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Abstract
A method is proposed for measuring and rendering of art paints by using the simple system of an RGB camera

only. The surface shape of an art painting is considered as a rough plane rather than a three-dimensional curved
surface. Because the surface material has the dichromatic reflection property, the spectral reflectance function
is estimated from the diffuse reflection component. First, we present an algorithm for estimating surface normal
at each pixel point, based on an extended photometric stereo without using a rangefinder. Next, an algorithm is
presented for estimating the spectral reflectance function from a set of RGB color values acquired at different
illumination directions. Then, the surface reflectance and normal data are used for estimating the light reflec-
tion properties. The Torrance-Sparrow model is used for the model fitting and parameter estimation. Finally, an
experiment using an oil painting is executed for demonstrating the feasibility of the proposed method.

1. Introduction

A recent trend of the digital archives for art paintings is
based on surface spectral information of the object surfaces
(see 1; 2). The spectral reflectance information is more im-
portant than color information for recording and rendering
of paintings as digital images. In fact, an RGB color image
is device-dependent and valid for only the fixed conditions
of illumination and viewing. Therefore one cannot create an
image of the same scene that will be seen under different
illumination. On the other hand, once all surface-spectral re-
flectances are acquired, we can create images of the same
scene under arbitrary illuminant.

However, the spectral reflectance information is not suf-
ficient for rendering realistic images of such art objects as
oil paintings. The surface material of the object consists of a
thick oil layer. Although the surface is rough, gloss and high-
light appear on the surface. Therefore we need some shape
information of the object surface. A previous study 3 pro-
posed a method using both the spectral data and the shape
data. The shape data were acquired with a laser rangefinder
and the spectral data were acquired with a multi-band cam-
era. However, the laser rangefinder made unavoidable errors
in measuring colored paintings including specularity, be-
cause it could measures a white matte surface with only dif-

fuse reflection component. Moreover, the multi-band camera
with more than three sensors often encountered registration
errors in exchanging color filters. As a result, we could not
model the surface reflection properties for an art painting.

From a three-dimensional measurement viewpoint, Sato
et al. 4 proposed a method for modeling shape and re-
flectance of a three-dimensional color-textured object. In
their method, multiple color images were used to estimate
the BRDF (bi-directional reflectance distribution function)
of the object, which was digitized by a light striping range
finder. Although this method eliminates problems with tex-
ture artifacts, they did not discuss the issue that of how to
estimate surface spectral reflectance and how to correct for
the alteration in color due to the light source and camera sen-
sitivity function.

The present paper proposes a method for measuring and
rendering of art paintings by using the simple system of a
normal RGB camera only. Figure 1 depicts the flow for digi-
tal archives of art paintings from measurement to image ren-
dering. Estimation of the surface-spectral reflectance func-
tion is an important stage. The surface of a painting has the
dichromatic reflection property that light reflected from the
surface is composed of two additive components, the body
(diffuse) reflection and the interface (specular) reflection.
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The spectral reflectance function is then estimated from the
diffuse reflection component. We show that a reliable spec-
tral reflectance can be estimated from a set of RGB color
values acquired at different illumination directions.

The surface of an art painting can be considered as a rough
plane rather than a three-dimensional curved surface. There-
fore it is not necessary to reconstruct the three-dimensional
surface for digital archiving. In this paper, surface normal is
estimated at each pixel point, based on an extended photo-
metric stereo, which uses the camera data at several illumi-
nation directions, without using a rangefinder.

The surface reflectance and normal data are then used for
estimating the surface light reflection properties. We fit the
Torrance-Sparrow model to those observed data and esti-
mate the various model parameters. Finally, all the data are
combined for rendering images of oil paintings with realis-
tic shading effects under arbitrary conditions of illumination
and viewing.

surface 

normal

estimation

3D image 

rendering

surface 

reflection 

model

illumination&

viewing

 conditions

spectral 

reflectance 

estimation

Figure 1: Flow from measurement to image rendering for
art paintings.

2. Measuring System

Figure 2 shows our system for measuring art paintings.
The image data are obtained using an RGB digital camera
(CANON D30) with a CMOS sensor. The number of pixels
is about 3 MK ( 2160x1440), and the color value is sampled
in 36 bits (12 bits per each color channel). First we examined
the linearity of the camera response. Uniform color patches
were measured with both the camera and a radiometer. By
comparison of the camera outputs with the luminances of the
incident light, the camera were determined to have a good
linearity. The camera outputs for a diffuse reflection object
are then described as

ρk =

Z
E(λ)S(x;λ)Rk(λ)dλ (k = 1;2;3); (1)

where E(λ) is the illuminant spectral-power distribution,
S(x;λ) is the surface-spectral reflectance at the spatial lo-
cation x on an object, and Rk(λ) is the spectral sensitivity
functions of the sensor k. Accurate knowledge of the spec-
tral sensitivity functions is needed for estimating the surface-
spectral reflectance. We measured the camera spectral sensi-
tivities by using a monochrometer.

The image acquisition of the same object surface is re-
peated at different illumination directions as shown in Fig-
ure 3. Use of multiple illuminations has two advantages.
First, the most suitable function of spectral reflectance with-
out such noisy effects as specularity and shadowing can be
selected from the image set observed under different illumi-
nation directions. Second, the surface normal vector at each
pixel point can be estimated from a change in shading as
the direction of a light source changes. In Figure 3 the angle
of elevation is about 45-degree for all the light sources. Top
means that the light source is right in the front of the object.
The illumination direction was precisely determined using
two specular mirrored balls.

Light source

Camera system

Object

Figure 2: Measuring system.
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Figure 3: Imaging at different illumination directions.

3. Estimation of Surface Normals

3.1. Basic idea

Photometric stereo can produce much denser descriptions of
an object for a given camera resolution than binocular stereo
because an estimate can be made at each pixel, rather than at
object edges or the edges of projected stripes 5; 6; 7. Here we
present an extended photometric stereo method to compute
the surface normal vector at each pixel of an observed art
painting.

If an object surface is a perfect diffuser (Lambertian), the
light intensity (radiance) I reflected from the surface illumi-
nated by a light source is described as

I = αNli; (2)

where N is a surface normal vector, li is the illumination
directional vector of i-th light source, and α is the diffuse
reflectance factor. Therefore the problem of estimating the
three-dimensional vector N can be solved using radiance val-
ues at three different illumination directions.

3.2. Data selection

Now suppose that an object is observed at the illumination
directions of nine angles of rotation around the optical axis
as shown in Figure 3, where the elevation angle from the
horizontal plane is fixed. In practice, the effects of specular
highlights and shadows must be taken into account among
the observed data set. We examine that each pixel is prop-
erly illuminated by the given light source. If the pixel be-
longs to specular highlight or shadow under the illumina-
tion, the corresponding camera data are discarded from the

observation set. Figure 4 shows an example of the camera
outputs at one pixel that were obtained from a real painting
for different illumination directions. The sensor numbers 0,
1, and 3 correspond to R, G, and B channels. The illumina-
tion direction numbers 0, 1, ..., 8 correspond to Top, 0, ...,
315 degrees. The separate red curve suggests that the obser-
vation by the direction 0 (Top) is specular highlight. Figure
5 depicts the averaged sensor outputs as a function of illu-
mination direction. Therefore, a decision rule is determined
as follows: Let ρi be the average sensor value for i-th illumi-
nation direction, and ρ be the average over the whole direc-
tions. If ρi > w1ρ, then the observation belongs to highlight.
If ρi < w2ρ, then the observation belongs to shadow. The
weights w1 and w2 represent threshold constants. In our ex-
periment, we use w1 = 1:2 and w2 = 0:1.
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Figure 4: Example of camera outputs for different illumina-
tion directions.

3.3. Estimation and correction

Let I = [I1; I2; :::In] be a 3� n matrix of the observed in-
tensity values after eliminating the effects of specular high-
lights and shadows. In real estimation of normal vectors, we
use the sensor output for only green channel as the radiance
value. The assumption of diffuse reflection gives us the rela-
tionship of I = αNtL, where L is a 3� n matrix showing a
set of n illumination vectors.

For calibration, we use a standard white board as a ref-
erence white for correcting non-uniform illumination. Let
W1;W2; :::;Wn be the intensity values for the white board at
n directions. We define an n-dimensional vector

W = [W1=cos(θw1);W2=cos(θw2); :::;Wn=cos(θwn)]; (3)
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Figure 5: Plot of the averaged sensor outputs as a function
of illumination direction.

where θw1; θw2;
:::; θwn are the incident angles to the white

board at each illumination direction. Then the correction is
done by dividing the vector I with W in element-wise. Let I0

be the normalized vector of I. The surface normal vector N
is obtained from the least squared solution as N = I0L+=α,
where L+ is a generalized inverse of L.

4. Estimation of Spectral Reflectance

4.1. Linear model representation

A linear finite-dimensional model is used to represent the
surface spectral function. This model is effective in the sense
that the number of unknown parameters can be reduced sig-
nificantly when surface spectral reflectance functions with
continuous spectra are represented by only a small num-
ber of basis functions. The spectral reflectance function 　
S(x;λ) at a pixel point x can be expressed as a linear combi-
nation of n basis functions as

S(x; λ) =
n

∑
i=1

σi(x)Si(λ); (4)

where fSi(λ); i = 1;2; :::;ng is the set of basis functions for
the reflectance, and fσi(x)g is the set of weights. The num-
bers of basis function, n, defines the model dimension for
surfaces. Because the basis functions are known, given the
above formulation in terms of linear models, the estimation
problem becomes one of inferring the set of weight coef-
ficients fσi(x)g from the camera outputs. As we use RGB
three bands, the model dimension is limited to n = 3. A
database of surface-spectral reflectances for about 500 dif-
ferent objects was used for our reflectance analysis. The

database consists of one set of 354 reflectances made by
Vrhel et al. 8 and another set of 153 reflectances that we
measured from different paint samples. The three principal
components of the combined set of reflectances are selected
as the basis functions fSi(λ); i = 1;2;3g (see Figure 6).
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Figure 6: Basis functions for surface-spectral reflectances.

4.2. Estimation algorithm

A practical procedure for estimating fσi(x)g from the sen-
sor outputs is summarized in the following (see 9). We use
the average of the camera outputs for different illumination
directions after eliminating the highlight and shadow effects.
The camera outputs are expressed using the linear model as

ρk =

3

∑
i=1

σi(x)
Z

E(λ)Si(λ)Rk(λ)dλ: (5)

Let ρ(� [ρi]) be a three-dimensional column vector rep-
resenting the camera outputs and σ(� [σi]) be a three-
dimensional column vector representing the reflectance co-
efficients. Moreover, define a 3� 3 matrix H(� [hi j]) with
the element hi j =

R
E(λ)S j(λ)Ri(λ)dλ. Then the sensor out-

puts are summarized in the matrix form ρ = Hσ. Note
that hi j are known ahead of time with the the illuminant
spectrum, the basis functions of surface reflectance, and
the camra spectral sensitivity functions. Therefore the re-
flectance vector at each pixel point can be obtained from the
camera outputs as follows:

σ̂ = H�1ρ: (6)

Finally, substituting the estimate into Eq. (4) recovers the
spectral reflectance function in the form

Ŝ(x; λ) = σ̂1 (x)S1(λ)+ σ̂2(x)S2(λ)+ σ̂3(x)Sn(λ): (7)
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4.3. Correction

The final step is to correct the non-uniformity of illumina-
tion and the slant of reflecting surface. Again a standard
white board is used as a reference white for calibrating non-
uniform illumination. These corrections can be performed
by the form

S0(x; λ) = (S(x; λ)=cos(θi))
Æ
(W (x)=cos(θW )); (8)

where θi is the angle of light incidence at x on the object
surface, θw is the incidence angle at the corresponding lo-
cation on the standard white board, and W (x) is a relative
reflectance value of the white board.

5. Surface Reflection Model

5.1. Model description

The Torrance-Sparrow model 10 is used as a three-
dimensional light reflection model for creating computer
graphics images. This model is more precise than the Phong
model 11; 12 in describing the specular reflection component.
The spectral radiance is a function of the spatial location x
and the wavelength λ, which is described as

Y (x;λ) = (N �L)S0(x;λ)E(λ)+βD(φ;γ)F(θH;n)G
N �V

E(λ);
(9)

where the first and second terms represent, respectively, the
diffuse and specular reflection components. V is the view
vector, and φ is the angle between the vector N and the bi-
sector vector of L and V. The estimated spectral reflectance
in the previous section is used as S0(x;λ) in the diffuse re-
flection term. E(λ) is the spectral distribution of illumination
of an expected light source.

The specular reflection component in Eq.(9) consists of
several terms: First, D is a function providing the index of
surface roughness defined as expf� ln(2)φ2

=γ2
g, where the

parameter γ is constant. Second, G is a geometrical atten-
uation factor. Third, F represents the Fresnel spectral re-
flectance, where θH is the incidence angle to a micro facet
and n represents the index of refraction. The surface material
of a paining object can be regarded as an inhomogeneous di-
electric material like plastic. The index of refraction is con-
stant and the absorption coefficient is zero over the visible
wavelength. We assume n = 1:45 as the average of dielectric
materials. Finally, β represents the intensity of the specular
reflection component.

5.2. Estimation of model parameters

The roughness index γ and the specular intensity β are the
unknown parameters to be estimated from the specular com-
ponent of the image data of a painting. We already obtain

the spectral reflectance S0(x;λ) and the surface normal N at
each pixel. It is assumed that γ and β are constant over the
whole surface of an objective painting. Since the specular
component at any pixel has the same spectrum as the light
source, the parameters are estimated based on the statistical
distribution of the specular component.

The first step is to extract the specular component ρ
s

at
each pixel. This operation is done by the subtraction ρ

s
=

ρ
M
� ρ

D
, where ρ

M
is the maximal sensor outputs among

different illumination directions and ρ
D

is the diffuse com-
ponent that was determined in Section 3.2. The second step
is a functional fitting to the normalized data of specular com-
ponent at all pixels. We minimize the following fitting error
over the whole image,

e = min∑
x

�


ρ
Sx




 (Nx �Vx)(Nx �Lx)

G(Nx;Vx;Lx)F(θH x)
�βD(ϕx;γ)

�2

;

(10)
where the subscript x of ρ

sx
, Nx, Vx, Lx, θHx, and φx denotes

the vectors and angles at pixel point x. The above fitting er-
ror is a nonlinear function of γ and β. The parameters γ and
β minimizing the function are solved as a least-squared solu-
tion of the nonlinear fitting problem. We use the Levenberg-
Marquardt method for this solution.

6. Experimental Results

Figure 7 shows an oil painting used in our experiment. The
object surface was illuminated by a flood lamp at nine di-
rections and photographed by the RGB CMOS camera. The
rectangular area Part 1 in Figure 7 indicates a part of rough
surface including the trunks of a tree in the scene. This area
was used for estimating the surface reflection model. First,
Figure 8 shows an image rendering the estimation results
of surface normals for Part 1. We can see big roughness at
the edges of the trunk. These results are much more pre-
cise than the measurements by a laser range finder. Next,
the surface-spectral reflectances were estimated at all pixel
points. Especially, the accuracy of the estimates was exam-
ined at four areas in Figure 9. Figure 10 shows the estimated
spectral curves, where red curves indicate the direct mea-
surement results by using a spectroradio meter. A compari-
son between two curves in each graph suggests the reliability
of the present spectral reflectance estimation based on only
three color channels.

Third, Figure 11 shows an image consisting of only the
extracted specular component for Part 1. After fitting the
gauss function to the pixel distribution at a highlight peak
region, we obtained the numerical values of γ= 0:075 and
β = 187. Finally, Figure 12 demonstrates the image render-
ing result under a fluorescent light source with the color tem-
perature of D65. The vectors of illumination and view are
L = [0:00;0:71;0:71]t and V = [0:00;0:00;1:00]t , respec-
tively. We can see that the upper part of the image includes
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specular highlights. For comparison, Figure 13 shows the
observed image of the original painting under the real D65
fluorescent lamp and the same geometries of viewing and
lighting. Both images provide a very close appearance. Al-
though the present technique using surface normals cannot
create the cast shadows, no problem happened to the image
rendering under the usual conditions of viewing and lighting.

1

Figure 7: Oil painting of a natural scene.

Figure 8: Image of the estimated surface normals.

7. Conclusions

This paper has proposed a method for measuring and ren-
dering of art paints by using the simple system of a nor-
mal RGB camera only. The surface of an art painting was
considered as a rough plane rather than a three-dimensional
curved surface, so that it was not necessary to reconstruct
the three-dimensional surface for digital archiving. Because
the surface of a painting has the dichromatic reflection prop-
erty, the spectral reflectance function is estimated from the

Area1Area2

Area3

Area4

Figure 9: Accuracy check of the spectral reflectance esti-
mates.

diffuse reflection component. We have shown that a reliable
spectral reflectance can be estimated from a set of RGB color
values acquired at different illumination directions. Surface
normal was estimated at each pixel point, based on an ex-
tended photometric stereo without using a rangefinder. The
surface reflectance and normal data were then used for esti-
mating the light reflection properties. The Torrance-Sparrow
model was fitted to the observed data so that the model pa-
rameters were estimated. Finally, an experiment using an oil
painting was executed for demonstrating the feasibility of
the proposed method.
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Figure 10: Estimation results of surface-spectral re-
flectances.
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Figure 11: Specular component image.

Figure 12: Image rendering result for a fluorescent light
source with the color temperature of D65.

Figure 13: Observed image of the painting under the real
D65 fluorescent lamp.
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