
EUROGRAPHICS 2002 / I. Navazo and Ph. Slusallek Short Presentations

 The Eurographics Association 2002.

Function-defined shape node for VRML

F.M. Lai1 and A. Sourin2

1Creative Technology Ltd., Singapore 2Nanyang Technological University, Singapore

Abstract
This paper describes how the web-based visualisation can be greatly improved using the function-based
shape modelling technique. We propose the function-defined VRML shape node, which allows the content
creators to describe any complex models with relatively small functions compared to the large-size
polygonal mesh based VRML nodes. The design, the implementation details, and the application examples
of the proposed node are discussed. The software is available for downloading from the project website.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational
Geometry and Object Modelling; I.6.5 [Simulation and Modeling]: Model Development

1. Web-based visualisation

Web-based visualisation services first appeared when
some platform-independent programming languages and
data exchange formats like HTML, VRML and Java were
freely distributed.

A variety of web-based visualisation systems have
been developed. Progressive reconstruction and
isosurface transmission suggested by Engel et al1 aimed
to reduce the amount of data to be reconstructed and
transmitted during visualisation. In order to improve the
progressive reconstruction approach, Engel2 has
demonstrated the construction of stripped surface
representations and adaptive hierarchical concepts used to
minimize the number of vertices that have to be
reconstructed, transmitted, and rendered. Seidel et al3
have presented a framework to acquire high quality 3D
models of real world objects including both geometry and
appearance information presented by textures, bump maps
or bi-directional reflectance distribution function used to
describe the way a surface reflects light. Fogel et al4 have
proposed a web architecture for progressive delivery of a
3D content, which is based on a progressive compression
representation integrated into X3D framework.
Taubin et al5 have proposed another popular approach to
delivering a 3D content over the Internet within a
reasonable time, besides introducing a new adaptive
refinement scheme6 for storing and transmitting the
manifold triangular meshes in progressive and highly

compressed form. Recently, Pajarola and Rossignac7 have
proposed a compressed progressive meshes approach,
which uses a new technique to refine the topology of the
mesh in batches. Among these services, the polygon mesh
representation is often used to represent geometric
models. Thus the most popular 3D web content format
Virtual Reality Modelling Language (VRML)8 uses this
representation for complex objects.

Although there are many workarounds to improve

the overall experience in 3D web visualisation, the
mainstream of the current web visualisation is based on
the scenario where the publisher creates a 3D model
rather than an image and sends it to the viewer, which
then renders and manipulates the model. As the rendering
is done at the client’s side, the smoothness of presenting a
complicated scene, that is formed by millions of
polygons, is much dependent on the Internet bandwidth.
In many cases, the quality of the scene has to be
compromised so that the 3D modelling file size is kept
within an optimised range. From the different web
visualisation models or techniques available today, some
techniques are adopted to improve the performance of
visualisation; while some are used to transmit the
visualisation data interactively based on the level of
details and the network load. However, the root of the
problem is the actual representation of the visualisation
data to be transmitted over the network. The compactness
of the visual representation directly affects the overall
user experience in interactive web-based visualisation.

http://www.eg.org
http://diglib.eg.org

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

In this project, we design and implement a generic
function-defined shape node for VRML. In Section 2, the
function-based approach to shape modelling in web
visualisation is addressed. In Section 3, the proposed
VRML node for a generic function model is introduced.
In Section 4, we describe an implementation and test
results for the function-defined shape node developed for
the particular function model F-Rep with its dedicated
description language HyperFun. In the last section, further
issues are discussed and conclusions are made.

2. Function-based shape modelling over the Internet

2.1. Function-based shape modelling

Function-based shape modelling is becoming increasingly
popular in computer graphics. The idea of function-based
approach to shape modelling is that complex geometric
shapes can be produced from a "small formula" rather
than thousands of polygons. Usually, parametric or
implicit functions and their modifications are used to
define the shapes. For rendering such function-defined
shapes, either ray tracing or polygonisation followed by
fast polygon rendering is used. Alternatively, the
function-defined shapes can be voxelised and rendered as
a set of points. It must be admitted, though, that function
defined models may sometimes suffer a serious problem
which is large time needed to evaluate the defining
functions. Nevertheless, many works have been done in
the direction of accelerating the function evaluation when
performing their rendering, and now many function-based
models, which existed rather theoretically just a few years
ago, revolutionise the ways of shape representation. In the
next subsections, we select the direction of expanding
function-based modelling to web visualisation, overview
the existing projects attempting such a visualisation, and
propose our own solution to this problem.

2.2. VRML and its existing extensions

As it was mentioned in the previous section, the 3D web
content can be published using various visualisation
techniques. Among them, VRML is the most common
format adopted to define 3D objects in the virtual web
spaces.

In this project, we have chosen VRML to integrate
with function-based modelling technique for web
visualisation. Besides its popularity in defining 3D web
content, VRML suffers an obvious performance drop
whenever it is used to describe complex scenes. This
drawback directly encourages designing a new VRML
shape node based on the function-based approach.

A generic function-based geometric node can be
defined in VRML since this language is highly extensible.
There are various VRML extensions that have been
implemented successfully. For example, Alexa et al9 have
suggested the Morph node that helps to interpolate among
several geometries. Another example is customized
GeoVRML10 nodes that are defined to provide a suite of
solutions for representing and visualizing geographic data
using a standard VRML97 browser. Wyvil and Guy11
have introduced a new VRML extension for skeletal
implicit surfaces with a limited set of operations like
blending, warping and Boolean operations. Besides that,
Pittet et al12 have proposed a new real-time Isosurfacing
node. The proposed node, which is based on the so-called
Marching Cubes algorithm13, allows real time rendering
of an isosurface from 3D source data. Grahn et al14 have
introduced trimmed NURBS in VRML. This adopted
approach allows visualisation of complex CAD models in
VRML. Meanwhile, Ginis and Nadeau15 have presented
new VRML extensions for scientific visualisations. The
suggested nodes are not mere collections of visually
complicated parts, but can offer significant help in
simplifying a user’s job when visualizing vector fields.

2.3. Function-defined geometric node

In this project, a generic function-based node for VRML
is proposed as a plug-in to a VRML browser. The idea of
introducing such a node is to replace large polygonal
representations of complex shapes with small formulae,
which will be transmitted through the network much
faster and therefore will improve the efficiency of web
visualisation.

The proposed architecture has obvious
improvements as compared to the conventional VRML
architecture. When a client tries to view a complex
function-defined geometric model via the Internet, the
VRML browser plug-in sends a view request to the
remote content server. A small VRML file with a
reference to its respective function-defined model
description is sent back to the client. The size of the
VRML file is small since the complex geometric model is
described using little functions. When the VRML data
reaches the client machine, the VRML plug-in starts to
parse the VRML immediately. The scene graph traversal
module proceeds and renders the scenes during the
traversal. Once the scene graph traversal module finds the
customized function-defined node, the browser plug-in
will download the model description according to the
specified URL. Alternatively, the description can be
embedded in the VRML code. The polygonisation of the
function model is completed at the client machine, so that
no large amount of rendering data is transferred across the
network. Immediately after the polygonisation has

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

completed, the complex geometric model will be
presented to the client.

Figure 1: Scene graph with FShape node.

With the proposed architecture design, a new

function-based geometric node, called FShape, has been
proposed for VRML, as shown in Figure 1. The FShape
node is designed in such a way that it is able to take in
different function-defined models without much
integration effort once the parsing and polygonisation
modules are available. Alternatively, if the model requires
special parser and polygoniser, they can be developed by
the user and integrated with the node.

3. FShape node implementation

A VRML node extension can be achieved either via plug-
in customisation or through VRML EAI interface16. For
plug-in customisation, the overall performance of the
extended node will be much better than the other one,
since the module is implemented with a low level
programming language. The performance improvement
becomes obvious when involving complex geometric
models, which may require complex computations and
algorithm evaluations. Although the plug-in
customisation may closely tie the node extension with the
supported VRML browser plug-ins, the overall
performance may need to be considered first if the node
extension involves heavy computation processes.

Another possible approach to implement the

extension is via a VRML Script node and its EAI
interface. The implementation using JavaScript or Java
may allow extension across different browsers, however
this approach may have serious performance setback. The
polygonisation implemented using JavaScript language
will only be interpreted when it is about to be executed.
Therefore, functions represented using a script language
will always need more time to get executed as compared
with precompiled modules.

As overall performance is very important in the

context of web visualisation, the proposed FShape node is
VRML browser plug-in dependent, in which the VRML
extension is implemented via customizing a VRML
browser plug-in. The proposed function-based geometric
node could be extended via different browser plug-ins,
e.g. Blaxxun Contact 3D17, OpenVRML18, FreeWRL19,
and other customisable browsers.

In order to prove the concept proposed in this paper,

we have extended Blaxxun Contact 3D to support FShape
node. With the extension, viewers are able to visualise
function-based objects in VRML paradigm. The extension
of other VRML browsers can be done in a similar way,
and we are working on it.

3.1. FShape node definition

The proposed FShape node definition is listed in Figure 2.

Figure 2: FShape node definition with default values.

FShape {
ExposedField SFString sourceString []
ExposedField SFString sourceURL []
exposedField
SFString objectName “my_model”
field SFString sourceType []
field SFBool ccw TRUE
field SFBool convex TRUE
field SFFloat creaseAngle 0
field SFBool normalPerVertex TRUE
field SFBool solid TRUE
field SFBool reduce FALSE
field SFBool searchVertex FALSE
field SFFloat searchPer 0.1
field MFFloat modelPar 0.0
field SFInt32 gridSize 30
field SFInt32 boundingBoxMax 10

}

FShape
node

Group
Node

FShape
node

Transform
Node

Shape
Node

Sensor
Node

VRML 97 Scene Graph

ViewPoint
Node Light

Node

Transform
Node

Shape
node

Shape
node

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

sourceString contains the definition of a
function-defined object. This field has a higher priority
than sourceURL, i.e. if the field is defined, it will be used
as the object textual definition source, instead of using the
URL specified in the sourceURL field.

sourceURL defines the actual path of the function-

defined object source file. It can be set to either a URL or
a physical file path, in which the function-based content
could be retrieved accordingly.

objectName specifies the model name for a
function-defined object. The default value for this field is
“my_model”.

sourceType identifies the type of the function-

defined model referred in the scene. This field is prepared
for the future extension to different types of function
languages. The value of this field is used to associate the
respective parser and polygoniser components with the
main VRML plug-in module.

ccw specifies whether the points of a face are

presented in a counter-clockwise (TRUE), clockwise or
unknown order (FALSE). A face has two sides, and it is
important to know which is the front side, and which is
the backside. The ccw will determine which surface side
is facing the observer.

convex specifies if the faces, being defined in an

internal list of coordinate indexes defining the faces to be
drawn, are convex or not. VRML can only draw convex
faces. When concave faces are presented, the VRML
browser will split the faces into smaller convex faces.
This is a time consuming task. If this field is set to TRUE,
the browser will not split the faces.

creaseAngle specifies an angle threshold. If two

adjacent faces make an angle bigger than the creaseAngle,
then the observer can see clearly where the two faces
meet, the edge linking the two faces is sharp. Otherwise
the edge linking the two faces will be smooth.

normalPerVertex specifies whether the normal

of each vertex is computed or not.

solid determines whether the browser should

draw both sides of a face or just the front side. If solid is
TRUE, then the faces in FShape node form a solid shape.
In this case there is no need to draw the backsides of each
face. If solid is FALSE, then the browser will draw both
sides for each face.

reduce determines whether the polygonisation

process will produce the least number of polygons. The
default value for this field is set to FALSE.

searchVertex turns on recursive searching for
vertex positions. If this option is not invoked, then
BiLinear Interpolation is used to determine a vertex
position for non-snapped vertices.

searchPer specifies the search accuracy in

percentage of cell lengths. For non-snapped vertices, the
search is done along the edge. Otherwise, the search is
performed around the normal. The values must lie within
the range of 0.0001 to 10.0.

modelPar specifies model-specific parameters. For
example, for the implicitly defined shapes, it may specify
the isosurface value.

gridSize specifies the precision of rendering used

for polygonisation. Its value depends on the polygoniser.

boundingBoxMax specifies the bounding box for

the object being polygonised. Its +/- values are used to
define the bounding box about each axis.

3.2. Interaction between modules in the visualisation

pipeline

The visualisation pipeline in FShape node is categorized
into three main modules, i.e. Seeker, Parser and
Polygoniser components. Figure 3 presents the interaction
between modules in the visualisation pipeline.

Figure 3: Visualisation pipeline in FShape node.

3.2.1. Seeker component

The Seeker component is used to obtain any type of
function definition, which is either located inline with the
VRML source or is remotely located at the content server.
The inline source will always have higher priority than
the external source, i.e. the inline source will always be
used to describe the function-based model.

Seeker
Component

Parser
Component

Polygoniser
Component

Load the respective
Parser component

based on the
sourceType value

Load the respective
Polygoniser

component based on
the sourceType value

VRML source file that contain
FShape node definition V

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

The Seeker component will be triggered first
whenever the scene graph traversal engine encounters the
FShape node. This component is activated to fetch the
function model description or any data needed by the
Parser component. The FShape core module will pass
sourceURL and sourceString to the Seeker component.
The component will return the respective data source to
the core module. As data seeking is independent from any
function-based shape modelling approach, the Seeker
component is embedded as part of the core module.

3.2.2. Parser component

In order to allow for future extension of Parser
component, the component is dynamically loaded into the
FShape core module. The component is dependent on the
data used to describe the model. For every supported
function based model, the respective parser module is to
be developed separately with a set of standard function
calls.

The Parser component is created as a Win32
dynamic linked library (DLL) which has an extension
“.par”. The component is named according to its
function-based shape modelling approach. This
component must be stored into the relative Parser
directory of the core module.

In order to locate the respective Parser component
during runtime, the sourceType, that contains the
component name, is used to load the respective module.
The FShape core module will then create the respective
instance for the Parser component. The required function
for the Parser component is Parse(string szSrc), in which
the data obtained by the Seeker component will be
interpreted accordingly. The return result of this function
is a class object called CInterpreted, as shown in
Figure 4. During polygonisation, the Calc() will be
heavily used by the Polygoniser component to compute
the function values.

Figure 4: Class definition for CInterpreted.

The data parsing is carried out in the memory, thus
the performance is fast and efficient. However, it must be
admitted that the memory usage for a very complex
geometric model can be large.

3.2.3. Polygoniser component

Like the Parser component, the Polygoniser component is
dependent on the chosen function language used to
describe the model. For every supported function-based
model, the respective Polygoniser component is to be
developed and a set of standard function calls must be
supported.

The Polygoniser component is created as a Win32
DLL which has an extension “.pol”. The component is
named according to its function-based shape modelling
approach. This component must be stored into the relative
Polygoniser directory of the core module.

The FShape core module uses the sourceType that
contains the component name to locate the respective
Polygoniser component during runtime. The FShape core
module will then create the respective instance for the
Polygoniser component. The Init(…) function must be
implemented in Polygoniser component to initialise
member values with ccw, convex, creaseAngle,
normalPerVertex, solid, reduce, searchVertex, searchPer,
modelPar, gridSize, boundingBoxMax and CInterpreted
class object. Another required function for the
Polygoniser component is Calc(), in which the
CInterpreted object obtained from the Parser component
will be used accordingly. The CInterpreted object, as
shown in Figure 4, contains necessary values and
functions in order to execute the polygonisation,

If the Calc() of the Polygoniser component is

successful, the FShape core module will retrieve the point
arrays like coordVertex, normalVertex, coorIndex and
normalIndex. These arrays are then used to construct the
polygonal facets representing the function-based models.
Any geometric model with this information can be
rendered directly.

4. Implementation of FShape node for F-Rep and its

description language HyperFun

To illustrate the proposed design and to prove the
correctness of our assumptions, we have implemented the
FShape node for so-called F-Rep 20,21 representation with
its dedicated high-level language HyperFun22.

CInterpreted
{
 . . .
virtual void __stdcall parse

(const string& model);
double calc

(const vector<double>& X,
 const vector<double>& A);

double calc (const vector<double>&X);
 . . .// Some other member variables
}

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

4.1. F-Rep and its applications

The F-Rep assumes that geometric shapes are represented
with an inequality f(x,y,z) ≥ 0, where the real function f is
positive for the points inside the shape, equal to zero on
its border and negative outside it. The function can be
defined analytically, or with a function evaluation
algorithm, or with tabulated values (e.g., CT or MRI
volume data) and an appropriate interpolation procedure.
Different operations can then be applied to the F-Rep
geometric models to create new complex models. These
operations include but not limited to affine, perspective
and projective transformations, set-theoretic operations
(union, intersection, subtraction), blending and morphing
operations. They are defined in the function form as
function superpositions. The result of any operation will
be a function-defined shape, which can be used as an
argument for other operations.

Various applications have been built using the F-Rep
principles. For example, an application involving
computer art is proposed by Sourin23, in which the virtual
embossing, wood-cutting and carving are done using the
F-Reps of a shape, tools and interactive operations with
them. The F-Rep principles have been also applied to
obtain 3D textures on the constructive solids24. Other F-
Rep applications include reconstruction from surface
points and contours25, simulation of NC machining26, and
the time dependent animation module27.

In view of the power to describe complex

multidimensional geometric models, it will be beneficial
to the development of the web visualisation if the F-Rep
shape modelling technique is adopted into the current web
visualisation technologies. The compactness of the F-Rep
defined objects and availability of a high-level modelling
language for this representation have made
F-Rep an attractive candidate to define objects to be
transferred over the web.

4.2. HyperFun

HyperFun is a high-level modelling language specially
designed to describe F-Rep models. The language is kept
as simple as possible to allow the non-technically trained
publishers mastering the tool with least effort. The
language, while being simple, provides enough functions
in creating quite complex geometric models. It supports
all main notions in F-Rep, particularly those involving
geometric objects and geometric operations.

As fundamental set-theoretic operations are
important in F-Rep modelling, HyperFun has a series of
special built-in operators with reserved symbols ("|" -
union, "&" -intersection, "\" - subtraction, "~" - negation,

"@" – Cartesian product). HyperFun also contains the
system F-Rep library that can be used to represent
geometric primitives and transformations. The most
common primitives supported by HyperFun are ‘Sphere’,
’Torus’, ’Ellipsoid’, ’Cylinder’, ’Blobby object’,
’Metaball object’, etc. Besides that, transformations such
as blending, union/intersection, rotation, scaling and
twisting, are included too. Functional expressions can also
include references to previously defined geometric
objects. The publisher can create his/her own library of
objects for future use.

4.3. Integration with FShape node

The integration with FShape node can be achieved easily
if the respective parser and polygoniser modules are
available. For the F-Rep function models, the HyperFun
developers kindly provided us their source codes, which
helped us with developing the Parser and the Polygoniser
modules since only modifications to fit those modules
with basic interfaces defined by FShape node were
required. The reader may download for testing the
developed FShape plug-in from our project site at28.

A sample VRML and HyperFun definitions are
given in Figure 5 and 6 for the resulting VRML shape
shown in Figure 7 and described in Figure 8. The
resulting shape ‘blend’ is defined by intersecting with
blending the superellipsoid ‘cube’ with the complex CSG
shape named ‘inside’, which is in turn created by unifying
a sphere and two cylinders ‘cylx’, ‘cylz’ into a shape
named ‘spcyl’, followed by subtracting from it another
cylinder ‘hole’.

In this example, the HyperFun definition source is

referred via a file reference. Alternatively, the model
definition can be embedded directly into the VRML code
via sourceString.

#VRML V2.0 utf8
EXTERNPROTO FShape [...
]...

DEF my_model Transform {

 geometry DEF m FShape {
 sourceURL

"http://www.model.com/md.hf"
 objectName "my_Model"
 }

}}

Figure 5: Using a file reference to specify a function

based model description.

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

my_model(x[3], a[1]){
-- HyperFun "Infinity" model by
-- Hidekazu YYoshida
array center[3], p[3], vertex[3];
center = [0, 0, 0];
p[1] = x[1]/10;
p[2] = x[2]/10;
p[3] = x[3]/10;
dX = p[1]^2;
dY = p[2]^2;
dZ = p[3]^2;
cylz =hfCylinderZ(p,center,0.548);
cylx = hfCylinderX(p,center,0.316);
cyl = cylz | cylx;
spcyl = fSphere(p,center,0.894)|cyl;
hole = hfCylinderY(p,center,0.316);
inside = spcyl \ hole;
cube = 0.9-dX*dX-dY*dY-dZ*dZ;
blend =
hfBlendInt(cube,inside,0.8,0.2,0.3);
my_model = blend;
}

Figure 6: A sample HyperFun definition source.

Figure 7: A single complex model with a smooth surface.

4.4. Performance improvement

Under different configurations shown in Table 1, the
loading times for multiple complex objects such as the
ones presented in Figure 9 are shown in Table 2. The grid
density is set to 30 for all the selected models. The low
density is chosen so that the rendering time is still
acceptable for low-end machine, such as the
Configuration C. The complexity of these models has
caused the VRML file size to increase tremendously if
those objects are represented using IndexedFaceSet node.

Figure 10 illustrates the complexity of the shapes in a
wire-frame view.

The loading time for the multiple objects represented

using FShape nodes is shorter than the loading time for
the multiple objects represented using IndexedFaceSet
nodes. The time difference between these two
representations for all the configurations becomes greater
as compared to the time difference between them for
loading a single object. This means that the efficiency of
using FShape node, as compared to using IndexedFaceSet
node, becomes more obvious for more complex objects.
Objects represented using FShape nodes take longer time
to load for slower machine. This may be due to the
complex computation routines, which require faster CPU
to process the HyperFun scripts and execute the
polygonisation.

Configura
tion

A B C

Clock
Speed

Athlon
650 MHz

P III
733 MHz

P II
300 MHz

RAM 128 M 128 M 96 M
Internet
Connec
tion

56
KB/s

100
MB/s

100
MB/s

Table 1: Configurations tested.

Figure 8: A diagram of making the shape from
Figure 7.

cube

cylz

cylx

hole

spcyl

Y

X

Z

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

Representation For Multiple
Objects IndexedFaceSet FShape

File Size
(Bytes)

3056690 3052

Loading Time
for Config. A

272 sec 17 sec

Loading Time
for Config. B

163 sec 15 sec

Loading Time
for Config. C

188 sec 28 sec

Table 2: Loading times for multiple objects.

Figure 9: Geometric models with smooth surfaces.

Figure 10: Wire-frame geometric models.

FShape node can coexist with other conventional
VRML nodes, as shown in Figure 11. This indicates that
the complex geometric models in a 3D world can be
represented using FShape node, when creating other
simple objects with VRML primitive nodes. The VRML
source definition that consists of a FShape node and a
Sphere node is listed in Figure 12.

Figure 11: FShape node and a VRML Sphere node.

 . . .
DEF my_model Transform {
 children [
 Shape {
 appearance Appearance {
 . . .
 }
 geometry DEF mdl-FACES
FShape {
 sourceURL

 “http://www.mdl.com/m1.hf"
 ObjectName "my_Model"

 }
 }
]
}

DEF my_model Transform {
 children [
 Shape {
 appearance Appearance {
 . . .
 }
 geometry DEF sp Sphere {

 radius 2.1
}
 }
]
}

Figure 12: VRML file for FShape and Sphere nodes.

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

5. Support for any function-defined models

Some function-defined models may not have a specific
description language like HyperFun. They may be just
represented by some mathematical functions, which are
used with the supplied data values. In order to support any
proprietary function-defined models in FShape node, the
publishers have to develop their own respective Parser
and Polygoniser components based on the predefined
plug-in interface. Developing a Parser depends on the
model and/or descriptive language used, while developing
a Polygoniser depends only on the model. Therefore a set
of polygonisers for the commonly used models can be
developed and made available for the publishers. To
illustrate it, we have applied the polygoniser used for
visualising the F-Rep models in the project Interactive
Function-based Shape Modeling29. The respective Parser
module is a rather simple procedure in that case. It just
reads the function model from the data file created
interactively and makes it available for the Polygoniser.
In Figure 13, a VRML scene with the function-defined
model of a 3D carved crystal vase is displayed.

Figure 13: A function-defined crystal vase.

6. Conclusion and future work

In this article, a generic function-defined geometric shape
node has been designed for VRML. The integration
between function-defined models and VRML is proposed
to implement through a VRML browser plug-in, where
the customized node can be referred to as like a normal
VRML node together with other conventional VRML
nodes. Currently, the Blaxxun’s Contact3D VRML
plug-in has been extended to support this integration. The
extension of other VRML browsers is on the way. The
readers may download the developed FShape plug-in
from our project site28.

The use of the function-based geometric
representations in VRML has opened new prospects for
VRML modelling and indeed improved the overall
performance under the bottleneck of the Internet
bandwidth. Complex geometric models can be easily
represented with a smaller file size, as compared to the
conventional polygonal based representation.

Future work is planned in several directions. The

inclusion of other function-defined models besides F-Rep
and its dedicated language HyperFun will be done. Also,
the standard function calls for the Parser and Polygoniser
modules will be further improved to minimise future
integration effort whenever a new function language is
added into the system.

Acknowledgements

The authors thank the HyperFun developers and
personally A.Pasko who kindly provided their codes and
participated in the testing of the plug-in. Also, we thank
K.Levinski for providing the polygoniser for the
proprietary F-Rep models. Without these contributions,
the prototype development would have definitely taken
longer time.

References

1. K.Engel, R. Grosso, and T. Ertl. Progressive

Isosurfaces on the Web. Proc. Visualisation 98,
pages 37-40, 1998.

2. K.Engel, R. Westermann and T. Ertl. Isosurface

Extraction Techniques for Web-based Volume
Visualisation. Proc. IEEE Visualisation '99, pages
139–146, 1999.

3. H-P. Seidel, H. P. A. Lensch, M. Goesele and J.

Kautz. A Framework for the Acquisition,
Processing, Transmission,and Interactive Display
of High Quality 3D Models on the Web. Techical
Report MPI-I-2001-4-002, Max-Planck-Institut f¨ur
Informatik, Germany. http://www.c-lab.de/
web3d2001/Workshops/
tutorial_HighQuality3DModels_web3d2001.pdf.

4. E. Fogel, D. Cohen-Or, R. Ironi and T. Zvi. A Web

Architecture for Progressive Delivery of 3D
Content. Proc. On 3D technologies for the World
Wide Web (In Virtual Reality Modeling Language
Symposium), pages 15–22, 2001.

 Lai and Sourin / Function-defined shape node for VRML

 The Eurographics Association 2002.

5. G. Taubin, W. Horn, F. Lazarus, and J. Rossignac.

Geometry coding and VRML. Proc. of the IEEE,
96:6, pages 1228-1243, 1998.

6. G. Taubin, A. Gueziec, W. Horn and F. Lazarus.

Progressive Forest Split Compression. Proc. of
SIGGRAPH 98, pages 123-132, 1998.

7. R. Pajarola and J. Rossignac. Compressed

Progressive Meshes. IEEE Transactions on
Visualisation and Computer Graphics, 6:1, pages
79–93, 2000.

8. Web3D specifications. http://www.web3d.org/

technicalinfo/specifications/vrml97/index.htm.

9. M. Alexa, J. Behr and W. Müller. The Morph Node.

Proc. of the Web3D-VRML 2000 Fifth Symposium
on Virtual Reality Modeling Language, pages 29–
34, 2000.

10. GeoVRML 1.1 Specification.

 http://www.geovrml.org.

11. B. Wyvill and A. Guy. The Blob Tree, Implicit

Modeling and VRML. Proc. International
Conference From the Desktop to the Webtop:
Virtual Environments on the Internet, WWW and
Networks, NMPFT, Bradford, pages 193–206,
1997.

12. J. J. Pittet, A. Engel and B. Heymann. Visualizing

3D Data Obtained from Microscopy on the Internet.
JSB 125, pages 123–132, 1999.

13. W. E. Lorensen and H. E. Cline. Marching Cubes: a

High Resolution 3D Surface Construction
Algorithm. Computer Graphics, 21:4, pages 163-
169,1987.

14. H. Grahn, T. Volk and H. J. Wolters. NURBS in

VRML. Proc. of the Web3D-VRML 2000 fifth
symposium on Virtual Reality Modeling Language,
pages 35–43, 2000.

15. R. Ginis and D. Nadeau. Creating VRML

Extensions to Support Scientific Visualisation.
Proc. of the 1995 Symposium on Virtual Reality
Modeling Language, pages 13–20, 1995.

16. C. Marrin, Proposal for a VRML 2.0 Informative

Annex: External Authoring Interface Reference,
http://www.web3d.org/WorkingGroups/
vrml-eai/history/eai_draft.html.

17. Blaxxun Contact. http://www.blaxxun.com.

18. OpenVRML. http://www.openvrml.org.

19. FreeWRL. http://freewrl.sourceforge.net.

20. Shape Modeling and Computer Graphics with Real

Functions. http://wwwcis.k.hosei.ac.jp/~F-rep/.

21. A. A. Pasko, V. D. Adzhiev, A. I. Sourin, V. V.

Savchenko. Function Representation in Geometric
Modeling: Concepts, Implementations and
Applications. The Visual Computer, vol.11, No.8,
pages 429-446, 1995.

22. A. Pasko, V. Adzhiev, R. Cartwright, E. Fausett, A.

Ossipov and V. Savchenko. HyperFun Project: a
Framework for Collaborative Multidimensional F-
rep Modeling. Eurographics/ACM SIGGRAPH
Workshop Implicit Surfaces ’99, pages 59–69,
1999.

23. A. Sourin. Functionally Based Virtual Computer

Art. Proc. The 2001 ACM Symposium on
Interactive Computer Graphics, I3D2001, pages
77-84, 2001.

24. A. A. Pasko and V. V. Savchenko. Solid Noise in

the Constructive Solid Geometry. Proc.
EDUGRAPHICS ’93 and Computer Graphics ’93,
ACM, Portugal, pages 351–357, 1993.

25. V. V. Savchenko and A. A. Pasko. Reconstruction

from Contour Data and Sculpting 3D Objects. Proc.
of Second International Symposium on Computer
Aided Surgery ISCAS'95, pages 56-57, 1995.

26. A. I. Sourin and A. A. Pasko. Function

Representation for Sweeping by A Moving Solid.
IEEE Transactions on Visualisation and Computer
Graphics, 2:1, Special issue on solid modeling,
pages 11-18, 1996.

27. E. Fausett, A. Pasko and V. Adzhiev. Space-Time

and Higher Dimensional Modeling for Animation.
Proc. of the Computer Animation 2000 (CA'00).
pages 140-145, 2000.

28. Function-based Web Visualisation project site

http://www.ntu.edu.sg/home/assourin/FVRML.htm.

29. K. Levinski and A.Sourin, Interactive

Polygonisation for Function-based Shape
Modelling, Eurographics 2002, short presentation.

	Function-defined shape node for VRML
	Abstract
	1. Web-based visualisation
	2. Function-based shape modelling over the Internet
	
	
	3.2.1. Seeker component
	3.2.2. Parser component
	3.2.3. Polygoniser component

	4. Implementation of FShape node for F-Rep and its description language HyperFun
	4.1. F-Rep and its applications
	4.2. HyperFun
	4.3. Integration with FShape node
	4.4. Performance improvement
	
	
	
	
	Configuration
	B
	Representation
	IndexedFaceSet

	Figure 13: A function-defined crystal vase.
	6. Conclusion and future work
	Acknowledgements

