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Abstract  
 
We propose a texture mapping method on subdivision surfaces using multiple images and have implemented it on Doo-
Sabin scheme. At the beginning, one texture map is specified for each control mesh face respectively. In a subdivision 
process, a new face of control meshes may fall into a region of multiple texture maps. To correctly texture map on such 
faces, we need to further split the new faces into multiple parts so that each of them falls into a region of only one texture 
map. A splitting algorithm is devised. The novelty of our work is on a generalization of the method of DeRose et al. for the 
treatment of the use of multiple images. 
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1. Introduction 
 
Subdivision surfaces are important in geometric modeling 
[7]. Modeling with subdivision surfaces, complex models 
can be modeled with the efficiency of polygons and the 
smoothness of NURBS and other spline surfaces without 
trimming. Texture mapping is an important technique in 
computer graphics [5]. The major texture mapping 
method on subdivision surfaces was proposed by DeRose 
et al. [2] and implemented on Catmull-Clark subdivision 
surfaces using only one image as the texture map. In this 
short presentation, we extend the algorithm to texture 
mapping on subdivision surfaces using multiple images. 
We implemented our method on Doo-Sabin subdivision 
surfaces because their new faces of control meshes may 
fall into a region of multiple texture maps, where the 
method of DeRose et al. can not be directly applied. To 
correctly texture map on such faces, we need to further 
split the new faces into multiple parts so that each part 
falls into a region of only one texture map. We have 
addressed the problem of maintaining smoothness of 
texture between any adjacent faces because of the use of 
multiple images. The novelty of our work is on a 

generalization of the method of DeRose et al. for the 
treatment of the use of multiple images. 
 
Problem formulation: At the beginning, multiple images 
(texture maps) are defined for each face of the Doo-Sabin 
initial control meshes respectively. In a subdivision 
process, a new face of control meshes may fall into a 
region of multiple texture maps. A splitting algorithm is 
devised to further split the new face into multiple parts so 
that each of them falls into a region of only one texture 
map. Then, the method of DeRose et al. can be applied. 
 
2. Background 
 
Subdivision surfaces have been studied for about 20 years 
for representing complex surfaces. The first two schemes 
were given by Catmull and Clark (Catmull-Clark) [1] and 
Doo and Sabin (Doo-Sabin) [3]. Different subdivision 
surfaces proposed later include Loop [6] and Butterfly 
scheme [4]. Recently, these techniques have received 
more attention in computer graphics because of the many 
benefits of subdivision [7].  
 
We briefly describe the Doo-Sabin subdivision surfaces 
because it will introduce the problem for the texture 
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mapping using more than one image: the new faces of 
control meshes can fall into a region of multiple texture 
maps. Doo-Sabin scheme is presented as a generalization 
of a recursive bi-quadratic B-splines patch subdivision 
algorithm. For non-rectangular meshes, it generates 
surfaces that reduce to a standard B-spline surface except 
at a small number of points, called extraordinary points. 
The limit surface of the scheme is C1 continuous except at 
extraordinary points. The scheme works on all meshes 
regardless of their topology (Figure 1). 
 

        
 

Figure 1: One refinement using Doo-Sabin scheme. 
 
We use a cube for initial mesh (Figure 2). For each 
subdivision, the new vertex can be derived from (1) the 
average of four particular points taken in a polygon - the 
vertex for which the new point is being defined, (2) the 
two edge points (the midpoints of the edges that are 
adjacent to this vertex in the polygon), or (3) the face 
point (the average of all the points in the polygon). 
 
 

                               
(a)   (b) 

   
Figure 2: (a) New point is the average of 2 edge points, 1 
face point, and 1 vertex point. (b) New points derived on 

the cube. 
 

There are three types of faces formed from subdivision: F-
faces, E-faces, and V-faces.  
 
F-faces (Figure 3): For each n-sided face F in the original 
polyhedron, linking the new vertices of F forms a new n-
sided face. 

                                        
(a)   (b) 

 
Figure 3: (a) Forming an F-face on a pentagon face. (b) 

Forming F-faces on the cube. 
E-faces (Figure 4): For each edge E common to two faces 
F and F’, a new 4-sided face is made by linking the images 
of the end vertices of E on the faces F and F’. 
 

                                              
(a)   (b) 

 
Figure 4: (a) Forming an E-face along an edge. (b) 

Forming an E-face on the cube. 
 
V-faces (Figure 5): For each n-spoked (n>2) vertex V, 
where n faces meet, a new n-sided face is formed by 
linking the new vertices formed by V on the faces meeting 
at V. 

                         
 

(a) (b) 
 

Figure 5: (a) Forming a V-face around a vertex. (b) 
Forming a V-face on the cube 

 
Now, we brief the texture mapping method of DeRose et 
al. [2]. The goal is the construction of smooth texture 
coordinates for Catmull-Clark surfaces. They have proved 
that smoothly varying texture coordinates result if the 
texture coordinates(s, t) assigned to the control vertices 
are subdivided using the same subdivision rules as used 
for the geometric coordinates (x, y, z). In other words, 
control point positions and subdivision can be thought of 
as taking place in a 5-space consisting of (x, y, z, s, t) 
coordinates. 
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3. Our Work 
 
In this section, we describe our work of texture mapping 
on Doo-Sabin subdivision surfaces using multiple images. 
When a new face falls into a region of one texture map 
completely, the texture coordinates of the new vertices are 
derived from the texture coordinates of the old vertex 
coordinates using the same subdivision rule, i.e., the 
method of DeRose et al. [2] can be applied directly. Thus, 
we only need to focus on the case where a new face falls 
into a region with multiple texture maps. 
 
Without the loss of generality, a cube is used as the initial 
shape throughout all subsections. Each face is mapped 
with six chessboard images shown in different colors 
(Figure 6). For example, in the initial polygon mesh, the 
top, left, and front control meshes are mapped with texture 
maps c1, c2, and c3 respectively. 
 

 
(a) (b) 

 
Figure 6: Faces of the control mesh are mapped with 

different texture maps. 
 
Our method is based on the different treatments, i.e., 
splitting, to F-face, E-face and V-face, the only three types 
of the faces after each subdivision. The details of the 
splitting are described from 3.1 to 3.3. 
 
3.1 Texture mapping on F-faces 
 
The case of a new F-face falling into a region of two 
texture maps is illustrated in Figure 7 and 8. To derive the 
texture coordinates of the vertices of the new F-face, we 
need to split it, e.g., F4 in the illustration, into two parts so 
that each part falls into a region of only one texture map 
(Figure 8 (b)). Then, the texture coordinates of the new 
vertices are derived from the texture coordinates of the 
old vertex coordinates using the same subdivision rule 
separately with two texture maps c1 and c3. 

 

     
(a)   (b) 

Figure 7: After one refinement, F3 will form F4. 
 

        
(a)   (b) 

 
Figure 8: (a) F4 is formed by F3. (b) Splitting of the new 

E-face F4 into two equal parts. 
 
We describe how a face is split now. In Figure 9, each 
vertex is represented as (geometric coordinates, texture 
coordinates) pair. Coordinates u0 to u3 (v0 to v3) are 
defined in the texture map c1 (c2) with the texture 
coordinates s0 to s3 (t0 to t3).  
 
 
 
 
 
 
 

 
 

Figure 9: Each point is represented as (geometric 
coordinates, texture coordinates) pair. 

 
After splitting, we can interpolate in each face to derive 
s’0, s’1, t’0, and t’1 (Figure 10 (a)) using the texture map c1 
and c2. Now, we still have to find four more texture 
coordinates (represented by ‘?” in Figure 10 (b)), two for 
each texture map in order to map two texture maps on this 
face. 
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(a)   (b) 
 

Figure 10: (a) Four new texture coordinates formed. (b) 
Two more texture coordinates for each texture are needed. 

 
The computing for s3’ is as follows: 
 

a= s2 – s3, b=s0’-s3, 
s3’= s3 + (|a⋅b|/|a|2) a 

 
The computing is similar for s2’ and other two texture 
coordinates t3’ and t2’ from another texture map (Figure 
11). 
 

 
 
 
 

Figure 11: Computing diagram for s3’ and s2’. 
 
The above computing is correct for regular texture 
mapping (that means the texture coordinates form a 
rectangle). The technique will fail for irregular texture 
mapping as shown in Figure 12. Hence we need to adjust 
the texture-coordinates to achieve smooth and continuous 
texture mapping on the face. 
 

 
 
 
 
 
 
 

(a) 
 
 
 
  

(b)  (c) 
               

 Figure 12: (a) Discontinuity for irregular texture 
mapping. (b) Discontinuity in texture mapping on F4. (c) 

Corrected result. 
 

In order to solve the problem, we need to compute the 
texture coordinates s3n’, s2n’, t3n’, and t2n’as shown in 
Figure 13. 
 

 
 
 
 
 
 
 
 

Figure 13: Position of new texture coordinates to 
maintain continuity. 

 
The computing for s3n’ is as follows (Figure 14): 
 

u = (s2 – s3)/||s2, s3||, v = (t2 – t3)/|| t2, t3|| 
norm_dist(s0’, s3’) = || s0’, s3’||/ || s2, s3||, 
norm_dist(t0’, t3’) = || t0’, t3’||/ || t2, t3||, 
norm_dist(s3’, t3’) = || s3,t3’||/ ||t2, t3||– || s3, s3’||/ || s2,s3||, 
norm_dist(s3’, t3n’) = 
(norm_dist(s0’,s3’)*norm_dist(s3’, t3’)) /  
(norm_dist(s0’, s3’)+norm_dist(t0’, t3’), 
s3n’ =  s3’+u*norm_dist(s3’, t3n’)*||s2, s3||, 
t3n’ = t3’–v*(norm_dist(s3’, t3’)-norm_dist(s3’,t3n’))* 
||t2,t3||, 
 

where ||x, y|| is the Euclidean distance between x and y.  
 
The computing is similar for s2n’, t3n’, and t2n’. 
 

 
 
 
 
 
 
 
 

Figure 14: Computing diagram for t3n’. 
 
Finally, we discuss the case of an F-face falling into a 
region of multiple texture maps (Figure 15). To derive the 
texture coordinates for the new vertices, we split the new 
F-face into three parts as shown in Figure 16 (b). 
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(a)    (b) 

 
Figure 15: After one refinement, F5 will form F6. 

 

          
(a)   (b) 

 
Figure 16: (a) F6 is formed by F5. (b) Splitting of new V-

face into three parts. 
 
The computation of the texture coordinates is illustrated in 
Figure 17.  s1 and s3 can be computed, as they are points 
on the E-Faces. The texture coordinates for this faces is 
derived as follows: 
 

s0’ = 0.25*(s0 + s1 + s2 + s3), 
s2’ = s2. 

 
 
 
 
 
 
 
 

Figure 17: Computing diagram for s2’. 
 
3.2 Texture mapping on E-faces 
 
When the new E-face falls into a region of two different 
texture maps, e.g., c1 and c3 for F3 in Figure 18 and E3 in 
Figure 19. To compute the texture coordinates of the new 
vertices, we need to split the new E-face into two parts 
(Figure 20). 
 

 
(a) (b) 

 
Figure 18: After one refinement, E2 will form F3. 

 

 
(a)   (b) 

 
Figure 19: After one refinement, E3 will form F8. 

 

 
 

Figure 20: Splitting of new E-face into two parts. 
 

As illustrated in Figure 21, for the new vertices a, b, c, d, 
e, and f, texture coordinates s0’, s1’ and s2’ can be derived 
directly. Then, the computing for s3’ is as follows: 
 

s3’= s0’+ ||u0’,u3’||/ ||u0, u3|| (s3-s0).  
 
 

 
 
 
 
 
 

Figure 21: Computing diagram for s3’. 
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3.3 Texture mapping on V-faces 
 
V-face will not fall into a region with two texture maps for 
a closed object. If it falls into a region with more than two 
texture maps, e.g., three texture maps c1, c2, and c3 for 
F5 as shown in Figure 22, to compute the texture 
coordinates of the new vertices, we need to split the new 
v-face into three parts as shown in Figure 23. The same 
subdivision is applied for each part using the related 
texture map. 
 

   
(a)   (b) 

 
Figure 22: After one refinement, V2 will form F5. 

 
 
 
 
 
 
 

Figure 23: Splitting of new V-face into three parts. 
 
s2 is computed from F-faces (Figure 24). s1 and s3 are 
computed from E-faces. Hence we need to find out s0. 

 
Figure 24: Computing diagram for s2, where a refers to s0, 

b refers to s1, c refers to s2, and d refers to s3. 
 
The number of multiple-textures faces is a consistent for 
any number of subdivisions, which is equal to the number 
of vertices in the initial starting mesh. For example, the 
cube has 8 vertices initially. After a subdivision 
refinement, the number of multiple-textured faces is 8. 
After the second refinement, the number of multiple-
textured faces is still 8. With this property, we can store 

the initial texture coordinates s0, t0 and w0 in Figure 25 
(a). These coordinates will be used as the center 
coordinates for multiple-texture face as shown in the 
figure 25 (b). Hence we can use this value to compute s0’. 

                            
(a)  (b) 

 
Figure 25: (a) Initial texture coordinates for initial mesh. 
(b) Center texture coordinates for multiple texture mapped 
face, where a refers to s0, b refers to t0, and c refers to w0. 
 
4. Implementation and Results 
 
The coding is done on a Pentium III PC running on 
Windows NT using MS Visual C++ 6.0 and OpenGL 
libraries. We have implemented the texture-mapping 
algorithm for Doo-Sabin subdivision surfaces described in 
Section 3.  
 
From examples shown in Figure 26 to 28, each mesh gets 
smoother after each refinement. We can see that the 
textures are continuous across the boundaries of the 
control meshes after each refinement. We show our 
method also works for texture mapping using only one 
texture map (Figure 29). 
 

  
(a) Initial mesh. (d) Initial mesh. 

 

  
(b) After one refinement. (e) After two refinements. 
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(c) After two refinements. (f) After four refinements. 

 
Figure 26: Six texture maps are used for (a)-(c) and eight 

are used (d)-(f). 
 

  
(a) Initial mesh.                   (b) After two refinements. 

 

   
(c) After four refinements.           (d) After six refinements. 
 

Figure 27: Refinement done on a hexagon-based 
pyramid. Six texture maps are used. 

 

 
(a) Initial mesh: one image is cut to five parts and mapped 

to each face respectively. 
 

 
(b) After one refinement. 

 

 
(c) After two refinements. 

 

 
(d) After three refinements. 
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(e) After four refinements. 

 

 
(f) After six refinements. 

Figure 28: Use a natural image but cut it into 5 pieces to 
map on the initial control mesh. 

 

 
(a) Initial mesh. 

 

 
(b) After one refinement. 

 

 
(c) After two refinements. 

 

 
(d) After three refinements. 

 
Figure 29: Refinement done on an animal. Only one 

texture map is used. 
 
The split algorithm is integrated with the subdivision 
process. The time complexity of each split is constant time 
because only a limited number of new faces will be 
created as described in the treatments of F-face, E-face 
and V-face described in the previous section.  Thus, the 
time complexity of texture mapping algorithm is same as 
that of the subdivision algorithm. Similarly, we can get the 
same conclusion for the space complexity.  For the 
example shown in Figure 4.4, it took 0.001sec, 0.023sec, 
and 0.107sec for the three times subdivision without 
applying texture mapping. It took 0.003sec, 0.026sec, and 
0.127sec with texture mapping. It confirmed our analysis, 
so did other examples. 
 
Our method of further splitting will not change the nature 
of the subdivision scheme. From operation’s point of 
view, this is an extension to Doo-Sabin (and other dual 
based subdivision schemes). This is not required for 
primal subdivision since faces do not get shifted around 
with the dual operation.  Our solution has arrived at 
introducing another split when the dual is computed 
hindering the smoothing algorithm. However, introducing 
the new split on specific polygons will not affect the 
nature of the sub-division because the new control mesh 
faces resulted from splitting are contained and aligned 
with the original ones. Their union is the original one. 
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5. Summary 
 
We have proposed and implemented a method of texture 
mapping on Doo-Sabin subdivision surfaces using 
multiple images based on the idea of the further splitting. 
We have shown and discussed the results of our method.  
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