EUROGRAPHICS 2001/ Jonathan C. Roberts

Short Presentations

Real-Time Procedural Animation of Trees

Jeremy T. Barron
Brian P. Sorge
Timothy A. Davis

Department of Computer Science, Clemson University, Clemson, SC

Abstract

Creating models of living flora, such as trees and grass has been a challenge in computer graphics for many
years. Animating these objeds to move realistically in reaction to natural phenomena, such as wind and rain,
presents an even greater challenge. In this project, we explore the combination of particle systems with the
Lindenmayer model for representing trees to create a realistic simulation of tree movement in response to wind.
Our approach, however, is general enough to handlee treeanimation in response to avariety of other world forces,

such asrain, snow, or seismic activity.

1 Introduction

The field of computer graphics has long been
interested in creding models of plants such as trees
and grass Animation of these plants further
enhances the redism they add to computer-generated
scenes. Such animations are useful in a variety of
applications including simulators, games, and film
specia effects, yet the aimation of plant movement
is rarely approached. Over the past decale we have
seen some examples of plant movement in
computer-generated movies, but this animation is
done using proprietary methods, or is not done &
interadive or red-time rates. Lindenmayer-systems
(L-systems) are widely used for generating redistic
models of trees because the models they generate ae
based on the adua growth patterns of plants. L-
systems do not, however, provide a method for the
animation of these models.

In our approach, we ald particle systems to the
underlying structure of the model in order to crede
animations with the trees. Using particle systems
allows us to animate the trees procedurally, and thus
eliminates the need for detailed key-frame aiimation
of hundreds of branch segments. This method also
makes it easy to modify the animation by changing a
few input parameters, such as wind speed and
direction. Modification d these parameters can be
used to create anealy infinite number of animations
with the same model. Further, since our approach is
based on the physicd congraints of branch

© The Eurographics Association 2001

movement, our system can easily be expanded to
simulate the trees’ readions to aher phenomena
such as rain, snow, or seismic activity.

The rest of this paper is organized as follows. In
sedion 2 we give badkground on the general use of
L-systems and particle systems, as well as discuss
the principles from physics used in the aimation of
our trees. Sedion 3 highlighs previous work in the
areaof treemodeling and animation. In section 4 we
describe in detail the method used to generate a
generalized tree structure, while in section 5 we
describe the techniques used to animate these trees in
a unique way. Sedion 6 dscusses the input
parameters and describes how the user can modify
these values interadively. Finaly in sedion 7 we
offer conclusions and describe future avenues for our
reseach.

2 Background

To generate a tree structure for animation, our
technique incorporates methods from severa aress
of computer science ad physics. These techniques
include L-systems for the treg particle systems for
the animation of the tree and the physics of angular
motion and springs to control the particle systems.
In this sdion we provide background for these
techniques.

delivered by
- ' EUROGRAPHICS

= DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

21 L-systems

L-systems are named for Aristid Lindenmayer
who first developed the idea to provide a
mathematical model for plant development in 1968
[LIND68]. L-systems provide a formal method for
describing plant growth. This method has become a
standard for creding computer-generated plants
largely because it is based on empiricd data gathered
on the development of adual plants. For our system
we use ntext-free parameterized L-systems as
described in [PRUS88] and expanded in [PRUS90].

A LOGO-gtyle turtle [ABEL82] interprets the
strings produced by these grammars in the following
manner. As the turtle reads eat character, it checks
to seeif the charader affedsits state.

2.2 Particle Systems

Reeves in 1983 [REEV83] first introduced
particle systems as a method for generating
procedural animations. These systems have been
used to model smoke, fire, grass water, rain, and any
number of other phenomena. The particles may be
rendered in whatever manner is needed for the
applicaion. The grea advantage of using particles
is that many particles may be updated
simultaneously in a procedural way to generate
animations that would be incredibly difficult, if nat
impossible, to create manually. We represent our
treeas a particle system to animate it procedurally.

2.3 Medanics

The forces in our simulation are based on the
medhanical concepts of rotation d rigid bodies and
properties governing the behavior of springs. In this
sedion we will address these two areas. This
material is derived from [SERW92].

23.1 Angular Motion

The branches of our tree ae represented as
cylindricd rods that are fixed at one end and al owed
to rotate @out that end. Here we describe the
physical equations for this motion. First we must
address the force acting on the rod. If we asume
that the forceis ading onthe end of the rod, then we
can use the force to calculate the torque on the ais
point:

T=fOR 2.1

where f is the force ating on the end of the rod, and
R is a vedor representing the length and orientation

© The Eurographics Association 2001

of the rod. The anguar accderation o is related to
the torque asfoll ows:

T=la (2.2

where | is the moment of inertia, which for a long
thin rod of massM and length L is expressed as

12
| ==ML 23
3 23

Angdar accéeration is related to the angular
velocity w by the parameterized relationship:

w=w, +at (2.4)

Integrating equation (2.4) we get an angle 6:
1
9=%+am+§aﬁ (2.5)

Given ange 6 we now know how much to rotate the
rod in agiven time step.

2.3.2 Hook'sLaw

The use of springs is helpful in particle systems
to model interactions between particles. When one
particle is moved, it pushes or pulls on the other
particles in the system, causing the entire system to
move.

In order to model the resistance of branches to
movement, we ald a spring between the airrent
position and the rest position of each particle in our
system. These springs ad according to Hook' s law:

f =-k.x (2.6)

where f is the force ating on the spring, ks is the
spring constant of the spring and x is the total
displacement of the spring. In addition, a dampening
force is added to this eguation to prevent the spring
from oscillating continualy once all forces are
removed from the system. This dampening force is
dependent on a dampening constant kg for the spring
and the velocity of the particle & the end of the
spring. Adding the dampening force to equation
(2.6) yields:

f =-kXx+k,v 2.7)

24 Splines

We would like our branches to appear as snoath
curves rather than straight line segments conneding
particles, but representing kranch segments small

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

enough to render as a curve is computationally
expensive. We @amnploy Catmull-Rom splines
[FOLEQQ] to draw treebranches as curves.

3 Related Work

A grea ded of work has been dore in the field
of graphicd tree generation. Bloomenthal
[BLOO85] used a simple procedural method to
generate redlistic maple trees. Branching patterns
were determined by stochasticdly choosing
branching angles and lengths. Prusinkiewicz and
deReffye [PRUS88] [PRUSI0] [PRUS93] [PRUS94]
[DERES8S8] have used L-systems to generate a variety
of different plants, beginning with simple ferns and
progressng to full-sized trees. These systems have
also been used to animate plant growth, but not their
movement. Power [POWE99] employed a method
of springs smilar to aur approach in order to
determine the natural orientation o branches at rest
by minimizing the energy in the system.

For animation, Perbet [PERBOL] used particle
systems and pre-rendered images of blades of grass
in different positions to animate grass movement in
prairies. Stam [STAM97] and Weber [WEBE95]
used modal analysis of flexible beams to generate
animations of trees svaying in the wind. Many of
these exlier efforts used some of the same
techniques used here, but relied upon pre-computed
animations or pre-rendered images to draw the trees.
The primary advantage of our approac is that the
underlying particle system provides for fast
computation and hence real-time frame rates.

Noser, Thalmann, and Turner [NOSE92Z]
[NOSE97] used particle systems to model forces
ading on trees creged wsing L-systems. Their
method modifies the daraderistics of the turtle
states to change the tree based on forces in the
system. While the aiimations produced by this
method are similar to those creaed by our approad,
the representation d the trees differs in the cntinual
usage of the grammar. Additionaly their method
lacks continuity between branch segments, as they
model branches simply as linea connections of the
turtle positions and make no effort to smoathly move
between the radii of conneded branch segments

4 Tree Generation

Our tree model is based on L-systems and
particle systems. Using the L-systems described in
sedion 2.1, words are generated which are then
parsed with the turtle method to generate aparticle
system that represents the tree The particles are

© The Eurographics Association 2001

used as control paints for a set of splines that model
the treebranches.

4.1 Particle System Generation

Once a string is fully generated from an L-
system grammer, it must be interpreted to draw a
tree The first step of the interpretation is to build
the particle system representing the tree This
sedion describes that process

Before the turtle begins parsing the string, a root
particle is created and becomes the aurrent particle.
Anytime the turtle’s position is moved, a new
particle is added. The radius and position of the
particle ae determined by the current state of the
turtle.

At this point the airrent particle is checked for
children. If afirst child is found, we walk to the end
of the list of children, place the new particle at that
position, and update navigational paointers as needed.
Otherwise the new particle is placed as the first child
of the arrent particle, and we again update
navigational pointers. The new particle’s parent
pointer is assigned to the aurrent particle, and the
new particle’s branch value is made egual to the new
particle’s position minus the aurrent particle’s
position. If the aurrent particle’'s sadk depth is equal
to the depth o the stack when the new particle is
added, the aurrent particle's dominant pointer is
asdgned to the new particle.

Once dl particles have been added, the radii of
every particle in the tree are scded by the same
value. This value is determined by the smallest
radius of any particle in the tree, and a constant
defining the minimum radius of any branch in the
tree This <ding allows the grammar to determine
the rate & which radii decrease in the treg but also
makes branches thicker as the treegrows.

4.2 TreeGeometry

We can get a basic outline of our tree by simply
comecting the points in the particle system and
drawing a line from every particle in the system to
ead of its children (see Figure 4.1). We would
prefer, however, to show the treewith smooth curves
along the branches and with thickness added to the
branches. The following two sedions describe the
process used to generate splines from the particles in
the system and how those aurves are nverted into
trunk and branch segments for the tree.

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

Figure 4.1 Linear Connection of Particle System

4.2.1 Splines

Since we would prefer to represent branches in
our tree & smooth curves rather than straight line
segments between particles in our system, we use
Catmull-Rom splines as mentioned in sedion 24. A
tree skeleton drawn without using splines and using
this method of spline generation is shown in Figure
4.2. A wind force has been applied to help show the
curve of the tree.

Figure 4.2 TreeDrawn Without and With Using
Catmull-Rom Splines

The ntrol pants for these splines are the
current positions of the particles in the particle
system. In general, the points used to draw the arve
for any branch segment in the tree ae & follows: the
position of the particle at the end of the branch along
with the positions of its child, its parent, and its
parent’s parent. These four pasitions, shown in
Figue 4.3, givevaluesfor P;, P;_1, P, and P.s.

© The Eurographics Association 2001

Pi. _— dominant child

™~

current particle

Figure 4.3 Curve Control Points

4.2.2 Skins

In order to have threedimensional branch
segments, we must generate geometry around ead
branch segment. @ We aede the geometry by
generating \ertices around each curve point for a
particular branch, and conneding these points to
form pdygors. Since the aurve points change per
time-step, these vertices must be aeaed ead time-
step aswell.

Rather than cdculating the adua vertex
positions, we compute vectors, that when added to
the arve paints, give the vertex positions. Using
these vedors aso provides us with a surface normal
for the vertex. Note that this normal is not the exad
average of the normals for al of the surrounding
polygons along the length of the branch segment as
shown in Figure 4.4. The value used, however, is
close enough that we ae still able to achieve smooth
shading d the branches, since the aror is relatively
small. Because the vedors radiate from the center of
the branch segment to the vertex positions, they are
the proper averaged surface normals about the
circumference of the branch segment.

Normals

Properly Averaged
Normals

Branch Segments

Figure 4.4 VertexNormals

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

The first step is to calculate the vedor from the
current curve point to the first vertex. Fgure 4.5
illustrates the polygon-twisting problem creaed by
incorrectly pasitioning the first vertex of a given
polygon. In oder to keep the polygons from
twisting, we mmpute the first vedor of the aurrent

curve point \VJ based on the first vector of the

current

This method asaures

that the first vector from the aurrent curve point of
the particle is paralel to the first vector from the
previous curve point, and hence prevents any
twisting.

previous curve point Vo ious:

3 2 4 3

41 5 2
5 f

5 2 5 2
0 1

Figure 4.5 Polygon Twisting

Once the first vedor is computed, the remaining
vectors are obtained by rotating the preceding vector

about C—Icu”em (the particle’s current position) by

2N where N is the number of pdygors
representing the branch. The vertex generation is
shown in Figure 4.6. Figure 4.7 shows the tree from
Figure 4.1 in wireframe to illustrate the locations of
the vertices.

. 4L A

o2 98K

Figure 4.6 Vertex Generation

© The Eurographics Association 2001

Figure 4.7 Tree Drawn in Wireframe

Once the tree has been generated, we desire a
method for updating it based on the forces ading
upon the particle system representing its gructure.
In the next sedion, we will discuss our method for
animation in detail.

5 Tree Animation and Rendering

In order to animate the tree in red-time, the
particle's positions are updated and drawn at ead
time step. The spline skeleton described in sedion
421 is then used to create three-dimensional
geometry, which can be lit, texture-mapped, and
shaded. We dso add a background and shadows to
our scene for redism.

5.1 Particle Update

The process of animating the tree is based on
updating the treeés underlying particle system
structure. At each update step, the newly computed
particle positions are used to create a new set of
splines, and thus a new set of vertices for skinning
thetree This processis explained more fully below.

5.1.1 Force Calculation

The first step in updating the particle system is
to determine what forces are ading on a particular
particle. There ae three forces currently
implemented in our program: gravity, wind, and the
stiffnessof the tree (modeled as rings).

The gravity force IEG is smply a constant force

applied in the negative y-direction. This force
causes the branches of the tree to bend downward
dlightly, creating a more realistic gopeaance

The wind force is determined by the user and
may be in any direction and o any strength desired.

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

Also, to enhance the redism of the animation, a
turbulence factor is added to the wind force IEW,

which is also user-specified. The turbulence T varies
aqoss time-steps to simulate temporal variance in
the wind, with a small scdar factor t applied per
particle to simulate spatial variance in the wind. One
of the nice feaures of our approach is that the wind
model can easily be replaced with a more physicdly
acarate model without changing the tree animation
method.

The dtiffness of the tree & any particle is
simulated by the spring force F,. This force is

determined by the arrent particle’'s gring constant,
current position and rest position. The displacement
of the spring is smply the difference in the arrent
position and the rest pasition. This value, along with
the particle's current velocity, is substituted into
equation (2.7) to determine the force of the spring
ading on the current particle. The total force ating
onthe particle is therefore

F,=F,+F, +F (5.1)

Additional forces can also be alded without
difficuty to simulate snow, rain, or other
phenomena.

5.1.2 Branch Rotation

Once the force is cdculated, we an determine
the torque on the branch whose endpoint is the
current particle from eguation (2.1). Using
equations (2.2) — (2.5) we can determine the ange of
rotation @ for the branch in response to the forces
exerted onit. The branch is rotated 8 degrees about
the torque vedor, and added to the parent particle's
current pasition resulting in the new position for the
current particle. Once the new position d the
particle has been calculated, the difference between
this new position and the rest pasition represent the

particle's gring vedor S. Figure 5.1 shows the
current and new pasitions of the particle.

© The Eurographics Association 2001

Current Position of Particle

\

New Position
of Particle

/

Position of Parent Particle

Figure 5.1 Branch Rotation

5.1.3 Propagation

Once the new position of the particle is
cdculated, the rest and current positions of all
children of that particle must be updated
acordingly. In order to propagate the motion we
need

o | the initial position of the arrent

current

particle

. Ccu”em - the aurrent position of the current
particle

. Fch”d - the initial position d the child
paticle

« R, - the rest postion of the dild
particle

. Sch"d - the spring wedor of the dild

particle

Fortunately al of this information is readily
avail able in the data structure for the treg so the new
rest and current positions of ead child particle ae
simply:

Rchild = (Ccurrent - Icurrent)+ Ichild (5'2)

Cchild = Rchild + échi|d (5.3

We only have to modify the dildren o the aurrent
particle based on the aurrent particle’s movement
since the movement of the diild positions will be
propagated throughou the depth of the tree. Figure
5.2 shows how a dild’s pasition is modified based
on the movement of the aurrent particle. Figure 5.3
shows four frames of an animation of the tree
responding to these forces.

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

Rest Position
of Child Particle Spring Vector of

\ / Child Particle

Current Position
of Child Particle

Initial Position
of Child Particle ™~

Current Position

.. " of Current Particle
Initial Position

of Current Particle

Figure 5.2 Propagation d Branch Rotation

Figure 5.3 Frames of TreeAnimation

5.2 Drawing the Tree

To draw the tree, we traverse the particles
residing at ead branching point and draw the branch
segment ending at ead particle’s position. Initially,
we make the first child of the root particle the
current particle since the roat particle has no branch
segment ending at its position. Once the segment
ending at a particular particle is drawn, each of its
children is drawn, followed by ead o its shlings.

5.3 Realism

In addition to three-dimensional branches and
smoath shading, we would like to augment our
model to enhance the realism of our tree. We
therefore apply texture mapping to the tree (see
Figure 5.4), as well as a badground and shadows.
A texture of scanned tree bark is applied to eadh
branch segment of the tree In order to gve the tree
an environment in which to exist, we ad a simple
background. A large plane with a grasstexture map
suffices for the ground, and a large sphere with a sky
texture map provides a suitable badkdrop. We can

© The Eurographics Association 2001

more fully integrate the treeinto the scene by adding
ashadow of the tree onthe ground asin Figure 5.5.

Figure 5.4 Close Up View of the Texture Mapped
Tree

Figure5.5 Tree with Skadow

6 User Interface

All properties of the tree ae ontrolled by the
user interface shown in Figure 6.1. This interface
has controls for the tree model itself, as well as for
the viewer and the scene display method. These
controls are explained in the foll owing two sedions.

6.1 TreeModel Controls

A tree is generated based on a grammar file
chosen by the user with the help o a file browser.
Once the grammar has been parsed, a horizonta
dlider determines the depth of the tree The user can
observe the treés growth as the tree depth is
incremented. The growth of new tree depths slows
down exponentialy due to the increase in the string
lengths generated by the grammar.

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

The force of the wind may be controlled using
three diders: one for the wind in ead of the x-, y-,
and z-dimensions. A reset button is provided to stop
the wind force mmpletely at any time. A fourth
dider allows the user to control the amount of
turbulence described in sedion 5.1.1.

Sliders are dso present to determine the curve
resolution and step size The aurve resolution slider
is used to determine how many spline segments to
draw per branch segment. The time step dlider
determines the length of the time step between
updates of the tree aimation.

6.2 Viewer Controls

The user may move the eye point along all three
axes in a pre-specified range. Additionally the eye
point may be rotated about the view direction, the up
vector, and about the aoss product of the up vector
and view direction. Sliders on the interface ontrol
these trandations and rotations. A reset button is
provided to place the viewpoint and eye point badk
at the position set at the start of the program.

6.3 Scene Contrals

Several options are provided in a separate
window for the display of the scene. By default the
program shows the tree lit, smooth-shaded, and
texture-mapped with a texture-mapped badkground
and a shadow. The texture mapping, background,
and shadow all may be togdled on or off at the user’s
discretion. Additionally, the tree may be drawn
smocth-shaded, flat-shaded, in wireframe, or as a
skeleton. Smooth shading, flat shading, and
wireframe views of the tree are dl handed direaly
by OpenGL. The skeleton d the treeis displayed
using OpenGL to draw line segments between the
treés curve points rather than drawing polygons
based on the treé s vertices.

7 Conclusions and Future Work

In this paper, we have provided the badground
and details of our method for tree aimation. In this
final sedion, we provide some of the improvements
made to the system to incresse performance.
Additionally, we describe future diredions for our
reseach, as well as give some ncluding remarks
onthe projed to cate.

7.1 Speedups and Performance
A grea dea of computation must be done to

move the tree for eat update. In order to improve
the performance of the program, a number of

© The Eurographics Association 2001

methods were used to reduce the @mputation
required in order to maintain red-time, or at least
interadive, rates. In this edion we describe the
most beneficial methods as well as provide some
information about the performance of the program.

A magjor hindrance to the performance of the
system invaves the more advanced fedures used to
enhance the redism of the tree To minimize the
effect of these enhancements, the user interface
allows for deeactivating the background, texture
maps, lighting, and shadows.

Anocther areafor performance improvement isin
the calculation d vertex pasitions. When generating
the vedors from the airve points of a branch
segment, we cdculate the position of the first vedor,
and then rotate that vector about the arve segment
for as many vedors as are nealed as described in
sedion 42.2. Aslong as an even number of vectors
is desired, then we need only calculate the first half
of the vectors in this manner. Then, rather than
continuing the computationally expensive task of
rotating the vedor about an arbitrary axis (the arve
segment) subsequent vedors are calculated as

v, =-100W , (7.1)

2

where V; is the arrent vedor, and n is the number

of polygons to be drawn about the drcumference of
the branch. This method resulted in an increased
frame rate of ten percent.

The final major performance improvement came
from meking use of OpenGL’'s GL_QUAD_STRIPS
cgpability. Rather than dawing ead polygon
individually, we spedfy a series of vertices defining
a strip of polygons. This method reduces the number
of vertices that must be explicitly defined by half.

Drawing a tree with 255 branches and with a
curve resolution of 3, and with al background,
texture, and shadow elements, the program runs at 6
frames per second on an SGI 02, and at 30 frames
per second on an SGI Onyx2. This frame rate makes
it quite easy to cortrol all parameters of the tree
interadively.

7.2 Future Work
Many open isaies remain for future work.
Among the aenues being considered for this

reseach are

* |eaves and their readion to world forces
e additional forces such asrain and snow

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

« amore redistic wind model

o different types of plants, and possbly hair
and fur

e parellelizaion d our method

e multipletrees

7.3 Concluding Remarks

In this paper we provide a method that allows
red-time animation of redigtic trees. Our method is
general enoughto animate plant reaction to a number
of natural phenomena. By using a procedura
method, the tree generation and animation occurs
with minima input from the user, making the
method easy to use. Our methodis aso fast enough
to result in rea-time, or at least interadive,
animations. As procesr speeds increase, this
performance wil | only improve.

REFERENCES
[ABEL82] H. Abelson and A. A. diSessa, “Turtle
geometry,” M.I.T.

[BLOQO8S] J. Bloomentha, “Modeling the Mighty Maple,”
Proceedings of SSGGRAPH 85 (San Francisco,
Cdifornia, July 22-26, 1985, in Computer
Graphics Procealings, Annud Conference
Series, 1985 ACM SIGGRAPH, pp. 305311
[DERESS] P. deReffye, C. Edelin, J. Francon, M. Jagger,
and C. Puedh, “Plant Modes Faithful to
Botanicd Structure and Development,”
Proceedings of SIGGRAPH 88 (Atlanta, Georgia,
August 1-5, 1988, in Computer Graphics
Proceedings, Annud Conference Series, 198§
ACM SIGGRAPH, pp. 151-158

[FOLE9Q] J. D. Foley, A. vanDam, S. K. Feiner, and J. F.
Hughes, Computer Graphics Principles and
Practice, Second Edition, Addison-Wedley,
Reading, MA, 199Q

[LIND68] A. Lindenmayer, “Mathematicd Models for
Cellular Interadion in Development, Parts | and
II,” Journal of Theoretical Biology, 1968 pp.
280-315

[NOSE92 H. Noser, D. Thamann, R. Turner, “Animation
based on the Interaction of L-systems with
Vector Force Fields,” Procealings Computer
Graphics International 1992 1992 pp. 747-761,
Springer-Verlag.

[NOSE97] H. Noser, “A Behaviord Animation System

© The Eurographics Association 2001

[PERBO1]

[POWE9Y]

[PRUSSS|

[PRUS90]

[PRUS93|

[PRUS94]

[REEV83]|

[SERW92]

[STAM97]

[WEBE95]

Based on L-systems and Synthetic Sensors for
Actors” PhD Dissertation, Swiss Federal
Ingtitute of Technology, 1997.

F. Perbet, and M. P. Cani, “Animating Prairiesin
Rea-Time” ACM Interactive 3D Graphics,
2001

J. L. Power, A. J. B. Brush, P. Prusinkiewicz, and
D. H. Sdesin, “Interadive Arrangement of
Botanicd L-system Models,” Proceedings of the
1999 §mposium on Interactive 3D Graphics,
1999 pp. 175234

P. Prusinkiewicz, A. Lindenmayer, and J. Hanan,
“Developmental Models of Herbaceous Plants
for Computer Imagery Purposes,” Proceedings of
SIGGRAPH 88 (Atlanta, Georgia, August 1-5,
1988, in Computer Graphics Procealings,
Annud Conference Series, 198§ ACM
SIGGRAPH, pp. 141-150.

P. Prusinkiewicz, and A. Lindenmayer, The
Algorithmic Beauty of Plants. Springer-Verlag,
New York, 1990

P. Prusinkiewiczz M. S. Hamme, and E.
Mjolsness, “Animation of Plant Development,”
Proceedings of SIGGRAPH 93 (Anaheim,
California, August 2-6, 1993, in Computer
Graphics Procealings, Annud Conference
Series, 1993 ACM SIGGRAPH, pp. 351-360.

P. Prusinkiewicz, M. James, and R. Med,
“Synthetic Topiary,” Proceedings of SIGGRAPH
94 (Orlando, Florida, July 24-29, 1994, in
Computer Graphics Proceedings, Annud
Conference Series, 1994 ACM SIGGRAPH, pp.
351-358

W. T. Reeves, “Particle Systems — A Technique
for Modeling a Class of Fuzzy Objects,” In
Computer Graphics, Vol. 17, No. 3, 1983 pp.
359376

R. A. Serway. Physics for Scientists and
Engineegs with Modern Physics. Saunders
College Publishing, Philadelphia, 1992

J. Stam, “Stochastic Dynamics: Simulating the
Effects of Turbulence on Flexible Structures,”
Computer Graphics Forum, Proceedings of
Eurographics’97, 1997, pp. 159164

J. Weber, and J. Penn, “Credion and Rendering
of Redistic Trees” Proceedings of S GGRAPH
95 (Los Angeles, Cdlifornia, August 6-11, 1995,
in Computer Graphics Proceedings, Annud
Conference Series, 1995 ACM SIGGRAPH, pp.
119128

Barron, Sorge, and Davis/ Real-Time Procedural Animation of Trees

1 Axis
r Texture Mapping
r Lighting

Reset Wind r Background

Turbulence Shadow

+ Skeleton
Rotation

+ Wireframe

+ Flat Shading

- Smooth Shading
Translate Antialiasing level

] I -

Close Window

Reset \Vigw

Figure 6.1 User Interface

© The Eurographics Association 2001

