
EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek
(Guest Editors)

Short Presentations

Real-time 3D Deformations by Means of Compactly
Supported Radial Basis Functions

Nikita Kojekine, Vladimir Savchenko
�
, Mikhail Senin

�
, Ichiro Hagiwara

Faculty of Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.

Abstract

We present an approach to real-time animation of deformable objects. Optimization of algorithms using compactly
supported radial basis functions (CSRBF) allows us to generate deformations performed fast enough for such
real-time applications as computer games. The algorithm described in detail in this paper uses space mapping
technique. Smooth local deformations of animation objects can be defined by only a moderate number of control
vectors and locality of deformations can be defined by radius of support. We also present examples of animations
and speed benchmarks.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics - Three-Dimensional
Graphics and Realism]: Animation

1. Introduction

Many recent works have focused on using shape transforma-
tion as a basic operation in computer graphics. Here, we con-
sider the problem of transformation a given geometric shape
into another in a continuous manner. In fact, if we want to
use the method of fitting a surface into a set of control points
as a design tool, it is important to assure that our fitting
method does what our intuition would expect. On the other
hand, we want to perform such deformations in real-time.
Important examples of surface deformations have been in-
vestigated during the past few years. Various strategies were
proposed to minimize user interaction; however, the prob-
lem of fitting a surface to a set of control points in real-time
still remains a largely unsolved issue of great practical im-
portance.

Our main goal was to obtain an algorithm performing
fast, plausible and smooth deformations. For this purpose we
optimize the algorithms to reduce their computation time.
For example, these algorithms can be applied, in computer

�
Faculty of Computer and Information Sciences, Hosei University,

3-7-2 Kajino-cho Koganei-shi, Tokyo 184-8584, Japan.�
Moscow Institute of Physics and Technology, Kerchenskaya str.,

house 1"A", building 1, Moscow 113-303, Russia

games. This optimization not only allows to perform com-
plex deformations in real-time, but also saves memory re-
quired for animation. For example, in the most popular 3D
game engines (Quake, Unreal, Half-Life) for skeleton ani-
mation of models all coordinates of all points of an object
are stored for every frame of animation, what leads to huge
amount of data stored for each model. When we use the de-
scribed technique, only a small amount of additional infor-
mation is needed.

In this paper we propose a CSRBF-based 1 mechanism
for calculating the interpolated points of a deformed surface
of the animation object. This paper extends the work of Ko-
jekine et al. 2, where software tools based on CSRBFs were
designed and applied for surface reconstruction of 3D geo-
metric objects.

The rest of the paper is organized as follows. The next sec-
tion gives an overview of shape transformation techniques
and of works related to animation and surface reconstruc-
tion and deformation problems. In Section 3 we discuss the
mathematical background of our algorithm, and in Section
4 we present the algorithm. Sections 5 and 6 show exam-
ples of animation and speed benchmarks. Section 7 contains
conclusions and discusses the future work.

c
�

The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org


N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara / 3D Deformations by CSRBFs

2. Related work

Most existing shape transformation techniques fall into one
of the three following categories:

� mapping the space onto itself;
� metamorphosis;
� modification of defining functions.

It is out of scope of this paper to make a detailed review
of all transformation techniques, we only briefly mention the
most popular ones. An interested reader can find more refer-
ences in the paper 3.

A mapping can be controlled by numerical parameters of
predefined functions, by set of control points and by differ-
ential equations. Free-Form Deformations (FFD) are well-
known examples of space mappings, that were pioneered by
Sederberg and Parry 4 and extended in 5, 6, 7. User-defined
point lattices control FFD. Borrel and Bechmann 8 proposed
general deformation techniques for space mappings. These
techniques provide forward and inverse mappings that suite
better to implicit surfaces.

Most of deformation methods are too global to provide
series of small bumps defined by arbitrary points. Although
the method of Borrel and Rappoport 9 has been designed for
localized space mappings, it can lead to non-intuitive results
when bounding spheres of several control points intersect.

The survey 10 discusses common mathematical founda-
tions of the space deformation techniques. Vast literature is
devoted to the subject of scattered data interpolation, which
can be used for a space mapping, and if applied to some point
set in the space, it changes this set into a different one. One
of the approaches is to use methods of scattered data inter-
polation, based on the minimum-energy properties 11, 12, 13.
These methods are widely discussed in literature (see 14, 15).
As far as we know, the first publication on use of discrete
2D landmark points is that of Bookstein 16, 17. In paper 18

Bookstein discussed a method where destination points are
selected to form the configuration of minimum bending en-
ergy.

The benefits of using radial basis functions (RBF) have
been recognized in many works and RBFs were adapted
for 2D and 3D computer animation 19, 20, medical applica-
tion 21, 16, and for reconstruction from 3D scattered data. To
reduce the processing time special methods were developed
for thin plate splines and discussed in 22, 23, see also recent
publications 24, 25.

Actually, the methods that use the RBFs can be divided
into three groups. The first group consists of "naive" meth-
ods, that are restricted to small problems, but they work quite
well in applications that deal with shape transformation (see,
for example 26, 20). This methods are computationally expen-
sive even for small data sets and cannot be used for real-time
animation. The second group consists of fast methods that
allow modeling of large data sets 25, 22.

The third and the last group are the CSRBFs 1. Re-
cently they were applied to reconstruction of scattered data
sets 27, 2. The very good overview of related works, problems
and limitations could be found in the paper 28, which also de-
scribes the problems of scattered data interpolation and in-
troduces very fast algorithm for constructing C2-continous
interpolation functions.

Figure 1: An example of facial animation.

The ability to transform the shape of a surface is use-
ful in animation, especially for face simulation. The prob-
lems in this research area still remain among the most diffi-
cult. Researches have devoted significant efforts to this prob-
lem 32, 33. For more references, see 34. In recent years, mod-
eling virtual actors has attracted great interest and a lot of
attention has been paid to the synthesis of the face expres-
sion of the speaker. Two approaches have been dominant:
the first one works with 3D models to control the face move-
ments, and the second one uses 2D images. Those who are
interested can visit the web site 35 to look over examples of
the generated actors. Our approach can also be applied for
real-time facial animation, see for example Figure 1 (bench-
mark details are in Figure 10 at the end of this article).

Shape transformation is also a useful tool for forensic
identification. The book 36 presents a good overview of
existing methods for shape reconstruction and modifica-
tion. The attempts to simulate visco-elastically deformable
materials have been concentrated on mesh descriptions
of cloth and other soft objects such as the muscles and
skin 37, 38, 39, 40, 41, 42, 43, and mostly used the physics-based
simulation. In addition to the shape modification, there is a
challenging problem of modeling three-dimensional faces.
We refer interested readers to the paper 44. 3D geometric
modeling systems based on shape deformations have been
proposed by many researchers who use the simple idea that
tangible geometry of deformations can be defined by the
user-defined starting and destination points. Probably this
approach was firstly implemented for 2D morphing in the
papers of Wolberg 45, Beier and Neely 46.

It is clear that the problem of producing fast, plausible
(especially for such complex cases as facial simulations) and
smooth deformations is an important and largely unsolved
problem.

c
�

The Eurographics Association 2002.



N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara / 3D Deformations by CSRBFs

3. Shape deformations using CSRBF

One of the approaches to the animation problem is to warp
the space where an object is embedded. The object can con-
tain a skeleton, which simulates its characteristic behavior
(see 29, 30), and an outer surface layer. In this case overall
shape transformation can be represented as the sum of global
skeleton-based displacements and local displacements are
defined using scattered data interpolation technique. A uni-
fied approach can also be applied, see 31.

To describe a local deformation of the outer surface layer,
we can construct a mapping of the space that is determined
by the mapping of a small number of control points — points
whose images are predefined (see Figure 2.a). The space
mapping is considered to be an elastic deformation, follow-
ing various papers, see for instance 18.

Interpolations of scattered data using CSRBFs demon-
strate good blending features and an example shows that they
produce what our intuition would expect. Figures 2.b and 2.c
illustrate the fact that the resulting mapping depends on a set
of control vectors and the radius of support that defines the
locality of the deformation.

a

b c

Figure 2: a — An example of a transformation of a brick.
Vectors show "mapping" directions and values; b, c — Dif-
ferent possible configurations of the initial form depending
on the radius of support.

To construct an
� 3 � � 3 mapping we can use the

CSRBFs multivariate interpolation. Suppose a set of pair-
wise distinct control points X �����x1 �	�	�	�
� �xN �� � 3 is given.
Suppose further, we know the values g1 �	�	�	�
� gN at the con-
trol points and we search for a continuous function that in-
terpolates these values at the control points. Then the RBF
interpolant has the form

sg � X � �x ��� N

∑
i � 1

αiφ �	� �x ���xi � ��� p � �x � (1)

where ����� denotes the usual Euclidean norm in
� 3 , and p is

a low degree polynomial. The coefficients α j and the poly-
nomial p are determined by the interpolation conditions

sg � X � �x j ��� gi � 1 � i � N � (2)

and the additional requirements

N

∑
i � 1

αiq � �x j ��� 0 (3)

for all polynomials q of degree deg � q ��� deg � p � . This
method of interpolation exactly reproduces polynomials of
degree m � deg � p � , whenever interpolation is unique.

In our application we follow Wendland 1, who constructed
for

� 3 a new class of positive definite and compactly sup-
ported radial functions, that have the form

φ � r ���
�

ψ � r � � 0 � r � 1
0 � r � 1 � (4)

where ψ � r � is a univariate polynomial, and its radius of sup-
port is equal to 1. Scaling of the function ψ � r � α � � allows
any desired radius of support α.

In our animation application we have selected a simple
function ψ2 � 0 � r �!� � 1 � r � 2" , which supports C0 continuity.
This function is simple to calculate and, according to our
experiments, it produces plausible deformations. However,
other functions, that support higher continuity, can be used
(see Figure 9). For more references see 47.

The interpolation is unique because φ is a positive definite
function in our case.

Given two data sets in
� 3 , �si �#� xi

s � yi
s � zi

s � � 1 � i � N
for a non-deformed object, and �di �$� xi

d � yi
d � zi

d � � 1 � i � N
for the deformed object, we can construct a space mapping
T :

� 3 � � 3 which is a CSRBF interpolation of form (1) in
each of its components. We use a linear polynomial p � �x �%�
β0 � β1x � β2y � β3z. This guarantees that T will be an affine
transformation whenever the interpolation data admit such
transformation. The conditions (2) and (3) present a sys-
tem of liner algebraic equations (SLAE) on the coefficients
αi � β0 � β1 � β2 � β3.

Since function φ is compactly supported, the resulting
SLAE has a sparse matrix. We have developed an algorithm
(to be discussed in Section 4.2), which allows to sort ini-
tial data points in a special way, so that the resulting ma-
trix T , which has the size � N � 4 �'& � N � 4 � , is not only
sparse, but also has a band-diagonal submatrix A �(� ai j � ,
ai j � φ �	� �xi �)�x j � � , 1 � i � j � N of size N & N. After con-
structing this band-diagonal submatrix it is possible to store
it in memory in a very compact way and also to solve the
SLAE by using a fast and simple direct solver. These speeds
up computations significantly and makes it possible to use
our approach in real-time animation.

c
�

The Eurographics Association 2002.



N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara / 3D Deformations by CSRBFs

4. Algorithm

The general scheme of our algorithm consists of the follow-
ing steps:

� sorting scattered data,
� constructing a SLAE,
� solving the SLAE,
� evaluating the transformation.

While the solution of the system is the limiting step, con-
structing the matrix and evaluating the functions may also
be computationally expensive.

4.1. Sorting scattered data

User defines the set of control vectors to describe the de-
sired shape deformation. This set of control vectors can be
defined as two lists of points. The first list contains initial
positions of control points, possibly lying on the surface of
the object. The second list contains destination positions of
control points. First list is used to create a submatrix A; this
is the left-hand side of the corresponding SLAE. The second
list is used to create the right-hand sides for displacements
along x, y and z directions.

We use space recursive subdivision for sorting the first list
of control points, because it is an elegant and popular way of
sorting scattered 3D data. An efficient approach based on the
use of variable-depth octree for space subdivision allows us
to obtain the resulting matrix as a band-diagonal matrix and
to reduce the computational complexity.

Our first goal is to build an octree (see for example 48)
data structure from the original point data. We follow the
procedure described in 2. This octree is used to search for
neighbors of any given point from the given N points. The
neighbors are points of the sphere of radius R, whose cen-
ter is located at the given point, where R is the user-defined
radius of support for CSRBF.

4.2. Constructing a SLAE

Figure 3 presents a pseudo-code for our algorithm that is
used to obtain a new order (output_list) of initial con-
trol points (input_list). In this way the submatrix A
is constructed as band-diagonal. The maximum size of the
band equals the maximum possible number of neighbors in-
side the selected radius of support R of a point from ini-
tial control points list. A typical example of the constructed
band-diagonal submatrix is illustrated in Figure 4.

Obtaining submatrix A as band-diagonal has two advan-
tages. One is that it is possible to store this matrix in a com-
pact way, another one that it can be solved by using a simple,
reliable and fast direct solver. In our application, we use the
so-called profile form or the slightly modified Jennings en-
velope scheme 49 to store a band-diagonal matrix. To store
the submatrix A, an array can be used for diagonal elements;

input_list — unsorted list of points
output_list — sorted list of points
neighbors_ids_list — temporary list of integers

i := 0
while (input_list.length � 0) do
begin

// add first element of input_list to output_list
// remove first element from input_list
output_list.add(input_list[0]);
input_list.remove(0);
while (i < output_list.length) do
begin

// find in input_list all neighbors of output_list[i] and
// put their indices into neighbors_ids_list
// this can be done with the help of octree
neighbors_ids_list=

FindNeighbors(output_list[i],input_list);
for j := 0 to neighbors_ids_list.length do
begin

// add neighbor element of input_list to output_list
// remove this element from input_list
output_list.add(input_list[neighbors_list[j]]);
input_list.remove(neighbors_ids_list[j]);

end
end

end

Figure 3: Algorithm of sorting initial data for obtaining a
band-diagonal matrix.

values of non-diagonal elements and correspondent indices
of the first non-zero elements in the matrix lines are placed in
two additional arrays. Naturally, the size of the band depends
on the selected radius of support R. For the example shown
in Figure 1 the storing of the full matrix of floats will result
in 4096 bytes required, while with R � 0 � 1 it will be only
276 bytes using our scheme. With R � 0 � 2 it will be only
332 bytes (the result shown in the picture), and 1148 bytes
for R � 0 � 5. In the example shown in Figure 8 our storage
requires only 6320 bytes, not 33856 bytes as the full stor-
age requires. This issue is more important for large defor-
mations. Note that user-selected radius of support R defines
both the locality and the speed and memory requirements for
the deformation.

Figure 4: An example of a typical band-diagonal matrix
constructed by the proposed algorithm.

4.3. SLAE solution

Note that solving any sparse system has goals of saving
time and space. The attractiveness of using implicit meth-
ods such as conjugate gradient methods for large sparse sys-
tems has been well recognized in different applications. If

c
�

The Eurographics Association 2002.



N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara / 3D Deformations by CSRBFs

A is positive definite and symmetric, the algorithm cannot
break down, but only in theory 50. Conjugate gradient meth-
ods work well for matrices that are well-conditioned. In
practical applications, this restriction can limit the accuracy
with which a solution can be obtained, and thus we prefer
to use explicit SLAE solution methods for matrices stored
in profile form. The advantage of Gaussian LU decompo-
sition 51 has been well recognized and many software rou-
tines were developed. For a symmetric and positive definite
matrix, a special factorization, called Cholesky decomposi-
tion, is about two times faster than alternative methods for
solving linear equations. Unfortunately, we could not find a
"substantial" collection of routines for sparse matrix calcula-
tion in 52 which forced us to develop in C++ our own tool for
SLAE solution. A combination of block Gauss solution and
Cholesky decomposition was proposed by George and Liu
in 50, and we follow their proposal in our software tool. After
breaking up one linear set into a triangular set of equations,
these equations can be solved by forward and back substi-
tution three times, for three right-hand sides. When these
steps of computations are completed, the unambiguous in-
formation needed to create an animation for any number of
frames consists of the selected radius of support, initial con-
trol points (3N floats), spline coefficients for x, y and z (3N
floats), and the points order after sorting (N integers). We
can also reorder points in model description and do not store
the points order.

4.4. Evaluating the transformation

Computing the transformations is the most critical part in the
sense of time optimizations for real-time applications. The
algorithm shown in Figure 5 demonstrates the calculation of
full transformation by CSRBFs. For every point, which is in-
side the radius of support, the distance is calculated once and
after that space transformations are calculated according to
a phase parameter (value varies from 0 to 1) that defines the
total deformation. The deformation process is regarded as
taking place step by step so that the transition from a known
state to a new one takes place with small increments. That
is, intermediate transformations for every step of animation
are generated according to the phase parameter.

5. Software framework

We developed the animation algorithm within a system con-
sisting of a collection of C++ libraries that provide support
for 3D modeling and interaction using open source library
"The Visualization Toolkit" (VTK) 53. The animation algo-
rithm operates on the region of animation object selected by
the user. Nevertheless, the opportunity to extend or local-
ize the active (deformable) area allows us to decrease quite
tedious process of selecting starting and destination points.
Our C++ class for shape transformation can be used in the
pipeline execution method (lazy mode) of VTK, that actually

input_points_list — initial model points
output_points_list — points after deformation
spline_coefficientes_list — coefficients of spline
neighbors_ids_list — temporary list of integers

// for each point compute displacement
for i:=0 to input_points_list.length-1 do
begin

// initial displacement
dx := 0;
dy := 0;
dz := 0;
// find all neighbours of current point
// and put their indices into neighbors_ids_list
// this can be done with help of octree
neighbors_ids_list =

FindNeighbors(input_points_list[i]);
for j:=0 to neighbors_ids_list.length-1 do
begin

// calculate φ � � �x ���xi � �
phi := Phi(input_points_list[neighbors_ids_list[j]],

input_points_list[i]);
// correct displacement in accordance with
// influence of current neighbor;
// spline coefficients could be calculated earlier
dx := dx + SplineCoefficient[j].x*phi;
dy := dy + SplineCoefficient[j].y*phi;
dz := dz + SplineCoefficient[j].z*phi;

end
output_points_list[i].x := input_points_list[i].x + dx;
output_points_list[i].y := input_points_list[i].y + dy;
output_points_list[i].z := input_points_list[i].z + dz;

end

Figure 5: Algorithm for computing shape transformation.

means that it can be combined with other shape transforma-
tion classes, including the other instances of the same class
(for example, several CSRBFs shape transformations can be
applied with different radii to the same object to calculate
the object deformation according to its local coordinate sys-
tem). The complete scene is represented as a collection of
animation objects. In addition, we support movements of the
object to provide:

� translation of the local coordinate system of an object
along some trajectory (movement);

� change of orientation of the local coordinate system of the
object (rotation); It is assumed that while applying trans-
formation the center of gravity of the object is not moving.

The animation object can be constructed from several parts
where one can apply:

� different independent transformations for various parts of
an object, and

� different colors and textures for various parts of an object.

The created software system consists of two applications:

� "Picker" provides creation and translation of transforma-
tions. This program enables the user to input interactively
control points and vectors for CSRBF spline calculation.
The screenshot of the "Picker" level interface is shown in
Figure 6.

� "Animation composer". This interface enables the user
with possibility to define trajectory interactively and to

c
�

The Eurographics Association 2002.



N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara / 3D Deformations by CSRBFs

provide orientation and timing marks (i.e., the sched-
ule of the movement of an object along its trajectory).
Kochanek-Bartels interpolating spline 54 is used for ani-
mating the movement and quaternion calculus 55 is used
for animating the rotation. The screenshot of this interface
is shown in Figure 7.

Figure 6: The "Picker" interface.

Figure 7: The "Animation Composer" interface.

The "Animation composer" program also supports an
"Animation" mode. In this mode the program displays an-
imated objects in accordance with their defined trajectories,
rotations and transformations. This program also enables
user to save animation results as a movie in personal com-
puter movie file formats (full frames avi). Our interface level
software was designed and tested for use on a PC under Win-
dows (9x, ME, NT, 2000, XP). Command line interface ver-
sion of the "Animation" program was also developed and
tested on both Windows and Linux platforms.

6. Testing and benchmarking the animation software
system

We used a polygonal model of the fish, defined by 975 ver-
tices and 1119 polygons, to test our animation software sys-
tem (desrcibed software and examples are available to down-

load from our web page 57). 92 control vectors were used
to define the deformation of the mouth, tail and fin. Re-
sults of applying shape transformation for fish animation are
shown in Figure 8. Two frames shown are selected from the
generated animated images. The average speed of visual-
ization and computation of transformations was about 632
frames/sec.

Another example of real-time transformations is shown
in Figure 9. The sphere is bouncing inside a polygonal
box. The box is deformed according to transformation vec-
tors defined for each collision direction using C2-continous
ψ3 � 1 � r ��� � 1 � r � 4" � 4r � 1 � (see 47) function. Such real-time
deformations can be used to model elastic environment (i.e.
walls, ceiling) in computer games. In spite of the fact that
in this example we have to perform full computations for
every frame, the real-time rendering speed (72 frames/sec.)
was achieved.

Benchmark details for this examples are bellow in Fig-
ure 10. The screen resolution was 1024 & 768, 32 bpp.

Figure 8: Fish animation.

Figure 9: Bouncing sphere.

7. Conclusions

In this contribution we have presented an approach for sur-
face modification based on CSRBFs. Experimental results
demonstrate that our approach allows to generate plausible
deformations, that is, they exhibit good blending features,
and they produce what our intuition would expect. The algo-
rithm was developed using C++ classes and is fully portable
to the most of the modern computer systems. We have found
that CSRBFs produces good results in visual appearance,
processing time and memory requirements.

As our benchmarks (see Figure 10) show, the average
number of animated frames can be up very high on mod-
ern personal computers. This means that the algorithm for

c
�

The Eurographics Association 2002.



N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara / 3D Deformations by CSRBFs

The model size, the number of vectors
defining the deformation and the radius
of support r

Rendering
speed in
frames per
second (fps.)

Figure 1: The animation model is de-
fined by 6158 vertices and 7024 poly-
gons; the deformation is defined by 32
control vectors; the radius of support
r � 0 � 2.

107 fps.

Figure 8: The animation model is de-
fined by 975 vertices and 1119 poly-
gons; the deformation is defined by 92
control vectors; the radius of support
r � 0 � 3.

632 fps.

Figure 9: The box is defined by 386 ver-
tices and 768 polygons, the number of
control vectors and the radius of support
are variable.

72 fps.

Figure 10: Animation benchmarks on our test configuration:
Athlon 1Ghz, 650MB RAM, ATI Radeon 250Mhz 8500LE
64MB video board VIA KT133 Chipset, Windows 2000 SP2,
VTK 4.0.

calculating the transformation is performed fast enough to
be used in such real time applications as computer games.
Also, this direction looks very attractive for various applica-
tions, especially ones which deals with the face animation
(see Figure 1).

Selecting the set of control vectors to define the transfor-
mation is quite a difficult and time-consuming task. The op-
portunity to extend or localize the active (deformable) area
by assigning various radii of support allows us to lighten the
work of end user.

The future work will proceed in two directions. We are
continuing to design an end-to-end user interface. We are
planning to add other types of transformations such as key
frame and inverse kinematics for animating a character to
create an effective complete animation system. We also con-
sider using the haptic visualization 56 to produce the desired
transformations as a subject of future work.

References

1. H. Wendland. Piecewise polynomial, positive defined
and compactly supported radial functions of minimal
degree. AICM, 4:389–396, 1995. 1, 2, 3

2. N. Kojekine, V. Savchenko, D. Berzin, I. Hagiwara.
Software Tools for Compactly Supported Radial Ba-
sis Functions. Computer Graphics and Imaging, Proc.
IASTED, Hawaii, USA, August 13-16, 234–239, 2001.
1, 2, 4

3. V. Savchenko and A. Pasko. Transformation of Func-
tionally Defined Shapes by Extended Space Mappings.
The Visual Computer, 14:257–270, 1998. 2

4. T.W. Sederberg, S.R. Parry. Free-form deformation
of solid geometric models. Computer Graphics, 20,
20(4):151–160, 1986. 2

5. S. Coquillart. Extended free-form deformation: a
sculpting tool for 3D geometric modeling. Computer
Graphics, 24(4):187–196, 1990. 2

6. S. Coquillart, P. Jancene. Animated free-form defor-
mation: an interactive animation technique. Computer
Graphics, 25(4):23–26. 2

7. W.M. Hsu, G.F. Hughes and H. Kaufman. Direct
manipulation of free-form deformations, Computer
Graphics, 26(2):177–184, 1992. 2

8. P. Borrel and D. Bechmann. Deformation of N-
dimensional objects, International Journal of Com-
putational Geometry and Applications, 1(4):427–453,
1991. 2

9. P. Borrel and A. Rappoport. Simple constrained defor-
mations for geometric modeling and interactive design,
ACM Transactions on Graphics, 13(2):137–155, 1994.
2

10. D. Bechmann. Space deformation models survey, Com-
puters & Graphics, 18(4):571–586, 1994. 2

11. J.H. Ahlberg, E.N. Nilson, J.L. Walsh. The Theory of
Splines and Their Applications, Academic Press, New
York, 1967. 2

12. J. Dushon. Splines Minimizing Rotation Invariants
Semi-Norms in Sobolev Spaces, Constructive The-
ory of Functions of Several Variables, W. Schempp, K.
Zeller (Eds.), Springer-Verlag, 85–100, 1976. 2

13. V.A. Vasilenko. Spline-functions: Theory, Algorithms,
Programs, Novosibirsk, Nauka Publishers, 1983. 2

14. R.M. Bolle, B.C. Vemuri. On Three-Dimensional Sur-
face Reconstruction Methods, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(1):1–13,
1991. 2

15. G. Greiner. Surface Construction Based on Variational
Principles, Wavelets, Images and Surface Fitting, P. J.
Laurent et al. (Eds), AL Peters Ltd., 277–286, 1994. 2

16. F.L. Bookstein. Principal Warps: Thin Plate Splines
and the Decomposition of Deformations, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
11(6), 567–585, 1989. 2

17. F.L. Bookstein, Morphometric Tools for Landmark
Data, Cambridge University Press, 1991. 2

18. F.L. Bookstein. Two Shape Metrics for Biomedical

c
�

The Eurographics Association 2002.



N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara / 3D Deformations by CSRBFs

Outline Data: Bending Energy, Procrustes Distance,
and The Biometrical Modeling of Shape Phenomena,
Proc. Shape Modeling Conference (SMIA‘97), March
3–6, Aizu-Wakamatsu, Japan, 110–120, 1997. 2, 3

19. P. Litwinovicz, L. Williams. Animating Images with
Drawing, Computer Graphics, Proc. SIGGRAPH, 409–
412, 1994. 2

20. V.V. Savchenko, A.A. Pasko, T.L. Kunii, and
A.V. Savchenko. Feature based sculpting of func-
tionally defined 3D geometric objects, T.S. Chua et
al. (Eds), Multimedia Modeling, Towards Information
Superhighway, Proc. MMM, Nov., 341–348, 1995. 2

21. J.C. Carr, W.R. Fright and R.K. Beatson. Surface Inter-
polation with Radial Basis Functions for Medical Imag-
ing, IEEE Transaction on Medical Imaging, 16(1):96–
107, 1997. 2

22. R.K. Beatson and W.A. Light. Fast Evaluation of Ra-
dial Basis Functions: Methods for 2D Polyharmonic
Splines, Tech. Rep. 119, Mathematics Department,
Univ. of Canterbury, Christchurch, New Zealand, Dec.
1994. 2

23. W. Light. Using Radial Functions on Compact Do-
mains, Wavelets, Images and Surface Fitting, P.J. Lau-
rent et al. (Eds.), AL Peters Ltd., 351–370, 1994. 2

24. J.C. Carr, T.J. Mitchell, R.K. Beatson, J.B. Cherrie,
W.R. Fright, B.C. McCallumm and T.R. Evans. Re-
construction and representation of 3D Objects with Ra-
dial Basis Functions, Computer Graphics, Proc. SIG-
GRAPH, 67–76, 2001 2

25. L. Greengard and V. Rokhlin. A Fast Algorithm for Par-
ticle Simulation, J. Comput. Phys, 73:325–348, 1997.
2

26. V. Savchenko and L. Schmitt. Reconstructing Occlusal
Surfaces of Teeth Using a Genetic Algorithm with Sim-
ulated Annealing Type Selection, Proc. 6th ACM Sym-
posium on Solid Modeling and Application, Sheraton
Inn, Ann Arbor, Michigan, June 4–8, 39–46, 2001. 2

27. B. Morse, T.S. Yoo, P. Rheingans, D.T. Chen, and
K.R. Subramanian. Interpolating implicit surfaces from
scattered surface data using compactly supported ra-
dial basis functions, Shape Modeling conference, Proc.
SMI, Genova, Italy, May, 89–98, 2001. 2

28. S. Lee, G. Wolberg, and S.Y. Shin. Scattered Data Inter-
polation with Multilevel B-Splines, IEEE Transaction
on Visualization and Computer Graphics, 3(3):228–
244, 1997. 2

29. J. Bloomenthal and C. Lim. Skeletal Methods of Shape
Manipulation, Proc. of International Conference on
Shape Modeling and Applications, March 1-4, Aizu-
Wakamatsu, Japan, 44–47, 1997. 3

30. A. Verroust and F. Lazarus. Extracting Skeletal Curves
from 3D Scattered Data, Proc. of International Confer-
ence on Shape Modeling and Applications, March 1-4,
Aizu-Wakamatsu, Japan, 194-202, 1999. 3

31. J.P. Lewis, Matt Cordner, Nickson Fong, Pose Space
Deformation: A Unified Approach to Shape Interpola-
tion and Skeleton-Driven Deformation, Proc. of SIG-
GRAPH, 165-172, 2000. 3

32. D. Thalmann, J. Shen, and E. Chauvineau. Fast Re-
alistic Human Body Deformations for Animation and
VR Applications, Computer Graphics International,
Pohang, Korea, 166–174, 1999. 2

33. P. Fua, R. Plankers, and D. Thalmann. From Synthesis
to Analysis: Fitting Human Animation Models to Im-
age Data, Computer Graphics International, Canmore,
Canada, June 7–11, 4–11, 1999. 2

34. Y. Lee, D. Terzopoulos, and K. Waters. Realistic Mod-
eling for Facial Animation, Proc. SIGGRAPH, Los An-
geles, CA, August, 191–198, 1995. 2

35. http://www.biovirtual.com/ 2

36. M. Chen, A.E. Kaufman and R. Yagel (Eds.). Volume
Graphics, Springer, 2000. 2

37. J.C. Platt and A.H. Barr. Constraint Methods for Flexi-
ble Models, Computer Graphics, 22(4):279–278, 1988.
2

38. D. Terzopoulos, J.C. Platt, A.H. Barr and K. Fleisher.
Elastically Deformable Models, Computer Graphics,
21(4):205–214, 1987. 2

39. M. Aono. A Wrinkle Propogation Model for cloth,
Computer Graphics International, 95–94, 1990. 2

40. T.L. Kunii and H. Gotoba. Singularity Theoretical
Modeling and Animation of Garment Wrinkle Forma-
tion Processes, The Visual Computer, 6:326–336, 1990.
2

41. B. Lafleur, M.N. Thalmann and D. Thalmann. Cloth
Animation with Self-collision Detection, Proc. IFIP
Conference Modeling in Computer Graphics, 179–187,
1991. 2

42. M. Hotton and S. Alexander, Soft Cellular Modeling:
A Technique for the Simulation of Non-rigid Materials,
Computer Graphics: Development in Virtual Environ-
ments, R.A. Earnshav and J.A. Vince (eds), Academic
Press, 449–460, 1995. 2

43. L. Ling, M. Damodran and R.K.L. Gay. Physical Mod-
eling for Animating Cloth Motion, Computer Graph-
ics: Development in Virtual Environments, R.A. Earn-
shav and J.A. Vince (eds), Academic Press, 461–474,
1995. 2

44. S. Skaria, E. Akleman, F.I. Parke. Modeling Sub-
division Control Meshes for creating Cartoon Faces,

c
�

The Eurographics Association 2002.



N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara / 3D Deformations by CSRBFs

Proc. Shape Modeling Conference (SMIA‘01), May 7-
11,Genova, Italy, 216–225, 2001. 2

45. G. Walberg. Skeleton based image warping, Visual
Computer, 5(1/2):95–108, 1989. 2

46. T. Beier, S. Neely. Feature-based image metamorpho-
sis, Computer Graphics, 26(2):35–42, 1992. 2

47. H. Wendland. On the smoothness of positive definite
and radial functions, Preprint submitted to Elsevier
Preprint, 1998. 3, 6

48. H. Samet. The Design and Analysis of Spatial Data
Structures, Addison-Wesley Pub Co., 1986. 4

49. A. Jennings. A Compact Storage Scheme for the So-
lution of Symmetric Linear Simultaneous Equations,
Comput. Journal, 9:281–285, 1966. 4

50. A. George and J.W.H. Liu. Computer Solution of Large
Sparse Positive Definite Systems, Prentice-Hall: En-
glewood Cliffs, NJ, 1981. 5

51. W.H. Press, S.A. Teukolsky, T. Vetterling, B.P. Flan-
nery. Numerical Recipes in C, Cambridge University
Press, 1997. 5

52. Intel Math Kernel Library, Reference Manual, Copy-
right 1994-2000, Intel Corporation. 5

53. The Visualization Toolkit Textbook and open source
C++ Library, with Tcl, Python, and Java bind-
ings. http://www.kitware.com/vtk.html, published by
Kitware, 2001. 5

54. D. Kochanek, R. Bartels. Interpolating Splines with Lo-
cal Tension, Continuity, and Bias Control, Computer
Graphics, 18(3):33–41, 1984. 6

55. K. Shoemake. Animating rotation with quaternion cal-
culus, ACM SIGGRAPH course notes 10, Computer an-
imation: 3D Motion, Specification and Control, 1987.
6

56. SensAble Technologies. GHOST Software Devel-
oper’s Toolkit (SDK), Programmer’s Guide, Version
1.21, 1997. 7

57. http://www.karlson.ru/csrbf/ 6

c
�

The Eurographics Association 2002.


