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Abstract 
This paper describes how the web-based visualisation can be greatly improved using the function-based 
shape modelling technique. We propose the function-defined VRML shape node, which allows the content 
creators to describe any complex models with relatively small functions compared to the large-size 
polygonal mesh based VRML nodes. The design, the implementation details, and the application examples 
of the proposed node are discussed. The software is available for downloading from the project website. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modelling; I.6.5 [Simulation and Modeling]: Model Development 

 
 
 
1. Web-based visualisation 
 
Web-based visualisation services first appeared when 
some platform-independent programming languages and 
data exchange formats like HTML, VRML and Java were 
freely distributed.  
 

A variety of web-based visualisation systems have 
been developed. Progressive reconstruction and 
isosurface transmission suggested by Engel et al1 aimed 
to reduce the amount of data to be reconstructed and 
transmitted during visualisation. In order to improve the 
progressive reconstruction approach, Engel2 has 
demonstrated the construction of stripped surface 
representations and adaptive hierarchical concepts used to 
minimize the number of vertices that have to be 
reconstructed, transmitted, and rendered. Seidel et al3 
have presented a framework to acquire high quality 3D 
models of real world objects including both geometry and 
appearance information presented by textures, bump maps 
or bi-directional reflectance distribution function used to 
describe the way a surface reflects light. Fogel et al4 have 
proposed a web architecture for progressive delivery of a 
3D content, which is based on a progressive compression 
representation integrated into X3D framework.  
Taubin et al5 have proposed another popular approach to 
delivering a 3D content over the Internet within a 
reasonable time, besides introducing a new adaptive 
refinement scheme6 for storing and transmitting the 
manifold triangular meshes in progressive and highly 

compressed form. Recently, Pajarola and Rossignac7 have 
proposed a compressed progressive meshes approach, 
which uses a new technique to refine the topology of the 
mesh in batches. Among these services, the polygon mesh 
representation is often used to represent geometric 
models. Thus the most popular 3D web content format 
Virtual Reality Modelling Language (VRML)8 uses this 
representation for complex objects. 

 
Although there are many workarounds to improve 

the overall experience in 3D web visualisation, the 
mainstream of the current web visualisation is based on 
the scenario where the publisher creates a 3D model 
rather than an image and sends it to the viewer, which 
then renders and manipulates the model. As the rendering 
is done at the client’s side, the smoothness of presenting a 
complicated scene, that is formed by millions of 
polygons, is much dependent on the Internet bandwidth. 
In many cases, the quality of the scene has to be 
compromised so that the 3D modelling file size is kept 
within an optimised range. From the different web 
visualisation models or techniques available today, some 
techniques are adopted to improve the performance of 
visualisation; while some are used to transmit the 
visualisation data interactively based on the level of 
details and the network load. However, the root of the 
problem is the actual representation of the visualisation 
data to be transmitted over the network. The compactness 
of the visual representation directly affects the overall 
user experience in interactive web-based visualisation. 

http://www.eg.org
http://diglib.eg.org
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In this project, we design and implement a generic 
function-defined shape node for VRML. In Section 2, the 
function-based approach to shape modelling in web 
visualisation is addressed. In Section 3, the proposed 
VRML node for a generic function model is introduced. 
In Section 4, we describe an implementation and test 
results for the function-defined shape node developed for 
the particular function model F-Rep with its dedicated 
description language HyperFun. In the last section, further 
issues are discussed and conclusions are made. 
 
 
2. Function-based shape modelling over the Internet 
 
2.1. Function-based shape modelling 
 
Function-based shape modelling is becoming increasingly 
popular in computer graphics. The idea of function-based 
approach to shape modelling is that complex geometric 
shapes can be produced from a "small formula" rather 
than thousands of polygons. Usually, parametric or  
implicit functions and their modifications are used to 
define the shapes. For rendering such function-defined 
shapes, either ray tracing or polygonisation followed by 
fast polygon rendering is used. Alternatively, the 
function-defined shapes can be voxelised and rendered as 
a set of points. It must be admitted, though, that function 
defined models may sometimes suffer a serious problem 
which is large time needed to evaluate the defining 
functions. Nevertheless, many works have been done in 
the direction of accelerating the function evaluation when 
performing their rendering, and now many function-based 
models, which existed rather theoretically just a few years 
ago, revolutionise the ways of shape representation. In the 
next subsections, we select the direction of expanding 
function-based modelling to web visualisation, overview 
the existing projects attempting such a visualisation, and 
propose our own solution to this problem.  
 
 
2.2. VRML and its existing extensions 
 
As it was mentioned in the previous section, the 3D web 
content can be published using various visualisation 
techniques. Among them, VRML is the most common 
format adopted to define 3D objects in the virtual web 
spaces.  
 

In this project, we have chosen VRML to integrate 
with function-based modelling technique for web 
visualisation. Besides its popularity in defining 3D web 
content, VRML suffers an obvious performance drop 
whenever it is used to describe complex scenes. This 
drawback directly encourages designing a new VRML 
shape node based on the function-based approach. 

 

A generic function-based geometric node can be 
defined in VRML since this language is highly extensible. 
There are various VRML extensions that have been 
implemented successfully. For example, Alexa et al9 have 
suggested the Morph node that helps to interpolate among 
several geometries. Another example is customized 
GeoVRML10 nodes that are defined to provide a suite of 
solutions for representing and visualizing geographic data 
using a standard VRML97 browser. Wyvil and Guy11 
have introduced a new VRML extension for skeletal 
implicit surfaces with a limited set of operations like 
blending, warping and Boolean operations. Besides that, 
Pittet et al12 have proposed a new real-time Isosurfacing 
node. The proposed node, which is based on the so-called 
Marching Cubes algorithm13, allows real time rendering 
of an isosurface from 3D source data. Grahn et al14 have 
introduced trimmed NURBS in VRML. This adopted 
approach allows visualisation of complex CAD models in 
VRML. Meanwhile, Ginis and Nadeau15 have presented 
new VRML extensions for scientific visualisations. The 
suggested nodes are not mere collections of visually 
complicated parts, but can offer significant help in 
simplifying a user’s job when visualizing vector fields. 
 
 
2.3. Function-defined geometric node 
 
In this project, a generic function-based node for VRML 
is proposed as a plug-in to a VRML browser. The idea of 
introducing such a node is to replace large polygonal 
representations of complex shapes with small formulae, 
which will be transmitted through the network much 
faster and therefore will improve the efficiency of web 
visualisation. 
 

The proposed architecture has obvious 
improvements as compared to the conventional VRML 
architecture. When a client tries to view a complex 
function-defined geometric model via the Internet, the 
VRML browser plug-in sends a view request to the 
remote content server. A small VRML file with a 
reference to its respective function-defined model 
description is sent back to the client. The size of the 
VRML file is small since the complex geometric model is 
described using little functions. When the VRML data 
reaches the client machine, the VRML plug-in starts to 
parse the VRML immediately. The scene graph traversal 
module proceeds and renders the scenes during the 
traversal. Once the scene graph traversal module finds the 
customized function-defined node, the browser plug-in 
will download the model description according to the 
specified URL. Alternatively, the description can be 
embedded in the VRML code. The polygonisation of the 
function model is completed at the client machine, so that 
no large amount of rendering data is transferred across the 
network. Immediately after the polygonisation has 
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completed, the complex geometric model will be 
presented to the client. 

 

 
Figure 1: Scene graph with FShape node. 

 
 
With the proposed architecture design, a new 

function-based geometric node, called FShape, has been 
proposed for VRML, as shown in Figure 1. The FShape 
node is designed in such a way that it is able to take in 
different function-defined models without much 
integration effort once the parsing and polygonisation 
modules are available. Alternatively, if the model requires 
special parser and polygoniser, they can be developed by 
the user and integrated with the node. 
 
 
3. FShape node implementation 
 
A VRML node extension can be achieved either via plug-
in customisation or through VRML EAI interface16. For 
plug-in customisation, the overall performance of the 
extended node will be much better than the other one, 
since the module is implemented with a low level 
programming language. The performance improvement 
becomes obvious when involving complex geometric 
models, which may require complex computations and 
algorithm evaluations. Although the plug-in 
customisation may closely tie the node extension with the 
supported VRML browser plug-ins, the overall 
performance may need to be considered first if the node 
extension involves heavy computation processes. 

 
Another possible approach to implement the 

extension is via a VRML Script node and its EAI 
interface. The implementation using JavaScript or Java 
may allow extension across different browsers, however 
this approach may have serious performance setback. The 
polygonisation implemented using JavaScript language 
will only be interpreted when it is about to be executed. 
Therefore, functions represented using a script language 
will always need more time to get executed as compared 
with precompiled modules. 

 
As overall performance is very important in the 

context of web visualisation, the proposed FShape node is 
VRML browser plug-in dependent, in which the VRML 
extension is implemented via customizing a VRML 
browser plug-in. The proposed function-based geometric 
node could be extended via different browser plug-ins, 
e.g. Blaxxun Contact 3D17, OpenVRML18, FreeWRL19, 
and other customisable browsers. 

 
In order to prove the concept proposed in this paper, 

we have extended Blaxxun Contact 3D to support FShape 
node. With the extension, viewers are able to visualise 
function-based objects in VRML paradigm. The extension 
of other VRML browsers can be done in a similar way, 
and we are working on it. 

 
 

3.1. FShape node definition 
 
The proposed FShape node definition is listed in Figure 2. 
 

 
Figure 2: FShape node definition with default values. 

 

FShape { 
ExposedField SFString sourceString [] 
ExposedField SFString sourceURL     [] 
exposedField  
SFString objectName   “my_model” 
field SFString sourceType  [] 
field SFBool ccw    TRUE 
field SFBool  convex   TRUE 
field SFFloat creaseAngle  0 
field SFBool  normalPerVertex TRUE 
field SFBool  solid    TRUE 
field SFBool  reduce   FALSE 
field SFBool  searchVertex  FALSE 
field SFFloat searchPer   0.1 
field MFFloat modelPar   0.0 
field SFInt32 gridSize   30 
field SFInt32 boundingBoxMax 10 

} 
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sourceString contains the definition of a 
function-defined object. This field has a higher priority 
than sourceURL, i.e. if the field is defined, it will be used 
as the object textual definition source, instead of using the 
URL specified in the sourceURL field. 

 
sourceURL defines the actual path of the function-

defined object source file. It can be set to either a URL or 
a physical file path, in which the function-based content 
could be retrieved accordingly.  
 

objectName specifies the model name for a 
function-defined object. The default value for this field is 
“my_model”. 

 
sourceType identifies the type of the function-

defined model referred in the scene. This field is prepared 
for the future extension to different types of function 
languages. The value of this field is used to associate the 
respective parser and polygoniser components with the 
main VRML plug-in module. 

 
ccw specifies whether the points of a face are 

presented in a counter-clockwise (TRUE), clockwise or 
unknown order (FALSE). A face has two sides, and it is 
important to know which is the front side, and which is 
the backside. The ccw will determine which surface side 
is facing the observer. 

 
convex specifies if the faces, being defined in an 

internal list of coordinate indexes defining the faces to be 
drawn, are convex or not. VRML can only draw convex 
faces. When concave faces are presented, the VRML 
browser will split the faces into smaller convex faces. 
This is a time consuming task. If this field is set to TRUE, 
the browser will not split the faces. 

 
creaseAngle specifies an angle threshold. If two 

adjacent faces make an angle bigger than the creaseAngle, 
then the observer can see clearly where the two faces 
meet, the edge linking the two faces is sharp. Otherwise 
the edge linking the two faces will be smooth. 

 
normalPerVertex specifies whether the normal 

of each vertex is computed or not. 
 
solid  determines whether the browser should 

draw both sides of a face or just the front side. If solid is 
TRUE, then the faces in FShape node form a solid shape. 
In this case there is no need to draw the backsides of each 
face. If solid is FALSE, then the browser will draw both 
sides for each face. 

 
reduce determines whether the polygonisation 

process will produce the least number of polygons. The 
default value for this field is set to FALSE. 

searchVertex turns on recursive searching for 
vertex positions. If this option is not invoked, then 
BiLinear Interpolation is used to determine a vertex 
position for non-snapped vertices. 

 
searchPer specifies the search accuracy in 

percentage of cell lengths. For non-snapped vertices, the 
search is done along the edge. Otherwise, the search is 
performed around the normal. The values must lie within 
the range of 0.0001 to 10.0. 
 

modelPar specifies model-specific parameters. For 
example, for the implicitly defined shapes, it may specify 
the isosurface value. 

 
gridSize specifies the precision of rendering used 

for polygonisation. Its value depends on the polygoniser. 
 
boundingBoxMax specifies the bounding box for 

the object being polygonised.  Its +/- values are used to 
define the bounding box about each axis. 
 
 
3.2. Interaction between modules in the visualisation 

pipeline 
 
The visualisation pipeline in FShape node is categorized 
into three main modules, i.e. Seeker, Parser and 
Polygoniser components. Figure 3 presents the interaction 
between modules in the visualisation pipeline. 

 
Figure 3: Visualisation pipeline in FShape node. 

 
 
3.2.1. Seeker component 
 
The Seeker component is used to obtain any type of 
function definition, which is either located inline with the 
VRML source or is remotely located at the content server. 
The inline source will always have higher priority than 
the external source, i.e. the inline source will always be 
used to describe the function-based model. 
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The Seeker component will be triggered first 
whenever the scene graph traversal engine encounters the 
FShape node. This component is activated to fetch the 
function model description or any data needed by the 
Parser component. The FShape core module will pass 
sourceURL and sourceString to the Seeker component. 
The component will return the respective data source to 
the core module. As data seeking is independent from any 
function-based shape modelling approach, the Seeker 
component is embedded as part of the core module. 
 
 
3.2.2. Parser component 
 
In order to allow for future extension of Parser 
component, the component is dynamically loaded into the 
FShape core module. The component is dependent on the 
data used to describe the model. For every supported 
function based model, the respective parser module is to 
be developed separately with a set of standard function 
calls. 
 

The Parser component is created as a Win32 
dynamic linked library (DLL) which has an extension 
“.par”. The component is named according to its 
function-based shape modelling approach. This 
component must be stored into the relative Parser 
directory of the core module. 
 

In order to locate the respective Parser component 
during runtime, the sourceType, that contains the 
component name, is used to load the respective module. 
The FShape core module will then create the respective 
instance for the Parser component. The required function 
for the Parser component is Parse(string szSrc), in which 
the data obtained by the Seeker component will be 
interpreted accordingly. The return result of this function 
is a class object called CInterpreted, as shown in  
Figure 4. During polygonisation, the Calc() will be 
heavily used by the Polygoniser component to compute 
the function values. 

 

Figure 4: Class definition for CInterpreted. 

The data parsing is carried out in the memory, thus 
the performance is fast and efficient. However, it must be 
admitted that the memory usage for a very complex 
geometric model can be large. 
 
 
3.2.3. Polygoniser component 
 
Like the Parser component, the Polygoniser component is 
dependent on the chosen function language used to 
describe the model. For every supported function-based 
model, the respective Polygoniser component is to be 
developed and a set of standard function calls must be 
supported. 
 

The Polygoniser component is created as a Win32 
DLL which has an extension “.pol”. The component is 
named according to its function-based shape modelling 
approach. This component must be stored into the relative 
Polygoniser directory of the core module. 
 

The FShape core module uses the sourceType that 
contains the component name to locate the respective 
Polygoniser component during runtime. The FShape core 
module will then create the respective instance for the 
Polygoniser component. The Init(…) function must be 
implemented in Polygoniser component to initialise 
member values with ccw, convex, creaseAngle, 
normalPerVertex, solid, reduce, searchVertex, searchPer, 
modelPar, gridSize, boundingBoxMax and CInterpreted 
class object. Another required function for the 
Polygoniser component is Calc(), in which the 
CInterpreted object obtained from the Parser component 
will be used accordingly. The CInterpreted object, as 
shown in Figure 4, contains necessary values and 
functions in order to execute the polygonisation, 

 
If the Calc() of the Polygoniser component is 

successful, the FShape core module will retrieve the point 
arrays like coordVertex, normalVertex, coorIndex and 
normalIndex. These arrays are then used to construct the 
polygonal facets representing the function-based models. 
Any geometric model with this information can be 
rendered directly. 
 
 
4. Implementation of FShape node for F-Rep and its 

description language HyperFun  
 
To illustrate the proposed design and to prove the 
correctness of our assumptions, we have implemented the 
FShape node for so-called F-Rep 20,21 representation with 
its dedicated high-level language HyperFun22. 
 
 
 

CInterpreted 
{ 
 . . . 
virtual void __stdcall parse  

(const string& model); 
double calc 

(const vector<double>& X, 
 const vector<double>& A); 

double calc (const vector<double>&X); 
 . . .// Some other member variables 
} 
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4.1. F-Rep and its applications 
 
The F-Rep assumes that geometric shapes are represented 
with an inequality f(x,y,z) ≥ 0, where the real function f is 
positive for the points inside the shape, equal to zero on 
its border and negative outside it. The function can be 
defined analytically, or with a function evaluation 
algorithm, or with tabulated values (e.g., CT or MRI 
volume data) and an appropriate interpolation procedure. 
Different operations can then be applied to the F-Rep 
geometric models to create new complex models. These 
operations include but not limited to affine, perspective 
and projective transformations, set-theoretic operations 
(union, intersection, subtraction), blending and morphing 
operations. They are defined in the function form as 
function superpositions. The result of any operation will 
be a function-defined shape, which can be used as an 
argument for other operations. 
 

Various applications have been built using the F-Rep 
principles. For example, an application involving 
computer art is proposed by Sourin23, in which the virtual 
embossing, wood-cutting and carving are done using the 
F-Reps of a shape, tools and interactive operations with 
them. The F-Rep principles have been also applied to 
obtain 3D textures on the constructive solids24. Other F-
Rep applications include reconstruction from surface 
points and contours25, simulation of NC machining26, and 
the time dependent animation module27. 

 
In view of the power to describe complex 

multidimensional geometric models, it will be beneficial 
to the development of the web visualisation if the F-Rep 
shape modelling technique is adopted into the current web 
visualisation technologies. The compactness of the F-Rep 
defined objects and availability of a high-level modelling 
language for this representation have made  
F-Rep an attractive candidate to define objects to be 
transferred over the web. 
 
 
4.2. HyperFun 
 
HyperFun is a high-level modelling language specially 
designed to describe F-Rep models. The language is kept 
as simple as possible to allow the non-technically trained 
publishers mastering the tool with least effort. The 
language, while being simple, provides enough functions 
in creating quite complex geometric models. It supports 
all main notions in F-Rep, particularly those involving 
geometric objects and geometric operations. 
 

As fundamental set-theoretic operations are 
important in F-Rep modelling, HyperFun has a series of 
special built-in operators with reserved symbols ("|" - 
union, "&" -intersection, "\" - subtraction, "~" - negation, 

"@" – Cartesian product). HyperFun also contains the 
system F-Rep library that can be used to represent 
geometric primitives and transformations. The most 
common primitives supported by HyperFun are ‘Sphere’, 
’Torus’, ’Ellipsoid’, ’Cylinder’, ’Blobby object’, 
’Metaball object’, etc. Besides that, transformations such 
as blending, union/intersection, rotation, scaling and 
twisting, are included too. Functional expressions can also 
include references to previously defined geometric 
objects. The publisher can create his/her own library of 
objects for future use. 
 
 
4.3. Integration with FShape node 
 
The integration with FShape node can be achieved easily 
if the respective parser and polygoniser modules are 
available. For the F-Rep function models, the HyperFun 
developers kindly provided us their source codes, which 
helped us with developing the Parser and the Polygoniser 
modules since only modifications to fit those modules 
with basic interfaces defined by FShape node were 
required. The reader may download for testing the 
developed FShape plug-in from our project site at28. 
 

A sample VRML and HyperFun definitions are 
given in Figure 5 and 6 for the resulting VRML shape 
shown in Figure 7 and described in Figure 8.  The 
resulting shape ‘blend’ is defined by intersecting with 
blending the superellipsoid ‘cube’ with the complex CSG 
shape named ‘inside’, which is in turn created by unifying 
a sphere and two cylinders ‘cylx’, ‘cylz’ into a shape 
named ‘spcyl’, followed by subtracting from it another 
cylinder ‘hole’. 

 
In this example, the HyperFun definition source is 

referred via a file reference. Alternatively, the model 
definition can be embedded directly into the VRML code 
via sourceString. 
 
 

#VRML V2.0 utf8 
EXTERNPROTO FShape [... 
]... 
 
DEF my_model Transform { 
 
   geometry DEF m FShape { 
  sourceURL  

"http://www.model.com/md.hf" 
  objectName       "my_Model" 
   } 
 
}} 

 
Figure 5: Using a file reference to specify a function 

based model description. 
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my_model(x[3], a[1]){ 
-- HyperFun "Infinity" model by 
-- Hidekazu YYoshida  
array center[3], p[3], vertex[3]; 
center = [0, 0, 0]; 
p[1] = x[1]/10;  
p[2] = x[2]/10; 
p[3] = x[3]/10; 
dX = p[1]^2; 
dY = p[2]^2; 
dZ = p[3]^2; 
cylz =hfCylinderZ(p,center,0.548); 
cylx = hfCylinderX(p,center,0.316); 
cyl = cylz | cylx;  
spcyl = fSphere(p,center,0.894)|cyl; 
hole = hfCylinderY(p,center,0.316); 
inside = spcyl \ hole;  
cube = 0.9-dX*dX-dY*dY-dZ*dZ; 
blend = 
hfBlendInt(cube,inside,0.8,0.2,0.3); 
my_model = blend; 
} 

Figure 6: A sample HyperFun definition source. 

 
Figure 7: A single complex model with a smooth surface. 
 
 
4.4. Performance improvement 
 
Under different configurations shown in Table 1, the 
loading times for multiple complex objects such as the 
ones presented in Figure 9 are shown in Table 2. The grid 
density is set to 30 for all the selected models. The low 
density is chosen so that the rendering time is still 
acceptable for low-end machine, such as the 
Configuration C. The complexity of these models has 
caused the VRML file size to increase tremendously if 
those objects are represented using IndexedFaceSet node. 

Figure 10 illustrates the complexity of the shapes in a 
wire-frame view. 

 
The loading time for the multiple objects represented 

using FShape nodes is shorter than the loading time for 
the multiple objects represented using IndexedFaceSet 
nodes. The time difference between these two 
representations for all the configurations becomes greater 
as compared to the time difference between them for 
loading a single object. This means that the efficiency of 
using FShape node, as compared to using IndexedFaceSet 
node, becomes more obvious for more complex objects. 
Objects represented using FShape nodes take longer time 
to load for slower machine. This may be due to the 
complex computation routines, which require faster CPU 
to process the HyperFun scripts and execute the 
polygonisation. 

 
 
Configura
tion 

A B C 

Clock 
Speed 

Athlon 
650 MHz 

P III 
733 MHz 

P II 
300 MHz 

RAM 128 M 128 M 96 M 
Internet 
Connec 
tion 

56  
KB/s 

100 
MB/s 

100 
MB/s 

Table 1: Configurations tested. 

 

Figure 8: A diagram of making the shape from 
Figure 7. 
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Representation For Multiple 
Objects IndexedFaceSet FShape 

File Size 
(Bytes) 

3056690 3052 

Loading Time 
for Config. A 

272 sec 17 sec 

Loading Time 
for Config. B 

163 sec 15 sec 

Loading Time 
for Config. C 

188 sec 28 sec 

Table 2: Loading times for multiple objects. 

 

 
Figure 9: Geometric models with smooth surfaces. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Wire-frame geometric models. 
 

FShape node can coexist with other conventional 
VRML nodes, as shown in Figure 11. This indicates that 
the complex geometric models in a 3D world can be 
represented using FShape node, when creating other 
simple objects with VRML primitive nodes. The VRML 
source definition that consists of a FShape node and a 
Sphere node is listed in Figure 12. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11: FShape node and a VRML Sphere node. 
 
 
 
 

    . . . 
DEF my_model Transform { 
  children [ 
    Shape { 
      appearance Appearance { 
  . . . 
        } 
      geometry DEF mdl-FACES 
FShape { 
      sourceURL  

         “http://www.mdl.com/m1.hf" 
 ObjectName      "my_Model" 

      } 
    } 
  ] 
} 
 
DEF my_model Transform { 
  children [ 
    Shape { 
      appearance Appearance { 
  . . . 
        } 
      geometry DEF sp Sphere { 

 radius 2.1 
} 
    } 
  ] 
} 

 
 
 
 

Figure 12: VRML file for FShape and Sphere nodes. 
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5. Support for any function-defined models 
 
Some function-defined models may not have a specific 
description language like HyperFun. They may be just 
represented by some mathematical functions, which are 
used with the supplied data values. In order to support any 
proprietary function-defined models in FShape node, the 
publishers have to develop their own respective Parser 
and Polygoniser components based on the predefined 
plug-in interface. Developing a Parser depends on the 
model and/or descriptive language used, while developing 
a Polygoniser depends only on the model. Therefore a set 
of polygonisers for the commonly used models can be 
developed and made available for the publishers. To 
illustrate it, we have applied the polygoniser used for 
visualising the F-Rep models in the project Interactive 
Function-based Shape Modeling29. The respective Parser 
module is a rather simple procedure in that case. It just 
reads the function model from the data file created 
interactively and makes it available for the Polygoniser. 
In Figure 13, a VRML scene with the function-defined 
model of a 3D carved crystal vase is displayed.  
 
 

 
 

Figure 13: A function-defined crystal vase. 
 
 
6. Conclusion and future work 
 
In this article, a generic function-defined geometric shape 
node has been designed for VRML. The integration 
between function-defined models and VRML is proposed 
to implement through a VRML browser plug-in, where 
the customized node can be referred to as like a normal 
VRML node together with other conventional VRML 
nodes. Currently, the Blaxxun’s Contact3D VRML  
plug-in has been extended to support this integration. The 
extension of other VRML browsers is on the way. The 
readers may download the developed FShape plug-in 
from our project site28.  

The use of the function-based geometric 
representations in VRML has opened new prospects for 
VRML modelling and indeed improved the overall 
performance under the bottleneck of the Internet 
bandwidth. Complex geometric models can be easily 
represented with a smaller file size, as compared to the 
conventional polygonal based representation. 

 
Future work is planned in several directions. The 

inclusion of other function-defined models besides F-Rep 
and its dedicated language HyperFun will be done. Also, 
the standard function calls for the Parser and Polygoniser 
modules will be further improved to minimise future 
integration effort whenever a new function language is 
added into the system. 
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