
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

© The Eurographics Association 2001.

Real-Time Procedural Animation of Trees

Jeremy T. Barron

Brian P. Sorge
Timothy A. Davis

Department of Computer Science, Clemson University, Clemson, SC

Abstract
Creating models of living flora, such as trees and grass, has been a challenge in computer graphics for many

years. Animating these objects to move realistically in reaction to natural phenomena, such as wind and rain,
presents an even greater challenge. In this project, we explore the combination of particle systems with the
Lindenmayer model for representing trees to create a realistic simulation of tree movement in response to wind.
Our approach, however, is general enough to handle tree animation in response to a variety of other world forces,
such as rain, snow, or seismic activity.

1 Introduction

The field of computer graphics has long been
interested in creating models of plants such as trees
and grass. Animation of these plants further
enhances the realism they add to computer-generated
scenes. Such animations are useful in a variety of
applications including simulators, games, and film
special effects, yet the animation of plant movement
is rarely approached. Over the past decade we have
seen some examples of plant movement in
computer-generated movies, but this animation is
done using proprietary methods, or is not done at
interactive or real-time rates. Lindenmayer-systems
(L-systems) are widely used for generating realistic
models of trees because the models they generate are
based on the actual growth patterns of plants. L-
systems do not, however, provide a method for the
animation of these models.

In our approach, we add particle systems to the

underlying structure of the model in order to create
animations with the trees. Using particle systems
allows us to animate the trees procedurally, and thus
eliminates the need for detailed key-frame animation
of hundreds of branch segments. This method also
makes it easy to modify the animation by changing a
few input parameters, such as wind speed and
direction. Modification of these parameters can be
used to create a nearly infinite number of animations
with the same model. Further, since our approach is
based on the physical constraints of branch

movement, our system can easily be expanded to
simulate the trees’ reactions to other phenomena
such as rain, snow, or seismic activity.

The rest of this paper is organized as follows. In

section 2 we give background on the general use of
L-systems and particle systems, as well as discuss
the principles from physics used in the animation of
our trees. Section 3 highlighs previous work in the
area of tree modeling and animation. In section 4 we
describe in detail the method used to generate a
generalized tree structure, while in section 5 we
describe the techniques used to animate these trees in
a unique way. Section 6 discusses the input
parameters and describes how the user can modify
these values interactively. Finally in section 7 we
offer conclusions and describe future avenues for our
research.

2 Background

To generate a tree structure for animation, our
technique incorporates methods from several areas
of computer science and physics. These techniques
include L-systems for the tree, particle systems for
the animation of the tree, and the physics of angular
motion and springs to control the particle systems.
In this section we provide background for these
techniques.

http://www.eg.org
http://diglib.eg.org

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

2.1 L-systems

L-systems are named for Aristid Lindenmayer
who first developed the idea to provide a
mathematical model for plant development in 1968
[LIND68]. L-systems provide a formal method for
describing plant growth. This method has become a
standard for creating computer-generated plants
largely because it is based on empirical data gathered
on the development of actual plants. For our system
we use context-free parameterized L-systems as
described in [PRUS88] and expanded in [PRUS90].

A LOGO-style turtle [ABEL82] interprets the
strings produced by these grammars in the following
manner. As the turtle reads each character, it checks
to see if the character affects its state.

2.2 Par ticle Systems

Reeves in 1983 [REEV83] first introduced
particle systems as a method for generating
procedural animations. These systems have been
used to model smoke, fire, grass, water, rain, and any
number of other phenomena. The particles may be
rendered in whatever manner is needed for the
application. The great advantage of using particles
is that many particles may be updated
simultaneously in a procedural way to generate
animations that would be incredibly difficult, if not
impossible, to create manually. We represent our
tree as a particle system to animate it procedurally.

2.3 Mechanics

The forces in our simulation are based on the
mechanical concepts of rotation of rigid bodies and
properties governing the behavior of springs. In this
section we will address these two areas. This
material is derived from [SERW92].

2.3.1 Angular Motion

The branches of our tree are represented as
cylindrical rods that are fixed at one end and allowed
to rotate about that end. Here we describe the
physical equations for this motion. First we must
address the force acting on the rod. If we assume
that the force is acting on the end of the rod, then we
can use the force to calculate the torque on the axis
point:

Rf ⊗=τ (2.1)

where f is the force acting on the end of the rod, and
R is a vector representing the length and orientation

of the rod. The angular acceleration � � � � � � � � � � � 	

the torque as follows:

ατ I= (2.2)

where I is the moment of inertia, which for a long
thin rod of mass M and length L is expressed as

 2

3

1
MLI = (2.3)

Angular acceleration is related to the angular
velocity ω by the parameterized relationship:

 to αωω += (2.4)

Integrating equation (2.4) we get an angle θ:

 2
00 2

1
tt αωθθ ++= (2.5)

Given angle θ we now know how much to rotate the
rod in a given time step.

2.3.2 Hook’s Law

The use of springs is helpful in particle systems
to model interactions between particles. When one
particle is moved, it pushes or pulls on the other
particles in the system, causing the entire system to
move.

In order to model the resistance of branches to

movement, we add a spring between the current
position and the rest position of each particle in our
system. These springs act according to Hook’s law:

 xkf s−= (2.6)

where f is the force acting on the spring, ks is the
spring constant of the spring and x is the total
displacement of the spring. In addition, a dampening
force is added to this equation to prevent the spring
from oscillating continually once all forces are
removed from the system. This dampening force is
dependent on a dampening constant kd for the spring
and the velocity of the particle at the end of the
spring. Adding the dampening force to equation
(2.6) yields:

 vkxkf ds +−= (2.7)

2.4 Splines

We would like our branches to appear as smooth
curves rather than straight line segments connecting
particles, but representing branch segments small

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

enough to render as a curve is computationally
expensive. We employ Catmull-Rom splines
[FOLE90] to draw tree branches as curves.

3 Related Work

A great deal of work has been done in the field
of graphical tree generation. Bloomenthal
[BLOO85] used a simple procedural method to
generate realistic maple trees. Branching patterns
were determined by stochastically choosing
branching angles and lengths. Prusinkiewicz and
deReffye [PRUS88] [PRUS90] [PRUS93] [PRUS94]
[DERE88] have used L-systems to generate a variety
of different plants, beginning with simple ferns and
progressing to full-sized trees. These systems have
also been used to animate plant growth, but not their
movement. Power [POWE99] employed a method
of springs similar to our approach in order to
determine the natural orientation of branches at rest
by minimizing the energy in the system.

For animation, Perbet [PERB01] used particle

systems and pre-rendered images of blades of grass
in different positions to animate grass movement in
prairies. Stam [STAM97] and Weber [WEBE95]
used modal analysis of f lexible beams to generate
animations of trees swaying in the wind. Many of
these earlier efforts used some of the same
techniques used here, but relied upon pre-computed
animations or pre-rendered images to draw the trees.
The primary advantage of our approach is that the
underlying particle system provides for fast
computation and hence real-time frame rates.

Noser, Thalmann, and Turner [NOSE92]

[NOSE97] used particle systems to model forces
acting on trees created using L-systems. Their
method modifies the characteristics of the turtle
states to change the tree based on forces in the
system. While the animations produced by this
method are similar to those created by our approach,
the representation of the trees differs in the continual
usage of the grammar. Additionally their method
lacks continuity between branch segments, as they
model branches simply as linear connections of the
turtle positions and make no effort to smoothly move
between the radii of connected branch segments

4 Tree Generation

Our tree model is based on L-systems and
particle systems. Using the L-systems described in
section 2.1, words are generated which are then
parsed with the turtle method to generate a particle
system that represents the tree. The particles are

used as control points for a set of splines that model
the tree branches.

4.1 Par ticle System Generation

Once a string is fully generated from an L-
system grammer, it must be interpreted to draw a
tree. The first step of the interpretation is to build
the particle system representing the tree. This
section describes that process.

Before the turtle begins parsing the string, a root
particle is created and becomes the current particle.
Anytime the turtle’ s position is moved, a new
particle is added. The radius and position of the
particle are determined by the current state of the
turtle.

At this point the current particle is checked for

children. If a first child is found, we walk to the end
of the list of children, place the new particle at that
position, and update navigational pointers as needed.
Otherwise the new particle is placed as the first child
of the current particle, and we again update
navigational pointers. The new particle’s parent
pointer is assigned to the current particle, and the
new particle’s branch value is made equal to the new
particle’s position minus the current particle’s
position. If the current particle’s stack depth is equal
to the depth of the stack when the new particle is
added, the current particle’s dominant pointer is
assigned to the new particle.

Once all particles have been added, the radii of

every particle in the tree are scaled by the same
value. This value is determined by the smallest
radius of any particle in the tree, and a constant
defining the minimum radius of any branch in the
tree. This scaling allows the grammar to determine
the rate at which radii decrease in the tree, but also
makes branches thicker as the tree grows.

4.2 Tree Geometry

We can get a basic outline of our tree by simply
connecting the points in the particle system and
drawing a line from every particle in the system to
each of its children (see Figure 4.1). We would
prefer, however, to show the tree with smooth curves
along the branches and with thickness added to the
branches. The following two sections describe the
process used to generate splines from the particles in
the system and how those curves are converted into
trunk and branch segments for the tree.

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

Figure 4.1 Linear Connection of Particle System

4.2.1 Splines

Since we would prefer to represent branches in
our tree as smooth curves rather than straight line
segments between particles in our system, we use
Catmull -Rom splines as mentioned in section 2.4. A
tree skeleton drawn without using splines and using
this method of spline generation is shown in Figure
4.2. A wind force has been applied to help show the
curve of the tree.

Figure 4.2 Tree Drawn Without and With Using

Catmull -Rom Splines

The control points for these splines are the
current positions of the particles in the particle
system. In general, the points used to draw the curve
for any branch segment in the tree are as follows: the
position of the particle at the end of the branch along
with the positions of its child, its parent, and its
parent’s parent. These four positions, shown in
Figure 4.3, give values for Pi, Pi-1, Pi-2, and Pi-3.

Figure 4.3 Curve Control Points

4.2.2 Skins

In order to have three-dimensional branch
segments, we must generate geometry around each
branch segment. We create the geometry by
generating vertices around each curve point for a
particular branch, and connecting these points to
form polygons. Since the curve points change per
time-step, these vertices must be created each time-
step as well.

Rather than calculating the actual vertex

positions, we compute vectors, that when added to
the curve points, give the vertex positions. Using
these vectors also provides us with a surface normal
for the vertex. Note that this normal is not the exact
average of the normals for all of the surrounding
polygons along the length of the branch segment as
shown in Figure 4.4. The value used, however, is
close enough that we are still able to achieve smooth
shading of the branches, since the error is relatively
small . Because the vectors radiate from the center of
the branch segment to the vertex positions, they are
the proper averaged surface normals about the
circumference of the branch segment.

Figure 4.4 Vertex Normals

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

The first step is to calculate the vector from the

current curve point to the first vertex. Figure 4.5
illustrates the polygon-twisting problem created by
incorrectly positioning the first vertex of a given
polygon. In order to keep the polygons from
twisting, we compute the first vector of the current

curve point currentV

 based on the first vector of the

previous curve point previousV
�

. This method assures

that the first vector from the current curve point of
the particle is parallel to the first vector from the
previous curve point, and hence prevents any
twisting.

Figure 4.5 Polygon Twisting

Once the first vector is computed, the remaining

vectors are obtained by rotating the preceding vector

about currentC
�

 (the particle’s current position) by

2π/N where N is the number of polygons
representing the branch. The vertex generation is
shown in Figure 4.6. Figure 4.7 shows the tree from
Figure 4.1 in wireframe to illustrate the locations of
the vertices.

Figure 4.6 Vertex Generation

Figure 4.7 Tree Drawn in Wireframe

Once the tree has been generated, we desire a
method for updating it based on the forces acting
upon the particle system representing its structure.
In the next section, we will discuss our method for
animation in detail.

5 Tree Animation and Rendering

In order to animate the tree in real-time, the
particle’s positions are updated and drawn at each
time step. The spline skeleton described in section
4.2.1 is then used to create three-dimensional
geometry, which can be lit, texture-mapped, and
shaded. We also add a background and shadows to
our scene for realism.

5.1 Par ticle Update

The process of animating the tree is based on
updating the tree’s underlying particle system
structure. At each update step, the newly computed
particle positions are used to create a new set of
splines, and thus a new set of vertices for skinning
the tree. This process is explained more fully below.

5.1.1 Force Calculation

The first step in updating the particle system is
to determine what forces are acting on a particular
particle. There are three forces currently
implemented in our program: gravity, wind, and the
stiffness of the tree (modeled as springs).

The gravity force GF
�

 is simply a constant force

applied in the negative y-direction. This force
causes the branches of the tree to bend downward
slightly, creating a more realistic appearance.

The wind force is determined by the user and
may be in any direction and of any strength desired.

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

Also, to enhance the realism of the animation, a

turbulence factor is added to the wind force wF

,

which is also user-specified. The turbulence T varies
across time-steps to simulate temporal variance in
the wind, with a small scalar factor t applied per
particle to simulate spatial variance in the wind. One
of the nice features of our approach is that the wind
model can easily be replaced with a more physically
accurate model without changing the tree animation
method.

The stiffness of the tree at any particle is

simulated by the spring force sF

. This force is

determined by the current particle’s spring constant,
current position and rest position. The displacement
of the spring is simply the difference in the current
position and the rest position. This value, along with
the particle’s current velocity, is substituted into
equation (2.7) to determine the force of the spring
acting on the current particle. The total force acting
on the particle is therefore

 SWGT FFFF

++= (5.1)

Additional forces can also be added without
difficulty to simulate snow, rain, or other
phenomena.

5.1.2 Branch Rotation

Once the force is calculated, we can determine
the torque on the branch whose endpoint is the
current particle from equation (2.1). Using
equations (2.2) – (2.5) we can determine the angle of
rotation θ for the branch in response to the forces
exerted on it. The branch is rotated θ degrees about
the torque vector, and added to the parent particle’s
current position resulting in the new position for the
current particle. Once the new position of the
particle has been calculated, the difference between
this new position and the rest position represent the

particle’s spring vector S

. Figure 5.1 shows the
current and new positions of the particle.

Figure 5.1 Branch Rotation

5.1.3 Propagation

Once the new position of the particle is
calculated, the rest and current positions of all
children of that particle must be updated
accordingly. In order to propagate the motion we
need

• currentI

 - the initial position of the current

particle

• currentC
�

 - the current position of the current

particle

• childI
�

 - the initial position of the child

particle

• childR
�

 - the rest position of the child

particle

• childS
�

 - the spring vector of the child

particle

Fortunately all of this information is readily
available in the data structure for the tree, so the new
rest and current positions of each child particle are
simply:

 () childcurrentcurrentchild IICR
����

+−= (5.2)

 childchildchild SRC
���

+= (5.3)

We only have to modify the children of the current
particle based on the current particle’s movement
since the movement of the child positions wil l be
propagated throughout the depth of the tree. Figure
5.2 shows how a child’ s position is modified based
on the movement of the current particle. Figure 5.3
shows four frames of an animation of the tree
responding to these forces.

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

Figure 5.2 Propagation of Branch Rotation

Figure 5.3 Frames of Tree Animation

5.2 Drawing the Tree

To draw the tree, we traverse the particles
residing at each branching point and draw the branch
segment ending at each particle’s position. Initiall y,
we make the first child of the root particle the
current particle since the root particle has no branch
segment ending at its position. Once the segment
ending at a particular particle is drawn, each of its
children is drawn, followed by each of its siblings.

5.3 Realism

In addition to three-dimensional branches and

smooth shading, we would li ke to augment our
model to enhance the realism of our tree. We
therefore apply texture mapping to the tree (see
Figure 5.4), as well as a background and shadows.
A texture of scanned tree bark is applied to each
branch segment of the tree. In order to give the tree
an environment in which to exist, we add a simple
background. A large plane with a grass texture map
suffices for the ground, and a large sphere with a sky
texture map provides a suitable backdrop. We can

more fully integrate the tree into the scene by adding
a shadow of the tree on the ground as in Figure 5.5.

Figure 5.4 Close Up View of the Texture Mapped

Tree

Figure 5.5 Tree with Shadow

6 User Interface

All properties of the tree are controlled by the

user interface shown in Figure 6.1. This interface
has controls for the tree model itself, as well as for
the viewer and the scene display method. These
controls are explained in the following two sections.

6.1 Tree Model Controls

A tree is generated based on a grammar file
chosen by the user with the help of a file browser.
Once the grammar has been parsed, a horizontal
slider determines the depth of the tree. The user can
observe the tree’s growth as the tree depth is
incremented. The growth of new tree depths slows
down exponentially due to the increase in the string
lengths generated by the grammar.

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

The force of the wind may be controlled using
three sliders: one for the wind in each of the x-, y-,
and z-dimensions. A reset button is provided to stop
the wind force completely at any time. A fourth
slider allows the user to control the amount of
turbulence described in section 5.1.1.

Sliders are also present to determine the curve

resolution and step size. The curve resolution slider
is used to determine how many spline segments to
draw per branch segment. The time step slider
determines the length of the time step between
updates of the tree animation.

6.2 Viewer Controls

The user may move the eye point along all three
axes in a pre-specified range. Additionally the eye
point may be rotated about the view direction, the up
vector, and about the cross product of the up vector
and view direction. Sliders on the interface control
these translations and rotations. A reset button is
provided to place the viewpoint and eye point back
at the position set at the start of the program.

6.3 Scene Controls

Several options are provided in a separate
window for the display of the scene. By default the
program shows the tree li t, smooth-shaded, and
texture-mapped with a texture-mapped background
and a shadow. The texture mapping, background,
and shadow all may be toggled on or off at the user’s
discretion. Additionally, the tree may be drawn
smooth-shaded, flat-shaded, in wireframe, or as a
skeleton. Smooth shading, flat shading, and
wireframe views of the tree are all handled directly
by OpenGL. The skeleton of the tree is displayed
using OpenGL to draw line segments between the
tree’s curve points rather than drawing polygons
based on the tree’s vertices.

7 Conclusions and Future Work

In this paper, we have provided the background

and details of our method for tree animation. In this
final section, we provide some of the improvements
made to the system to increase performance.
Additionally, we describe future directions for our
research, as well as give some concluding remarks
on the project to date.

7.1 Speedups and Performance

A great deal of computation must be done to

move the tree for each update. In order to improve
the performance of the program, a number of

methods were used to reduce the computation
required in order to maintain real-time, or at least
interactive, rates. In this section we describe the
most beneficial methods as well as provide some
information about the performance of the program.

A major hindrance to the performance of the

system involves the more advanced features used to
enhance the realism of the tree. To minimize the
effect of these enhancements, the user interface
allows for deactivating the background, texture
maps, lighting, and shadows.

Another area for performance improvement is in

the calculation of vertex positions. When generating
the vectors from the curve points of a branch
segment, we calculate the position of the first vector,
and then rotate that vector about the curve segment
for as many vectors as are needed as described in
section 4.2.2. As long as an even number of vectors
is desired, then we need only calculate the first half
of the vectors in this manner. Then, rather than
continuing the computationally expensive task of
rotating the vector about an arbitrary axis (the curve
segment) subsequent vectors are calculated as

2

0.1 n
i

i vv
−

∗−= �� (7.1)

where iv� is the current vector, and n is the number

of polygons to be drawn about the circumference of
the branch. This method resulted in an increased
frame rate of ten percent.

The final major performance improvement came
from making use of OpenGL’s GL_QUAD_STRIPS
capabili ty. Rather than drawing each polygon
individually, we specify a series of vertices defining
a strip of polygons. This method reduces the number
of vertices that must be explicitly defined by half.

Drawing a tree with 255 branches and with a
curve resolution of 3, and with all background,
texture, and shadow elements, the program runs at 6
frames per second on an SGI O2, and at 30 frames
per second on an SGI Onyx2. This frame rate makes
it quite easy to control all parameters of the tree
interactively.

7.2 Future Work

Many open issues remain for future work.
Among the avenues being considered for this
research are

• leaves and their reaction to world forces
• additional forces such as rain and snow

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

• a more realistic wind model
• different types of plants, and possibly hair

and fur
• parellelization of our method
• multiple trees

7.3 Concluding Remarks

In this paper we provide a method that allows
real-time animation of realistic trees. Our method is
general enough to animate plant reaction to a number
of natural phenomena. By using a procedural
method, the tree generation and animation occurs
with minimal input from the user, making the
method easy to use. Our method is also fast enough
to result in real-time, or at least interactive,
animations. As processor speeds increase, this
performance wil l only improve.

REFERENCES

[ABEL82] H. Abelson and A. A. diSessa, “Turtle

geometry,” M.I.T.

[BLOO85] J. Bloomenthal, “Modeling the Mighty Maple,”

Proceedings of SIGGRAPH 85 (San Francisco,
California, July 22-26, 1985), in Computer
Graphics Proceedings, Annual Conference
Series, 1985, ACM SIGGRAPH, pp. 305-311.

[DERE88] P. deReffye, C. Edelin, J. Francon, M. Jaeger,

and C. Puech, “Plant Models Faithful to
Botanical Structure and Development,”
Proceedings of SIGGRAPH 88 (Atlanta, Georgia,
August 1-5, 1988), in Computer Graphics
Proceedings, Annual Conference Series, 1988,
ACM SIGGRAPH, pp. 151-158.

[FOLE90] J. D. Foley, A. vanDam, S. K. Feiner, and J. F.

Hughes, Computer Graphics Principles and
Practice, Second Edition, Addison-Wesley,
Reading, MA, 1990.

[LIND68] A. Lindenmayer, “Mathematical Models for

Cellular Interaction in Development, Parts I and
II ,” Journal of Theoretical Biology, 1968, pp.
280-315.

[NOSE92] H. Noser, D. Thalmann, R. Turner, “Animation

based on the Interaction of L-systems with
Vector Force Fields,” Proceedings Computer
Graphics International 1992, 1992, pp. 747-761,
Springer-Verlag.

[NOSE97] H. Noser, “A Behavioral Animation System

Based on L-systems and Synthetic Sensors for
Actors,” PhD Dissertation, Swiss Federal
Institute of Technology, 1997.

[PERB01] F. Perbet, and M. P. Cani, “Animating Prairies in

Real-Time,” ACM Interactive 3D Graphics,
2001.

[POWE99] J. L. Power, A. J. B. Brush, P. Prusinkiewicz, and

D. H. Salesin, “ Interactive Arrangement of
Botanical L-system Models,” Proceedings of the
1999 Symposium on Interactive 3D Graphics,
1999, pp. 175-234

[PRUS88] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan,

“Developmental Models of Herbaceous Plants
for Computer Imagery Purposes,” Proceedings of
SIGGRAPH 88 (Atlanta, Georgia, August 1-5,
1988), in Computer Graphics Proceedings,
Annual Conference Series, 1988, ACM
SIGGRAPH, pp. 141-150.

[PRUS90] P. Prusinkiewicz, and A. Lindenmayer, The

Algorithmic Beauty of Plants. Springer-Verlag,
New York, 1990.

[PRUS93] P. Prusinkiewicz, M. S. Hammel, and E.

Mjolsness, “Animation of Plant Development,”
Proceedings of SIGGRAPH 93 (Anaheim,
California, August 2-6, 1993), in Computer
Graphics Proceedings, Annual Conference
Series, 1993, ACM SIGGRAPH, pp. 351-360.

[PRUS94] P. Prusinkiewicz, M. James, and R. Mech,

“Synthetic Topiary,” Proceedings of SIGGRAPH
94 (Orlando, Florida, July 24-29, 1994), in
Computer Graphics Proceedings, Annual
Conference Series, 1994, ACM SIGGRAPH, pp.
351-358.

[REEV83] W. T. Reeves, “Particle Systems – A Technique

for Modeling a Class of Fuzzy Objects,” In
Computer Graphics, Vol. 17, No. 3, 1983, pp.
359-376

[SERW92] R. A. Serway. Physics for Scientists and

Engineers with Modern Physics. Saunders
College Publishing, Philadelphia, 1992.

[STAM97] J. Stam, “Stochastic Dynamics: Simulating the

Effects of Turbulence on Flexible Structures,”
Computer Graphics Forum, Proceedings of
Eurographics ’97, 1997, pp. 159-164.

[WEBE95] J. Weber, and J. Penn, “Creation and Rendering

of Realistic Trees,” Proceedings of SIGGRAPH
95 (Los Angeles, California, August 6-11, 1995),
in Computer Graphics Proceedings, Annual
Conference Series, 1995, ACM SIGGRAPH, pp.
119-128.

Barron, Sorge, and Davis / Real-Time Procedural Animation of Trees

© The Eurographics Association 2001.

Figure 6.1 User Interface

