
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

 The Eurographics Association 2001.

Complexity Reduction of
Catmull-Clark/Loop Subdivision Surfaces

Eskil Steenberg

The Interactive Institute, P.O. Box 24081, SE 104 50 Stockholm, Sweden

eskil.steenberg@interactiveinstitute.se

Abstract
By applying a filter this algorithm can reduce the number of polygons generated by subdividing a mesh
dynamically. This algorithm is designed especially for real-time engines where the geometrical complexity is
critical. It also avoids edge cracks and is generally more efficient than a general-purpose polygon reduction
algorithm.

Keywords: Subdivision complexity reduction. Real-Time, Loop, Catmull-Clark, Hardware.

1. Introduction
While subdivision surfaces are quickly becoming the
primitive of choice for modeling and animation, they
have yet to become widely used in the real-time
simulation and game communities. Even though
subdivision surfaces by nature are recursively
generated and therefore can be generated in different
levels of detail (LOD) they are limited in the way they
add complexity. For each generation of Catmull-
Clark[1] or Loop[2] subdivision that is generated the
amount of geometry quadruples making the LOD steps
fairly large.
In theory an extended Catmull-Clark subdivision
scheme with creases appears as the ultimate CGI
primitive, it is compatible with polygons and NURBS,
making it backwards compatible with old art work, it
has been properly evaluated[3,4], it is supported in
various commercial modeling and animation tools and
it is a joy to model with.
Unfortunately our general conclusion is that Catmull-
Clark subdivision surfaces are not useful in real time
engines unless there is some geometry-reduction
algorithm in place. The performance hit taken by the
quadrupling face count for each iteration of
subdivision can not be justified by the added
smoothness of the surface.

The main problem is that when a mesh is subdivided
all polygons are equally subdivided regardless of
whether extra detail is needed at that particular location
or not. The algorithm does not take into account
proximity to the viewpoint, curvature, frustum clipping
or polygon size, something that many other LOD
algorithms consider [7,8,9,10,11,12]. This makes
subdivision surfaces not too well suited for
environments with large objects where local LOD is
needed. This problem becomes even more apparent if
the subdivision scheme includes some sort of crease
algorithm delivering meshes with many flat areas that
don’t need to be divided [14].
It becomes apparent that what is needed is some type
of local LOD. One possible approach would be to
apply a standard polygon reduction algorithm on the
subdivided mesh but this would not be very efficient.
Since we have access to the control mesh we can
analyze it rather than the subdivided mesh to get some
higher level control of the surface complexity.

2. Understanding Optimization
In order to understand how to optimize an algorithm
we need to understand how the mesh will be used. It is
a common misconception that in a real time engine
everything has to be computed for each frame, whereas
in reality only a small portion of a scene changes for
every frame making caching very rewarding. The
highest priority is given to the actual drawing of the

http://www.eg.org
http://diglib.eg.org

Eskil Steenberg / Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces

 The Eurographics Association 2001.

frame. Second comes the animation that should be
updated every frame, but in extreme circumstances it
can be dropped to every second or third frame. The
change of an objects LOD is more rare and only occurs
when there is a significant change to the relation of the
camera and the object. Topological changes to the
control mesh may never occur and or occur very
rarely.
This leads us to write a "kernel" in our engine that
much like a multitasking operating system can
prioritize and schedule tasks that needs to be
computed. It can also maximize the use of the 3D
hardware and multiple processors.
The biggest speed gain to be made on modern
processors is to keep algorithms cache coherent, this
means that an algorithm should not access memory
randomly, but to work through it from one end to the
other. This means that static lists are faster than linked
list and that pointer references to other parts of memory
are generally slow to follow. This makes many of the
conventional mesh optimization algorithms very hard
to implement since they are dependent on the ability to
split and remove polygons and to compute each
polygons relation to its neighbors.

2.1 The Geometry Pipeline
Our geometry pipeline will therefore be in four steps:
The first step is the one that subdivides the control
mesh in to a finer polygon mesh and creates relational
data between the control vertices and the vertices on
the subdivided surface. This part of the algorithm is in
fact a conventional subdivision algorithm and will
therefore not be discussed in this paper [1, 2].
The second stage analyses the mesh and creates a
reduced version of it by applying a filter to it.
The third stage takes the topology data, and the vertex
relation data along with the positions of the control
vertexes and computes the animation of the object. The
relational data will be explained later in section four.
The fourth stage renders the mesh.
So to get a new image we only redo the last step, if we
need to animate the object we redo the last two steps, if
we need a new level of detail we re compute the three
last steps and only in the rare occasion of a topological
change do we need to recompute all of the steps
including the first and most time consuming step.

Figure 1: The geometry pipeline.

3. Tessellation Selection - Step II
The simple approach is of course to divide different
polygons different number of times, giving you a
flexible way of choosing where you want your
complexity. Pixars Photo Realistic Renderman does
this to create sub-pixel-sized quadrilaterals.
Unfortunately cracks will appear in the edges between
two differently tessellated polygons. In the case of a
rendering architecture like Rendermans REYES[5] this
is a limited problem since the cracks are very small, but
in a real-time orientated engine the cracks are not
acceptable due to the larger polygons. So our algorithm
must be able to subdivide different edges differently in
order to fit each polygon with its neighbors.
We choose to compute the level of tesselation per edge,
to do this we use both the vertexes in the ends of the
edge and one vertex in the middle of the edge. If we
measure the distance between the edge point and the
mid points between the two end vertexes and divide it
by the length of the edge, we will obtain a value that
represent the curvature of the edge (see Figure 2). We
can also compute the distance between the edge point
and the view position to create a view-dependent
tessellation level. The great benefit with this is that
since the tessellation selection algorithm uses only data

In-data

Step 1

Reference data

Subdivision

Animation

Rendering

Step 2

Step 3

Step 4 Reference
Dependency

Vertex

Geometry
reduction

Vertex data

Eskil Steenberg / Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces

 The Eurographics Association 2001.

that is shared with the neighboring polygon there is no
need to store the result of the computations to match it
with the tessellation of the neighboring polygon. If the
neighboring polygon uses the same input it will obtain
the same result and will therefore be tessellated to
match its neighboring polygon. This approach side-
steps the process of having two neighboring polygons
"agree" on the level of tessellation needed, a process
that can be difficult to implement and not very cache
friendly.

Figure 2: The tessellation selection algorithm.

3.1 The Tessellation Table
Our suggested approach, to first subdivide the mesh a
given number of times and then apply a filter that picks
out a different amount of detail in different edges so
that each edge can be tessellated individually, makes it
possible to precompute this filter in the form of a look
up table that contains two arrays of data per polygon.
One holds the indexes of the vertexes needed in the
filtered polygon and the other holds the references
describing how to bind those vertexes in to polygons.
(See listing 1). This means that we need one table
element, for each possible combination of how the
edges in a polygon can be tessellated. In our particular
implementation we have implemented two sets of
tables, one for quadrillions and one for triangles since
our engine is a Catmull-Clark / Loop hybrid. If you
want to have a more general solution for n-sided
polygons you can choose first to tessellate all polygons
using one generation of Catmull-Clark to turn all
polygons in to quadrilateral.

Figure 3 Step I Figure 4 Step II

If we consider the reference data for the tessellated
quad in fig 3 as an array of 16 elements, and we want
to create the less tessellated polygon in fig 4. The new
tessellated polygon will only need 5 out of the 9
vertexes. In order to acquire them we read the first
vector in the look-up table element containing the
entries 0, 1, 15, 10 and 5. We can then copy the vertex
data referenced to in the original reference array
elements 0, 1, 15, 10 and 5.
Now that we have a reduced vertex array we need a
reduced reference. This reference can simply be copied
from the look up table element s other vector in this
case containing the data 0, 1, 2, 1, 3, 2, 1, 4 and 3.
(See Listing 1).
One important criteria for this algorithm is that the
subdivision algorithm is able to backtrack in a
repeatable way how polygons were created and from
what control polygons they origin. For each time we
subdivide the polygons we get four times as many
polygons, if we choose to put those four new polygons
in order we can easily back track the origin of them. So
if we for example choose to tessellate a subdivision
mesh three times we will know that every 43:rd
polygon entry will origin from the same control mesh
polygon since each control polygon has been divided
in to 43 (64) polygons. This makes it possible to make a
table that can easily find the vertexes that are needed.
In our implementation tables have been generated for
up to six levels of subdivision taking almost a minute
on a standard pc.

vertex_count = 0;
for(i = 0; i < control_polygon_count; i++)
{

element = get_table_element();
for(j = 0; j < element->reference_count; j++)

reduced_reference[k++] = element-
>reference[j] +

vertex_count;
for(j = 0; j < element->vertex_count; j++)
{

vertex_index = original_reference[element->
vertex_index[j] + i * pow(4, base_level +

1)];
new_vertex[vertex_count].x =
old_vertex[vertex_index].x;

new_vertex[vertex_count].y =
old_vertex[vertex_index].y;

new_vertex[vertex_count].z =
old_vertex[vertex_index].z;

vertex_count++;
}

}

Listing 1. The inner loop that copies the subdivided
data in to the reduced data.

0 1

23

4 5

67

8 9

1011

12 13

1415

0 1

2

3

45

6 7

8

v1

v0

e0

(v0 + v1) / 2

Eskil Steenberg / Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces

 The Eurographics Association 2001.

Exactly how the tables are generated is an
implementation detail that will not be covered in this
paper but it is important to note that the middle of the
control polygons should be divided roughly the same
number of times as the edges.
Since Catmull-Clark subdivision surfaces are based on
quads you want your subdivision scheme to output
quads while your 3D hardware expects triangles. The
tessellation tables we have implemented outputs
triangle but it is of course not necessary.

4. Animation - Step III
In the first step we do not handle the actual positions of
any geometry but only how the vertexes in the
subdivided mesh relates to the control mesh. So instead
of computing the position of a vertex, we store
references to the control vertexes that influence that
vertex and how much they influence(see Table 1). This
means that at any time we can re-compute the position
of a vertex on the surface by weighting in the control
vertices (see Listing 2). All animation is therefore
preformed only on the control mesh that in turn
influences the subdivided surface.

Reference Weight
23 0.4375
56 0.4375
34 0.0625
56 0.0625
45 0.0625
11 0.0625

Table 1. The data for a vertex may look like this (this
is the data produced by an edge vertex between two
quadrillions).

This idea of storing the relationship between control
vertexes and surface vertexes has many advantages if
implemented in hardware. First of all it is a very simple
algorithm that can be used for a variety of surface types
like Bezers, trimmed NURBS, Catmull-Clark, Loop,
butterfly subdivision surfaces, edge collapse based
polygon reduction algorithm [8,9]. It can also be used
to create hardware-accelerated displacement mapping
by weighting in normals. But the biggest gain is that it
makes it possible to upload the relational data to the

3D hardware, and then when the animation occurs only
send the new control vertexes. This will drastically
reduce the bandwidth needed to perform complex
animations. Sending only 500 control points over the
bus can animate a 100.000 polygon character.
In order to test this we have implemented our own low-
level experimental 3D API. This API called NGL
features a stack based shader system and a
programmable geometry pipeline.

for(i = 0; i < vertex_count; i++)
{

x = 0;
y = 0;
z = 0;
for(j = 0; j < *influence_list_length; j++)
{

index = *index_array++;
value = *value_array++;
x += value * control_vertex_array[index].x;
y += value * control_vertex_array[index].y;
z += value * control_vertex_array[index].z;

}
surface_vertex_array[i].x = x;
surface_vertex_array[i].y = y;
surface_vertex_array[i].z = z;
influence_list_length++;

}

Listing 2. The inner loop that weights the control
vertices to the surface vertices.

5. Results / Future work
In our implementation we have seen vast improvement
in efficiency especially on objects with few curved
areas(See Figures 5-6). The largest shortcoming of this
algorithm is that flat areas with curved edges tend to be
over tessellated. This is something we intend to combat
by having a separate set of look up tables for flat
polygons. Another potential problem is that the
algorithm can never reduce the mesh below its control
mesh polygon count. Still it produces very good results
especially with architectural objecs. The biggest
features with this algorithm is of course that it is fast,
contains no iterative searching and that all data can be
stored in arrays since there are no insert/delete
operations, something that 3D hardware APIs such as
OpenGL like. The biggest problem is that the algorithm
is so large and contains so many steps that it becomes
very hard to implement and debug. In the future we
would like to try to instead of generating a look-up
table generate compliable code that would contain the
tessellation information to see if there is a possible
speed gain.

Eskil Steenberg / Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces

 The Eurographics Association 2001.

The original mesh subdivided 3 levels contains 158272
polygons. All images are flat shaded. The control mesh
consists of roughly 1200 control polygons and has a
number of creased features.

6. Acknowledgments
We would like to thank Emil Brink, Oskar Wahlberg,
Mark Ollila, the Interactive Institute and everyone who
has supported the Verse project and us.

7. References
[1] Catmull E. and J. Clark "Recursively Generated

B-spline Surfaces on Arbitrary Topology
Meshes". Computer Aided Design 1978

[2] C. Loop "Smooth Subdivision Surfaces Based on
Triangles" Masters Thesis, University of Utah,
1987.

[3] J. Stam, "Exact Evaluation of Catmull-Clark
Subdivision Surfaces at Arbitrary Parameter
Values", SIGGRAPH'98 Proceedings, pages 395-
404.

[4] J. Stam, "Evaluation of Loop Subdivision
Surfaces", SIGGRAPH'99 Course Notes, 1999.

The same mesh in a reduced state only contains 11821
polygons, about 7.5% of the original geometry
complexity. Note that flat areas have been reduced
down to a minimum while the curved areas are still
tessellated.

[5] R. L. Cook, L. Carpenter, and E. Catmull, "The

Reyes Image Rendering Architecture" Computer
Graphics, Volume 21, Number 4, July 1987.

[6] S. Junkins and A. Hux "subdividing Reality:
Employing Subdivision Surface for Real-time
Scalabel 3D" Game Developers Conference 2000,
Proceedings page 287-300

[7] D. Luebke and C. Eickson. "View Dependent
Simplification of Arbitrary Polygonal
Enviorments" SIGGRAPH 1997, Proceedings
page 199-207

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,
W. Stuetzle. "Mesh optimization" SIGGRAPH
1993 Proceedings pages 19-26.

[9] H. Hoppe. "Progressive meshes" SIGGRAPH
1996 Proceedings pages 99-108.

[10] H. Hoppe. "View-dependent Refinement of
Progressive Meshes" SIGGRAPH 1997
Proceedings pages 189-198.

Eskil Steenberg / Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces

 The Eurographics Association 2001.

[11] S. Melax "Asimple, Fast and Efective Polygon
Reduction Algorithm" Game Developer
November 1998

[12] A. Certain, J. Popovic, T. DeRose T. Duchamp,
D. Salesin and W. Stuetzle "interactive
multiresolution Surface Viewing" SIGGRAPH
1996 Proceedings pages91-98

[13] T. DeRose, M. Kass and T. Truong "Subdivision
Surfaces in the Making of GerisGame"

SIGGRAPH 99 Subdivision course notes Chapter
10.

[14] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead,
H. Jin, J. McDonald, J. Schweitzer and W.
Stuetzle. "Piecewise Smooth Surface
Reconstruction". SIGGRAPH 1994 Proceedings
pages 295-302.

	Introduction
	Understanding Optimization
	The Geometry Pipeline

	Tessellation Selection - Step II
	The Tessellation Table

	Animation - Step III
	Results / Future work
	Acknowledgments
	References

