
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

3dml: A Language for 3D Interaction Techniques

Pablo Figueroa, Mark Green and H. James Hoover

{pfiguero,mark,hoover}@cs.ualberta.ca
Department of Computer Science, University of Alberta, Edmonton,

Alberta, Canada

Abstract
We present 3dml, a markup language for 3D interaction techniques and virtual environment applications that
involve non-traditional devices. 3dml has two main purposes: readability and rapid development. Designers can
read 3dml-based representations of 3D interaction techniques, compare them, and understand them. 3dml can
also be used as a front end for any VR toolkit, so designers without programming skills can create VRapplications
as 3dml documents that plug together interaction techniques, VR objects, and devices. This paper focuses on the
language features and presentation scheme designed in our website (http://www.cs.ualberta.ca/~pfiguero/3dml).

1. Introduction

3dml is a markup language that describes applications with
different types of input devices, output devices, and 3D in-
teraction techniques (InTs), such as desktop-based 3D pre-
sentations, Virtual Reality (VR) applications, or Augmented
Reality (AR) applicationsy. 3dml defines a way to describe
classes of 3D InTs and devices, and it allows developers to
combine in applications instances of interaction techniques,
devices, and VR objects.

The purpose of 3dml is to provide a high level and uni-
form language to represent 3D InTs, a language that can
be readable by programs, as well as by designers. A lan-
guage with these characteristics provides an instrument for
comparison of 3D InTs, for the study of alternative interac-
tion techniques in an application, and for rapid prototyping.
3dml can accelerate the production of VR applications, be-
cause its concepts are higher level than the ones in languages
traditionally used in this area, such as C++ and Java, with-
out the restrictions of devices and interaction techniques in
languages such as VRML. 3dml also provides a way to hide
unnecessary details from designers such as device configura-
tion, interaction technique implementation, and scene graph
details, so designers can concentrate on the tasks that a VR
application doesz.

y From now on VR applications
z These details are defined inside the implementation of 3dml in a
particular VR toolkit.

We plan to create tools based on 3dml for rapid prototyp-
ing of VR applications. Designers of VR worlds will be able
to browse available 3D InTs and applications, to specify the
interface of new 3D InTs, and to create new VR applications
by composing pre-existing 3D InTs.

This paper is organized as follows: Related represen-
tation techniques are presented in Section 2, followed
by the basic concepts of this representation in Sec-
tion 3, and the main features with examples in Sec-
tion 4. The presentation aids designed in our website –
http://www.cs.ualberta.ca/~pfiguero/3dml – are presented in
Section 5, the future work in Section 6, and finally some
conclusions in Section 7.

2. Related Work

In this section we analyze the main two areas that 3dml is
trying to address: understandability and rapid development.
Basically, a developer has two resources in order to under-
stand an InT: the available documentation in the toolkit that
implements such technique, and the papers that present it-
s rationale and purpose. However, it is usually difficult to
understand the implementation of an InT in a toolkit with-
out a deep knowledge about the toolkit's architecture, and
it is difficult to compare an implemented InT with non-
implemented alternatives, because of the large diversity of
presentation techniques in research papers. 3dml aims a so-
lution to this.

In terms of application development, current VR toolkits

c
 The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org


Figueroa, Green and Hoover / 3dml

define InTs in programming languages such as C++ or Java,
so programming skills in such languages are necessary to de-
velop any application. VRML6 and its successor X3D18 are
descriptive languages that require less programming skills
than C++ or Java, and can define 3D InTs as a set of SCRIPT
nodes connected by ROUTEs; however it is not easy to iden-
tify particular InTs, to change the default set of devices, and
to reuse such InTs in other programs.

X3D Components19 define a way to extend the function-
ality of X3D by using BML4, a markup language for Java
beans integration that is very powerful but exposes much of
the bean complexity to the user. 3dml proposes a simpler
component model to the one used in BMLx.

Newsgroups such as 3dui1 have been discussing a way to
describe 3D InTs, either to capture their design and inten-
tion in formalisms such as UAN15, or to capture their main
algorithm and code generation mechanisms by pseudocode
or scripting languages such as Python17. This paper presents
a markup language that can be shown to the user in a more
friendly way, and that can be also parsed in order to make an
executable application.

3. Basic Concepts

3dml uses a dataflow architecture as the general structure of
an application. VR objects, devices, and InTs are the com-
ponents of this dataflow, and there is a simple component
model that defines how such elements are plugged together.

The component model used in 3dml differs from standard
models such as Java Beans10, CORBA8, or COM9 in the fol-
lowing ways:

� 3dml can be considered an interface definition language
(IDL) based only on the concepts of typed input and out-
put (I/O) ports.

� It is, in principle, simpler than the other models. It defines
only the concepts required to specify a VR application at
a high level of abstraction.

� Only a specific and known subset of components are al-
lowed to make changes to the scene. This feature makes
explicit the modifications to the world, so the overall be-
havior of an application is easy to understand.

� Connections between components allow concurrent and
enriched fan-in – several components send a message to
a component – and fan-out – a component sends a mes-
sage to several components. For example, if several com-
ponents try to change the position of an object at the same
time (fan-in), different policies can apply, such as to add
all concurrent values or to pick one at random.

� It is possible to define default values for connections in a
component. At runtime, the state's component is initial-
ized with such values.

x Our component model is analyzed in Section 3.

The following paragraphs define the main concepts in
3dml. A filter is the smallest process unit in the dataflow,
composed of input and output ports – which carry typed
events –, and state information. Figure 1 shows a way to rep-
resent a filter – SelectByTouching – in a diagram that shows
its input ports on the left of a box and output ports on the
right. Its output is a selected object from the scene. Its inputs
are the VR object used as hand representation, the current
position and orientation of such an object, the scene of ob-
jects to pick from, and the events that inform about added
or deleted objects from the scene. Some of these values are
redundant - i.e. the hand representation has also the infor-
mation about position and orientation - but this redundancy
allows flexibility in the modeling of the filter, since there are
several ways to connect its input, as follows:

� If the hand representation can change, the hand represen-
tation input port will inform the filter of such a change.

� If objects can be added to or removed from the scene,
the filter can know it by connecting the addObject or re-
moveObject ports.

� If the hand representation is fixed throughout the appli-
cation, the filter can receive just the expected changes -
position or orientation - and avoid the cost of receiving all
the object at every change.

� If the scene is fixed, the filter does not need to connect the
addObject and removeObject input ports.

SelectByTouching selectedObjectposition

orientation

handRepr

scene

addObject

removeObject

Figure 1: Select by Touching. An Example of a Filter

It is up to the InT designer to define the correct level of
generality foreach filter, in order to maximize flexibility and
avoid unnecessary performance penalties. SelectByTouch-
ing is stateless, but a filter can also have an internal state.
For example,FeedbackOnein Figure 3 remembers the last
selected object and its previous color, and changes it back
when required{.

VR objectsrepresent identifiable pieces of content in the
virtual environment: elements that can be seen, heard, or
touched by the user. Anobject holderis a special type of
filter that allows changes on a VR object. Aninput deviceis
a filter with just output ports that sends events of a certain
type to the dataflow. Anoutput deviceis a placeholder that

{ Feedback is actually an interaction technique, but its implemen-
tation has filters with internal state.

c
 The Eurographics Association 2001.



Figueroa, Green and Hoover / 3dml

describes where the output of the application will be shown
– it is internally related to the VR objects, but the details are
hidden to the VR designer.

An interaction techniqueis a set of interconnected in-
stances of filters and objects , that is identifiable and
reusable. An InT has the same interface as a filter in terms
of input and output ports, so it can be used in an appli-
cation without knowing details about its implementation.
This reduces the complexity that VR designers have to deal
with. Figure 2 shows the Go-Go interaction technique14 – an
InT to lengthen the user's virtual arm for reaching distant
objects– as it is used by VR designers, and Figure 3 shows
all the filters and objects involved, for somebody interested
in the details of how Go-Go works.

K object

D

posHead

qHead

posHand

qHand

handRepr

scene

addObject

removeObject

type

color

GoGoIT

Figure 2: The Go-Go interaction technique. General view.

�
�
�
�

�
�
�
�

�
�
�

�
�
�

GoGoIT

posHead

qHead

handRepr

scene

addObject

removeObject

gogo cube

SelectByTouching
pos

q

object

currentcurrentObject

setBBCurrent

setColorCurrent

previouspreviousObject

setBBPrevious

setColorPrevious

FeedbackOne

SelectByTouchingIT

FeedbackOneIT

color

type

cubeObj

isVisible

K

D

qHand

posHand

Figure 3: The Go-Go interaction technique. Details.

An applicationallows a designer to plug together all the
previous elements in order to meet certain user requirements.
Figure 4 shows a simple application, that allows an user to

move a virtual hand with a tracker and touch virtual objects.
In this example we have one filter (SelectByTouching), one
InT (Feedback), one input device (handTracker), one output
device (console), two VR objects (scene and handRepr), and
one object holder (handRepresentation).

SelectByTouchingposition

orientation

handRepr

scene

addObject

removeObject

selectedObject

console
handRepr

�
�
�
�
�

�
�
�
�
�

handTracker

handRepresentation

Feedback
type

color

scene

Figure 4: Simple Application. Touching Objects With a Vir-
tual Hand.

Filters, InTs, and applications are documented in 3dml by
a short description, a long description, indexes (explained in
Section 5), and references to papers where they are defined.
This information is used in the presentation scheme present-
ed in Section 5.

4. Main Features and Examples

3dml is a XML application that defines all the basic concept-
s described before. Listings 1, 2, and 3 are 3dml documents
that represent the examples in Figures 1, 2, and 4, respective-
ly k. These examples are used to describe the most important
features of 3dml in the following paragraphs.

Class Declarations

Filter and InT classes are defined in 3dml with the elements
FilterClass and ITClass , respectively. For example
Listing 1 defines the filter classSelectByTouching and
Listing 2 defines the InT classGoGoIT. Filters and InTs
classes define their interface, in terms of input and output
ports. Each input and output port has a name and a type,
and an input port can have a default value. For example,
the line <IPort id="D" type="float" defVal-
ue="0.6"> in GoGoIT defines the input port calledD,
of type float and with default value0.6 , and<OPort
id="object" type="VRObject"> defines an output
port namedobject of typeVRObject .

k For space reasons, only important elements are presented here.
For more details look at the 3dml website.

c
 The Eurographics Association 2001.



Figueroa, Green and Hoover / 3dml

List 1 Select by Touching. XML Code
1 <FilterClass id="SelectByTouching">

<IPort id="p" type="Pos3D">
<ShortDesc>Change of position
</ShortDesc> </IPort>

5 <IPort id="q" type="Quaternion">
<ShortDesc>Change of rotation
</ShortDesc></IPort>

<IPort id="handRepr" type="VRObject">
<ShortDesc>

10 Object that represents
the users' hand

</ShortDesc></IPort>
<IPort id="scene" type="Scene">

<ShortDesc>Selectable objects
15 </ShortDesc></IPort>

<IPort id="addObject" type="VRObject">
<ShortDesc>Dynamically added objects
</ShortDesc></IPort>

<IPort id="removeObject"
20 type="VRObject">

<ShortDesc>Dynamically removed objects
</ShortDesc></IPort>

<OPort id="object" type="VRObject">
<ShortDesc>Selected object

25 </ShortDesc></OPort>
</FilterClass>

Application Definition

The elementApp is used to create applications. Listing 3
shows how instances of objects, devices, filters, and InTs can
be defined and connected together in order to show selection
by touching.

Instantiation

InT classes can contain instances of objects, filters, and oth-
er InTs. For example, in lines 2–5 of Listing 2, we define the
objectcubeObj as a simple box, the filtergogo of class
GoGo that computes the lengthening behavior of this tech-
nique, and the InTselect of classSelectByTouchin-
gIT , that finds an object that collides with the virtual hand
and changes its color.

Applications can contain all instances that an InT can,
plus instances of devices. In Listing 3, the application instan-
tiates thehandtracker and theconsole as its input and
output devices, respectively.

Variable and constant declaration

Variables and constants can be created inside an application
with the elementsInput andConstant . Variables are ini-
tialized with a port name, constants with a value, and they
can be used wherever an output port is used. The application
in Listing 3 creates two variables,pos andq, and they are

List 2 The Go-Go interaction technique. XML Code
1 <ITClass id="GoGoIT">

<Filter id="gogo" type="GoGo"></Filter>
<IT id="select"

type="SelectByTouchingIT"></IT>
5 <VRObject id="cubeObj" primitive="Box"/>

<ObjectHolder id="cube">
<Input id="setVisible" target="gogo"

port="setVisible"/>
<Input id="object" target="_self"

10 port="cubeObj"/>
</ObjectHolder>

<Binding target="gogo" port="pos">
<Port target="select" port="pos"/>

15 </Binding>
<Binding target="gogo" port="q">

<Port target="select" port="q"/>
</Binding>

20 <IPort id="K" type="float"
defValue="0.167">

<Port target="gogo" port="K"/>
</IPort>
<IPort id="D" type="float"

25 defValue="0.6">
<Port target="gogo" port="D"/>

</IPort>
<IPort id="posHead" type="Pos3D">

<Port target="gogo" port="pHead"/>
30 </IPort>

<IPort id="qHead" type="Quaternion">
<Port target="gogo" port="qHead"/>

</IPort>
<IPort id="posHand" type="Pos3D">

35 <Port target="gogo" port="pHand"/>
<Port target="cube" port="p"/>

</IPort>
<IPort id="qHand" type="Quaternion">

<Port target="select" port="qHand"/>
40 <Port target="cube" port="q"/>

</IPort>
<IPort id="handRepr" type="VRObject">

<Port target="select"
port="handRepr"/>

45 </IPort>
<IPort id="addObjectToScene"

type="VRObject">
<Port target="select"

port="addObjectToScene"/>
50 </IPort>

<IPort id="type" type="String">
<Port target="select" port="type"/>

</IPort>
<IPort id="color" type="Color">

55 <Port target="select"
port="colorSelection"/>

</IPort>
<OPort id="object" type="VRObject">

<Port target="select" port="object"/>
60 </OPort>

</ITClass>

c
 The Eurographics Association 2001.



Figueroa, Green and Hoover / 3dml

List 3 Simple Application. XML Code
1 <App>

<Scene id="scene" filename="scene.wrl"/>
<Object id="handRepr"

filename="hand.wrl"/>
5

<IDevice id="handTracker"/>
<ODevice id="console"/>

<Input id="pos" target="handTracker"
10 port="pos"/>

<Input id="q" target="handTracker"
port="q"/>

<ObjectHolder id="handRepresentation">
15 <Input id="setTranslation"

target="_self" port="pos"/>
<Input id="setRotation"

target="_self" port="q"/>
</ObjectHolder>

20
<Filter id="select"

type="SelectByTouching">
<Input id="handRepr"

target="_self" port="handRepr"/>
25 <Input id="pos"

target="_self" port="pos"/>
<Input id="q"

target="_self" port="q"/>
<Input id="scene"

30 target="_self" port="scene"/>
</Filter>
<IT id="feedback" type="FeedbackOneIT">

<Input id="object"
target="select" port="object"/>

35 </IT>
</App>

used to separate the platform-dependent part of the applica-
tion – I/O devices – from the platform-independent – filters
and InTs.

Filter and InT connection

Filters and InTs can be connected in order to create new ap-
plications and InTs. Basically, connections are valid if the
origin is an output port, and the destination is an input port
of the same type as the origin. The examples show the fol-
lowing types of connections:

� Explicit connection. The elementBinding allows us to
connect the output port of a filter/InT to the input port of
another one. Two examples are shown in Listing 2, lines
13–18

� InT input. Input ports of an InT are redirected to input
ports of the contained object holders, filters and InTs by
using the elementPort . This mechanism defines how the
InT will use its internal implementation, so users of such

InT do not have to worry about this detail. For example,
the input ports of GoGoIT in Listing 2 are redirected to
input ports incube , gogo , andselect .

� InT output. The output of any InT is defined as a subset of
the output of its filters and InTs. For example, the output
of GoGoIT in Listing 2 is just the selected object, that is
taken from the InTselect , part of its implementation.

� Object holder ports. An object holder is connected to fil-
ters and InTs by using the elementBinding , or by defin-
ing a target and aport in each definedInput . For
example, Listing 2 defines the object holdercube , and
connects its input ports:object – the object that will be
modified – andsetVisible – in order to show or hide
the object.

Geometry of VR objects

3dml does not has elements to define object geometry. In-
stead, aVRObject can import its geometry from a file,
or be defined as a primitive:Box, Cone, Cylinder , and
Ellipse . Listing 2 defines a Box in line 5, and Listing
3 defineshandRepr as the geometry inhand.wrl , and
a set of objects calledscene as the geometry defined in
scene.wrl .

Embeded documentation

All important elements in 3dml have textual descriptions. A
short description is sometimes mandatory as for the ports of
SelectByTouching in Listing 1.

Element overloading

Several elements in 3dml are overloaded, in order to rep-
resent similar concepts in the same way. For example, I/O
ports in filters and InTs are represented with the elementsI-
Port andOPort , despite the fact they only requirePort s
in an InT. Input is also overloaded, because it can repre-
sent variables in an application, or input bindings in filters.
We think this mechanism enhances the similarities of such
elements and avoids possible doubts of its use.

InT Reuse

All InT and filter classes can be reused in new InTs and ap-
plications, just by creating instances of such classes. For ex-
ample, Listing 3 creates a filter of classSelectByTouch-
ing and an InT of classFeedbackOneIT , and connects
them in an application.

Complexity hiding

The information required to use an InT is only its description
and its interface. Details about the InT's implementation can
be hidden, so the overall application can be easier to under-
stand.

c
 The Eurographics Association 2001.



Figueroa, Green and Hoover / 3dml

5. Presentation Scheme

We have developed in our website a presentation scheme
for 3dml documents, that is shown in Figure 5. These web-
pages present 3dml documents in a more readable way than
in plain XML, for comparison and understanding purposes.
The main elements in this scheme are:

� File view. Applications and InTs are classified by the file
they are contained in. It is the basic view for the library
contents and the simpler way to browse the information.

� Category views. It is possible to create several hierarchi-
cal indexes for InTs and applications. In this way InTs can
be classified by several criteria, which can help designers
to understand easier the library and choose the best InTs
for a particular application. For example, all InTs we have
described in 3dml are classified by the paper they appear
in and by this basic classification: travel, selection, ma-
nipulation, control, and feedback��.

� Filter details. It presents a general description of the filter,
its interface – input ond output ports –, its position in other
categories, details about its ports, and bibliography.

� InT details. It presents a general description of the tech-
nique, its interface, its implementation – object holders,
filter, and InT instances –, details about ports, and bibli-
ography.

� Application details. It presents a summary of the tasks –
InTs and filters –, objects, and devices that the applica-
tion uses, with a detailed information of connections and
purposes of each element.

These HTML pages have been generated from the 3dml
documents using XSLT20, and can be used to show any docu-
ment that follows the 3dml definition rules. The specification
contains in this moment the most important 3D InTs pre-
sented in papers in the last 10 years: selection by raycasting,
selection by touching, aperture-based selection7, techniques
based on proprioception12, image-plane based techniques13,
and walking techniques16.

�� Inspired by Bowman's5 and Barrileaux's2 work

Figure 5: File view of 3dml.

6. Future Work

This is the first stage of our project, in which we define the
language and the documentation mechanisms of 3D InTs
and VR applications. It is possible to design tools to view
3D InTs in more readable formats –i.e. diagrams automati-
cally generated from the description. 3dml is also designed
to be a front end for development in any toolkit, and two im-
plementations are in development, one in Java3D11 and one
in VR-Juggler3.

We have started a process of debugging the 3dml docu-
ments that describe our library of 3D InTs. In the future we
plan to incorporate more InTs, to offer the designer better
tools to handle this representation, and to add more docu-
mentation and usability data.

7. Conclusions

3dml defines a uniform way to represent 3D InTs that is
high-level, toolkit-independent, component-based, reusable,
and extensible. Designers of VR applications can understand
and compare several 3D InTs described in the same lan-
guage, and with an uniform documentation paradigm. This
language also allows designers to represent VR applications
at a high level of abstraction, allowing them to easily use 3D
InTs.

References

1. 3d user interfaces newsgroup. http://www.mic.atr.co.jp/
~poup/3dui.html.

2. Jon Barrileaux.3D User Interfaces With Java 3D. Man-
ning Publications, August 2000.

3. Allen Bierbaum, Christopher Just, Patrick Hartling,
Kevin Meinert, Albert Baker, and Carolina Cruz-Neira.
Vr juggler: A virtual platform for virtual reality appli-
cation development. InProceedings of IEEE Virtual
Reality, pages 89–96, 2001.

c
 The Eurographics Association 2001.



Figueroa, Green and Hoover / 3dml

4. BML: Bean Markup Language.
http://www.alphaworks.ibm.com/tech/bml.

5. Doug A. Bowman and Larry F. Hodges. Formalizing
the design, evaluation, and application of interaction
techniques for immersive virtual environments.The
Journalof Visual Languagesand Computing, 10(1):37–
53, Februrary 1999.

6. Rikk Carey and Gavin Bell.The Annotated Vrml 2.0
Reference Manual. Addison-Wesley, 1997.

7. Andrew Forsberg, Kenneth Herndon, and Robert
Zeleznik. Aperture based selection for immersive vir-
tual environments. In ACM, editor,UIST, pages 95–96,
1996.

8. Object Management Group. CORBA: Com-
ponent Object Request Broker Architecture.
http://www.omg.org/corba/.

9. Microsoft. COM: Component Object Model.
http://www.microsoft.com/com/.

10. Sun Microsystems. Java beans home page.
http://java.sun.com/products/javabeans/.

11. Sun Microsystems. Java 3d home
page. http://java.sun.com/products/ java-
media/3D/index.html, 1997.

12. Mark R. Mine, Frederick P. Brooks Jr., and Carlo H.
Sequin. Moving objects in space : Exploiting propri-
oception in virtual-environment interaction. In ACM,
editor,SIGGRAPH, pages 19–26, 1997.

13. Jeffrey S. Pierce, Andrew Forsberg, Matthew J. Con-
way, Seung Hong, Robert Zelenik, and Mark R. Mine.
Image plane interaction techniques in 3d immersive en-
vironments. In ACM, editor,Symposium on Interactive
3D Graphics, pages 39–43, 1997.

14. Ivan Poupyrev, Mark Billi nghurst, Suzanne Weghorst,
and Tadao Ichikawa. The go-go interaction technique:
Non-linear mapping for direct manipulation in vr. In
ACM, editor, Symposium on User Interface Software
and Technology, pages 79–80, 1996.

15. A. C. Siochi and H. R. Hartson. Task-oriented represen-
tation of asynchronous user interfaces. In ACM, editor,
Proceedingsof the SIGCHI conference on Wings for the
mind, pages 183–188, 1989.

16. Martin Usoh, Kevin Arthur, Mary C. Whitton, Rui
Bastos, Anthony Steed, Mel Slater, and Jr. Frederick
P. Brooks. Walking > walking-in-place > flying, in vir-
tual environments. InProceedings of the SIGGRAPH
1999 annual conference on Computer graphics, pages
359–364. ACM, 1999.

17. Guido van Rossum. Python language website.
http://www.python.org/.

18. Web 3d consortium. http://www.web3d.org.

19. X3d components specification.
http://www.web3d.org/ TaskGroups/x3d/lucidActual/
X3DComponents/X3DComponents.html.

20. XSLT: XSL Transformations.
http://www.w3.org/TR/xslt11/.

c
 The Eurographics Association 2001.


