one image: the new faces of
control meshes can fall into a region of multiple texture
maps. Doo-Sabin scheme is presented as a generalization
of a recursive bi-quadratic B-splines patch subdivision
algorithm. For non-rectangular meshes, it generates
surfaces that reduce to a standard B-spline surface except
at a small number of points, called extraordinary points.
The limit surface of the scheme is C1 continuous except at
extraordinary points. The scheme works on all meshes
regardless of their topology (Figure 1).

Figure 1: One refinement using Doo-Sabin scheme.

We use a cube for initial mesh (Figure 2). For each
subdivision, the new vertex can be derived from (1) the
average of four particular points taken in a polygon - the
vertex for which the new point is being defined, (2) the
two edge points (the midpoints of the edges that are
adjacent to this vertex in the polygon), or (3) the face
point (the average of all the points in the polygon).

(a) (b)

Figure 2: (a) New point is the average of 2 edge points, 1
face point, and 1 vertex point. (b) New points derived on

the cube.

There are three types of faces formed from subdivision: F-
faces, E-faces, and V-faces.

F-faces (Figure 3): For each n-sided face F in the original
polyhedron, linking the new vertices of F forms a new n-
sided face.

(a) (b)

Figure 3: (a) Forming an F-face on a pentagon face. (b)

Forming F-faces on the cube.
E-faces (Figure 4): For each edge E common to two faces
F and F’, a new 4-sided face is made by linking the images
of the end vertices of E on the faces F and F’.

(a) (b)

Figure 4: (a) Forming an E-face along an edge. (b)

Forming an E-face on the cube.

V-faces (Figure 5): For each n-spoked (n>2) vertex V,
where n faces meet, a new n-sided face is formed by
linking the new vertices formed by V on the faces meeting
at V.

(a) (b)

Figure 5: (a) Forming a V-face around a vertex. (b)
Forming a V-face on the cube

Now, we brief the texture mapping method of DeRose et
al. [2]. The goal is the construction of smooth texture
coordinates for Catmull-Clark surfaces. They have proved
that smoothly varying texture coordinates result if the
texture coordinates(s, t) assigned to the control vertices
are subdivided using the same subdivision rules as used
for the geometric coordinates (x, y, z). In other words,
control point positions and subdivision can be thought of
as taking place in a 5-space consisting of (x, y, z, s, t)
coordinates.

new
point

face
point

edge
point

vertex
point

edge
point

F E F’

F5 F4

F3

F2

F1

F

Huang and Neo/ Texture Mapping on Doo-Sabin Subdivision Surfaces

 The Eurographics Association 2002.

3. Our Work

In this section, we describe our work of texture mapping
on Doo-Sabin subdivision surfaces using multiple images.
When a new face falls into a region of one texture map
completely, the texture coordinates of the new vertices are
derived from the texture coordinates of the old vertex
coordinates using the same subdivision rule, i.e., the
method of DeRose et al. [2] can be applied directly. Thus,
we only need to focus on the case where a new face falls
into a region with multiple texture maps.

Without the loss of generality, a cube is used as the initial
shape throughout all subsections. Each face is mapped
with six chessboard images shown in different colors
(Figure 6). For example, in the initial polygon mesh, the
top, left, and front control meshes are mapped with texture
maps c1, c2, and c3 respectively.

(a) (b)

Figure 6: Faces of the control mesh are mapped with

different texture maps.

Our method is based on the different treatments, i.e.,
splitting, to F-face, E-face and V-face, the only three types
of the faces after each subdivision. The details of the
splitting are described from 3.1 to 3.3.

3.1 Texture mapping on F-faces

The case of a new F-face falling into a region of two
texture maps is illustrated in Figure 7 and 8. To derive the
texture coordinates of the vertices of the new F-face, we
need to split it, e.g., F4 in the illustration, into two parts so
that each part falls into a region of only one texture map
(Figure 8 (b)). Then, the texture coordinates of the new
vertices are derived from the texture coordinates of the
old vertex coordinates using the same subdivision rule
separately with two texture maps c1 and c3.

(a) (b)

Figure 7: After one refinement, F3 will form F4.

(a) (b)

Figure 8: (a) F4 is formed by F3. (b) Splitting of the new

E-face F4 into two equal parts.

We describe how a face is split now. In Figure 9, each
vertex is represented as (geometric coordinates, texture
coordinates) pair. Coordinates u0 to u3 (v0 to v3) are
defined in the texture map c1 (c2) with the texture
coordinates s0 to s3 (t0 to t3).

Figure 9: Each point is represented as (geometric
coordinates, texture coordinates) pair.

After splitting, we can interpolate in each face to derive
s’0, s’1, t’0, and t’1 (Figure 10 (a)) using the texture map c1
and c2. Now, we still have to find four more texture
coordinates (represented by ‘?” in Figure 10 (b)), two for
each texture map in order to map two texture maps on this
face.

(v2,t2)

(u2,s2)

(v1,t1) (v0,t0)

(v3,t3)

(u3,s3)

(u1,s1) (u0,s0)

F4

c1

c3
c1

c3

c1 c1

c3 c3

Huang and Neo/ Texture Mapping on Doo-Sabin Subdivision Surfaces

 The Eurographics Association 2002.

(a) (b)

Figure 10: (a) Four new texture coordinates formed. (b)
Two more texture coordinates for each texture are needed.

The computing for s3’ is as follows:

a= s2 – s3, b=s0’-s3,
s3’= s3 + (|a⋅b|/|a|2) a

The computing is similar for s2’ and other two texture
coordinates t3’ and t2’ from another texture map (Figure
11).

Figure 11: Computing diagram for s3’ and s2’.

The above computing is correct for regular texture
mapping (that means the texture coordinates form a
rectangle). The technique will fail for irregular texture
mapping as shown in Figure 12. Hence we need to adjust
the texture-coordinates to achieve smooth and continuous
texture mapping on the face.

(a)

(b) (c)

 Figure 12: (a) Discontinuity for irregular texture
mapping. (b) Discontinuity in texture mapping on F4. (c)

Corrected result.

In order to solve the problem, we need to compute the
texture coordinates s3n’, s2n’, t3n’, and t2n’as shown in
Figure 13.

Figure 13: Position of new texture coordinates to
maintain continuity.

The computing for s3n’ is as follows (Figure 14):

u = (s2 – s3)/||s2, s3||, v = (t2 – t3)/|| t2, t3||
norm_dist(s0’, s3’) = || s0’, s3’||/ || s2, s3||,
norm_dist(t0’, t3’) = || t0’, t3’||/ || t2, t3||,
norm_dist(s3’, t3’) = || s3,t3’||/ ||t2, t3||– || s3, s3’||/ || s2,s3||,
norm_dist(s3’, t3n’) =
(norm_dist(s0’,s3’)*norm_dist(s3’, t3’)) /
(norm_dist(s0’, s3’)+norm_dist(t0’, t3’),
s3n’ = s3’+u*norm_dist(s3’, t3n’)*||s2, s3||,
t3n’ = t3’–v*(norm_dist(s3’, t3’)-norm_dist(s3’,t3n’))*
||t2,t3||,

where ||x, y|| is the Euclidean distance between x and y.

The computing is similar for s2n’, t3n’, and t2n’.

Figure 14: Computing diagram for t3n’.

Finally, we discuss the case of an F-face falling into a
region of multiple texture maps (Figure 15). To derive the
texture coordinates for the new vertices, we split the new
F-face into three parts as shown in Figure 16 (b).

(v2,t2)

(u2,s2)

(v’0,t’0) (v’1,t’1)

(u’0,s’0) (u’1,s’1)

(v1,t1) (v0,t0)

(v3,t3)

(u3,s3)

(u1,s1) (u0,s0)

? ?

? ?
(v2,t2)

(u2,s2)

(v’0,t’0) (v’1,t’1)

(u’0,s’0) (u’1,s’1)

(v1,t1) (v0,t0)

(v3,t3)

(u3,s3)

(u1,s1) (u0,s0)

? ?

s0’ s1’

s3 s3’ a s2’ s2

b

t0’ t1’

s0’ s1’

A

A A

s3n’ s2n’
t3n’ t2n’

t0’ t1’

s0’ s1’

v

u

s3 s3n’ s3’ s2
t3 t3’ t3n’ t2

t0’

s0’

Huang and Neo/ Texture Mapping on Doo-Sabin Subdivision Surfaces

 The Eurographics Association 2002.

(a) (b)

Figure 15: After one refinement, F5 will form F6.

(a) (b)

Figure 16: (a) F6 is formed by F5. (b) Splitting of new V-

face into three parts.

The computation of the texture coordinates is illustrated in
Figure 17. s1 and s3 can be computed, as they are points
on the E-Faces. The texture coordinates for this faces is
derived as follows:

s0’ = 0.25*(s0 + s1 + s2 + s3),
s2’ = s2.

Figure 17: Computing diagram for s2’.

3.2 Texture mapping on E-faces

When the new E-face falls into a region of two different
texture maps, e.g., c1 and c3 for F3 in Figure 18 and E3 in
Figure 19. To compute the texture coordinates of the new
vertices, we need to split the new E-face into two parts
(Figure 20).

(a) (b)

Figure 18: After one refinement, E2 will form F3.

(a) (b)

Figure 19: After one refinement, E3 will form F8.

Figure 20: Splitting of new E-face into two parts.

As illustrated in Figure 21, for the new vertices a, b, c, d,
e, and f, texture coordinates s0’, s1’ and s2’ can be derived
directly. Then, the computing for s3’ is as follows:

s3’= s0’+ ||u0’,u3’||/ ||u0, u3|| (s3-s0).

Figure 21: Computing diagram for s3’.

s3

s3’ s1’

s0’

s2
s1

s0

F8

(u0,s0)

(u3,s3)
(u2’,s2’)

(u1’,s1’) (u0’,s0’)
(u3’,s3’)

c2 c3

c1
F6

Huang and Neo/ Texture Mapping on Doo-Sabin Subdivision Surfaces

 The Eurographics Association 2002.

3.3 Texture mapping on V-faces

V-face will not fall into a region with two texture maps for
a closed object. If it falls into a region with more than two
texture maps, e.g., three texture maps c1, c2, and c3 for
F5 as shown in Figure 22, to compute the texture
coordinates of the new vertices, we need to split the new
v-face into three parts as shown in Figure 23. The same
subdivision is applied for each part using the related
texture map.

(a) (b)

Figure 22: After one refinement, V2 will form F5.

Figure 23: Splitting of new V-face into three parts.

s2 is computed from F-faces (Figure 24). s1 and s3 are
computed from E-faces. Hence we need to find out s0.

Figure 24: Computing diagram for s2, where a refers to s0,

b refers to s1, c refers to s2, and d refers to s3.

The number of multiple-textures faces is a consistent for
any number of subdivisions, which is equal to the number
of vertices in the initial starting mesh. For example, the
cube has 8 vertices initially. After a subdivision
refinement, the number of multiple-textured faces is 8.
After the second refinement, the number of multiple-
textured faces is still 8. With this property, we can store

the initial texture coordinates s0, t0 and w0 in Figure 25
(a). These coordinates will be used as the center
coordinates for multiple-texture face as shown in the
figure 25 (b). Hence we can use this value to compute s0’.

(a) (b)

Figure 25: (a) Initial texture coordinates for initial mesh.
(b) Center texture coordinates for multiple texture mapped
face, where a refers to s0, b refers to t0, and c refers to w0.

4. Implementation and Results

The coding is done on a Pentium III PC running on
Windows NT using MS Visual C++ 6.0 and OpenGL
libraries. We have implemented the texture-mapping
algorithm for Doo-Sabin subdivision surfaces described in
Section 3.

From examples shown in Figure 26 to 28, each mesh gets
smoother after each refinement. We can see that the
textures are continuous across the boundaries of the
control meshes after each refinement. We show our
method also works for texture mapping using only one
texture map (Figure 29).

(a) Initial mesh. (d) Initial mesh.

(b) After one refinement. (e) After two refinements.

t0 w0

c3

c1 s0

c2

E

D F

A

C B
c2 c3

c1

Huang and Neo/ Texture Mapping on Doo-Sabin Subdivision Surfaces

 The Eurographics Association 2002.

(c) After two refinements. (f) After four refinements.

Figure 26: Six texture maps are used for (a)-(c) and eight

are used (d)-(f).

(a) Initial mesh. (b) After two refinements.

(c) After four refinements. (d) After six refinements.

Figure 27: Refinement done on a hexagon-based
pyramid. Six texture maps are used.

(a) Initial mesh: one image is cut to five parts and mapped

to each face respectively.

(b) After one refinement.

(c) After two refinements.

(d) After three refinements.

Huang and Neo/ Texture Mapping on Doo-Sabin Subdivision Surfaces

 The Eurographics Association 2002.

(e) After four refinements.

(f) After six refinements.

Figure 28: Use a natural image but cut it into 5 pieces to
map on the initial control mesh.

(a) Initial mesh.

(b) After one refinement.

(c) After two refinements.

(d) After three refinements.

Figure 29: Refinement done on an animal. Only one

texture map is used.

The split algorithm is integrated with the subdivision
process. The time complexity of each split is constant time
because only a limited number of new faces will be
created as described in the treatments of F-face, E-face
and V-face described in the previous section. Thus, the
time complexity of texture mapping algorithm is same as
that of the subdivision algorithm. Similarly, we can get the
same conclusion for the space complexity. For the
example shown in Figure 4.4, it took 0.001sec, 0.023sec,
and 0.107sec for the three times subdivision without
applying texture mapping. It took 0.003sec, 0.026sec, and
0.127sec with texture mapping. It confirmed our analysis,
so did other examples.

Our method of further splitting will not change the nature
of the subdivision scheme. From operation’s point of
view, this is an extension to Doo-Sabin (and other dual
based subdivision schemes). This is not required for
primal subdivision since faces do not get shifted around
with the dual operation. Our solution has arrived at
introducing another split when the dual is computed
hindering the smoothing algorithm. However, introducing
the new split on specific polygons will not affect the
nature of the sub-division because the new control mesh
faces resulted from splitting are contained and aligned
with the original ones. Their union is the original one.

Huang and Neo/ Texture Mapping on Doo-Sabin Subdivision Surfaces

 The Eurographics Association 2002.

5. Summary

We have proposed and implemented a method of texture
mapping on Doo-Sabin subdivision surfaces using
multiple images based on the idea of the further splitting.
We have shown and discussed the results of our method.

6. Acknowledgement

We would like to thank the reviewers of Eurographics
2002 Short Presentations for the comments. We have
updated the paper accordingly. This work was done when
Chee Seng Neo was studying as an undergraduate student
in Department of Computer Science, School of
Computing, NUS. It was partly supported by NUS
research grant R252-000-051-112.

7. References

[1] E. Catmull and J. Clark. Recursively Generated B-spline
Surfaces On Arbitrary Topological Meshes. Computer-Aided
Design, 10:350-355, 1978.

[2] T. DeRose, M. Kass, and T. Truong. Subdivision Surfaces in
Character Animation. Computer Graphics (SIGGRAPH ’98
Proceedings)(1998), 85-94.

[3] D. Doo and M. Sabin. Behaviour Of Recursive Division
Surfaces Near Extraordinary Points. Computer-Aided Design,
10:356-360, 1978.

[4] N. Dyn, D. Levin, and J. A. Gregory. A Butterfly
Subdivision scheme for Surface Interpolation with Tension
Control. ACM Trans. Gr. 9, 2 (April 1990), 160169.

[5] D. Hearn and M. P. Baker. Computer Graphics. Second
Edition. Prentice Hall, Inc. 1994. 553-560.

[6] C. Loop. Smooth Subdivision Surfaces Based On Triangles.
Master’s thesis, University of Utah, Dept. of Mathematics, 1987.

[7] J. Warren. Subdivision methods for geometric design.
Pre-print: http://www.cs.rice.edu/~jwarren/.

