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Abstract 
Existing free-form deformation (FFD) techniques deform an object by deforming the space enclosing the object. 
Points on the object are thus deformed relative to the undeformed space (or world space). The deformed object 
is visualized by sampling points on the object surfaces, or by approximating the object with a polyhedral model. 
This provides good visual effect for the deformed objects.  However, the deformed solid is represented in terms 
of the lattice of the FFD and the undeformed solid. There is no precise explicit representation of the deformed 
object so that existing solid modeling techniques, such as Boolean operations, on the deformed object may not 
be applied.  This paper is concerned with the techniques of applying free-form deformation on solid models 
represented by the Constructive Shell Representation (CSR).  By applying free-form deformation on the surface 
points of the trunctets of a CSR object so that the vertices and the quadric patch polynomial of the trunctets are 
changed, the shape of the object can be modified.  This technique can be used to deform globally smooth solid 
models or general solid models with sharp edges.  The deformation can be applied either globally or locally.  
Techniques for the deformation are discussed in detail.  Experiments are conducted and the results are also 
presented. 
 
 
 
1. Introduction 
 
Despite the popularity of the free-form deformation 
(FFD) techniques [1-5] for generating special 
effects in graphics and animations, its use as a 
modeling tool has not been fully explored.  This is a 
result of the fact that the deformed object is not 
converted to an existing object representation 
scheme.  For instance, solid objects represented in 
Boundary representation (B-rep) or Constructive 
Solid Geometry (CSG) can be deformed using the 
FFD techniques.  However, further operations such 
as Boolean operations on the deformed object may 
not be performed since the deformed object is not 
converted to a B-rep or CSG model. 

In order to allow solid operations to be 
performed on FFD deformed solids, a proper 
representation scheme for solid model, especially 
free-form objects, is required [6].  A popular 
approach is to represent free-form surfaces as 
parametric patches of high degree in B-rep [7-9]. 
This technique is very successful as far as design 
and rendering are concerned.  However, 
manipulating and reasoning about physical objects 
with parametric patches poses fundamental 
difficulties.  For instance, the difficulty in 
evaluating and representing intersections of 
parametric patches has been a major problem in the 
development of solid modeling systems based on 
parametric patches.  

For objects represented in CSG, a fundamental 
problem that prohibited the use of FFD is the 
possible change of surface type as a result of the 
deformation. For example, a block may be bended 
so that the planar surfaces of the block will become 
quadrics or higher order surfaces.  A number of 
different approaches have been proposed for 
incorporating freeform surfaces in CSG objects [10-
13]. Among these approaches, the Constructive 
Shell Representation (CSR) proposed by J. Menon 
[13] seems to be most promising.  The CSR allows 
freeform objects to be represented with low order 
implicit surfaces which is an essential feature in a 
CSG modeler. The CSR approach thus provides an 
attractive solution to the problem. 

In this paper, CSR is adopted for representing 
solid objects.  This allows CSG models to be 
deformed using FFD while existing modeling 
techniques can be applied. 
 
 
2. Free-Form Deformation and the CSR Solid 

Models 
 
The free-form deformation technique (FFD) [1] 
deforms an object by enclosing the object in a 
parallelepiped region defined with a lattice of 
control points.  Manipulating the control points of 
the lattices deforms the parallelepiped region and 
hence the enclosed object. 
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A freeform deformation can thus be considered 
as a mapping 33: EEF → , that transforms every 
point of an object S to the deformed object F(S).  
Since the deformation can be applied to any point 
of an object, the technique can be applied on 
objects irrespective of their representation for 
generating a set of points on the deformed object. 
However, to allow further operations on the 
deformed objects, a conversion of the deformed 
points to entities of the underlying representation is 
required. 

Using Constructive Shell Representation, a free-
form solid S is represented as the union of a set of 
trunctets Ti and a polyhedron core H. Each trunctet 
is a tetrahedron truncated by an algebraic surface 
interpolating two or three vertices of the 
tetrahedron, i.e. 

 
IOHS UU= ,    (2) 

where U
n

iII
0

= is the set of inner trunctets, and 

U
n

iOO
0

= is the set of outer trunctets. 

Figure 1a shows a sectional view of a CSR 
object. Applying freeform deformation to the solid 
S may result in some inner trunctets becoming outer 
trunctets or vice versa. This may require the 
polyhedron core to be modified as the trunctets are 
being deformed. An alternative is adopted. In this 
approach S is represent as  

 
NOHS −= U    (3) 

where U
n

iNN
0

= is the set of depression trunctets 

as shown in Figure 1b. 
 

Define the deformation functions FC, and FT for 
the deformation of the polyhedron core and a 
trunctet respectively as follow.  

 
Definition 1  Deformation of polyhedron core 
Given a polyhedron core H with vertices Vi, of an 
object S, and a freeform deformation F, the 
freeform deformed polyhedron core FC(H) is the 
polyhedron with vertices F(Vi) and having the same 
topology (edge connectivity) as H. 
 
Definition 2  Deformation of trunctet 
Given a trunctet T with an algebraic patch A 
interpolating the tetrahedron base vertices Vi, i = 1 
… n, n = 2 or 3, and a freeform deformation F, the 
deformed trunctet FT(T) is the trunctet with the 
patch F(A) interpolating the base vertices F(Vi). 
 
A freeform deformed object S can thus be 
expressed as 

 
'N'O)H()S( −= UCFF   (4) 

where O’ and N’ are respectively, the set of outer 
and depression trunctets in the deformed solid. 
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Figure 1  Two approaches for modelling a solid in 
CSR 

 
 

In the approach proposed by J.P. Menon [13], 
two-sided gaps (Figure 2) may exist between 
adjacent trunctets in the construction of a free-form 
solid using trunctets.  A smooth free-form object is 
obtained by filling the gaps with additional blend-
patches that satisfy inter-patch continuity 
conditions [14].  The same approach will be applied 
in constructing the deformed model.  The rest of the 
paper will thus focus on the deformation of a 3-
sided trunctet. 
 

 
 

Figure 2  A 2-sided gap 
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3. Deformation of a Trunctet 
 
A major concern in the deformation of a trunctet is 
the deformation of the algebraic patch of a trunctet. 
In this paper, quadric algebraic patch is adopted. 
Using Gua’s approach [14], a quadric algebraic 
patch interpolating three vertices of a trunctet is 
defined as 

 
ab(s,t,u,v) = w2000s2+ w0200t2+ w0020u2+ w0002v2+ 
2w1100st+ 2w1001sv+2w0011uv + 2w0110tu + 2w1010su 
+ 2w0101tv = 0                                 (5) 
 
where s, t, u and v are barycentric coordinates 
relative to the vertices of the tetrahedron, wijk are 
weights associated with the control points on a 
trunctet (Figure 3).  
 
 

  

 
 

Figure 3  The weights and control points on a 
trunctet 

 
 

The weights of a trunctet are determined by the 
surface normals ni at the base vertices of the 
tetrahedron as given by the following equations 
[14]. 
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In Equation 5, the shape of a surface patch is 

defined by the weights w2000, w0200, w0020, w0002, … 
w0101, a basic problem in the deformation of a 
trunctet is to determine the weights of the deformed 
trunctet.  There are altogether nine weights in 
Equation 5.  However, the surface patch always 
pass through the base vertices V 1, V2 and V3  of the 
trunctet so that the weights at these vertices are 
zero, i.e. w2000 = w0200 = w0020 = 0.  Hence, 
Equation 5 is rewritten as 
 
ab(s,t,u,v) = w0002v

2 + 2w1100st + 2w1001sv + 
2w0011uv +  2w0110tu + 2w1010su + 2w0101tv = 0
     (7) 
 

Without loss of generality, w0002 is set to 1.  The 
number of unknowns is thus reduced to 6.  Six 
points on the surface of the deformed trunctet is 
thus sufficient for determining the deformed 
surface.   

 
 

3.1 Locating Surface Points 
 
In order to avoid numerically unstable results, the 
surface points are chosen so that they are 
approximately evenly distributed.  Six surface 
points, p1, p2, p3, q1, q2 and q3, where p1, p2 and p3 
are surface points on the edges of a trunctet, as 
shown in Figure 4 are chosen. 

Since all surface points are expressed in 
barycentric coordinates, the corresponding s, t, u 
and v have to be determined for every surface 
points.  The point p1 lies on the edge between V1 
and V2 and is located around the middle of the edge 
so that u = 0 and t = 0.5.  By substituting u = 0 and 
t = 0.5 into the surface equation and the convexity 
constraint, i.e. 
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the parameters s and v can be evaluated.  Similarly, 
the barycentric coordinates of p2 and p3 are 
obtained. 
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= (s6, t6, u6, v6), the weights of the deformed surface 
are obtained by 
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Figure 4  Selection of Surface points 

At the surface points q1, q2 and q3, the 
orresponding s, t, u and v are all non-zero.  Those 
, t, u, v values are chosen in a way such that q1, q2 
nd q3 are approximately evenly distributed over 
he surface.  These parameters are chosen as 
enoted on the base triangle of the construction 
etrahedron as shown in Figure 5.  

               u                (t=0.2, u=0.7)  

                  
(t=0.1, u=0.1)             (t=0.7, u=0.2) 

                                           

Figure 5   Parameter values of surface points 
 

The barycentric coordinates of q1 is obtained by 
ssuming t = 0.1 and u = 0.1 in the surface equation 
b(s,t,u,v) = 0 and the convexity constraint s+t+u+v 
 1.  Similarly, the barycentric coordinates of  q2 
nd q3 are obtained by setting t = 0.2, u = 0.7 and t 
 0.7, u = 0.2 respectively. 

 
 

.2 Evaluating the Deformed Surface Patch 

n a deformation process, the vertices of the trunctet 
nd the surface points in Cartesian coordinates are 
ransformed with a free-form deformation function.  
y expressing the location of the deformed surface 
oint in the barycentric coordinates of the deformed 
etrahedron. The weights of the deformed trunctets 
re obtained by solving Equation 7. 

Assuming the deformed surface points are p1’ = 
s1, t1, u1, v1),  p2’ = (s2, t2, u2, v2),  p3’ = (s3, t3, u3, 
3), q1’ = (s4, t4, u4, v4), q2’ = (s5, t5, u5, v5), and q3’ 
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 Finally, the normals ni’ at the vertices are 
determined with the following sets of equations.  
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4. Outer and Depression Trunctet Transition 
 
In a deformation process, an outer trunctet or part 
of an outer trunctet may become a depression 
trunctet or vice versa.  It is thus essential to 
determine if a trunctet changes from an outer to a 
depression trunctet (or vice versa). Whenever there 
is a transition, a trunctet vertically opposite the 
original one has to be used to represent the 
deformed trunctet (Figure 6a).  Based on Equation 
6, whether a trunctet changes from an outer to a 
depression trunctet (or vice versa) can be 
determined from the sign of the weights w1001, w0101 
and w0011.  Vertices with positive weights w1001, 
w0101 and w0011 lie above the surface.  The vertices 
with negative weights w1100, w1010 and w0110 lie 
below the surface.  A trunctet with all these weights 
negative is an outer trunctet, whereas a trunctet 
with all these weights positive is a depression 
trunctet. If the sign of one of the weights is 
different from the others, then both an outer and a 
depression trunctet have to be used (Figure 6b). 
Whenever a trunctet changes from an outer to a 
depression trunctet (or vice versa), a depression (or 
outer) trunctet is constructed by reversing the 
direction of the normals at the vertices of the base 
triangle of the trunctet.  Similarly, if both an outer 
and a depression trunctet is to be used, then the 
additional trunctet is constructed by reversing the 
direction of the normals at the vertices. 
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(b) 

 
Figure 6  The Outer and Depression Truncte
(a) Weights and the trunctets   
(b) Trunctets with w1010<0, w0110<0, w1100>0
 
 
5. Relation between the FFD Lattice a

Trunctets 
 

One characteristic in using FFD for deform
that the location of the lattice points will a
possible outcome of the deformation. For e
a ripple shape may be obtained using the l
Figure 7a, but not the lattice in Figure 7b.  

Since a ripple shape cannot be modele
single quadric patch, the lattice points hav
positioned such that no ripple on a single 
will be obtained in a deformation. Assume
Qb are two adjacent lattice points, then the 
between Qa and Qb must be greater t
distance between two vertices of any trun
the model, i.e. jiba VVQQ −≥− , w

Vj are vertices of a trunctet. Given a desired

the trunctets of a CSR model thus may have to be 
subdivided to maintain the above relation. 
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Figure 7 Effect of Lattice Point Distance on the 
Deformation of Trunctets 

 
 

6. Implementation 
 
An experimental system was implemented using a 
CSG geometric kernel SvLis [15].  Trunctets in the 
system are modeled as the intersection of the half-
spaces defined by the planes of the tetrahedron and 
the surface given by Equation 6.  Figure 8 shows 
the deformation of a cylinder.  Figure 8b shows the 
result of deforming the cylinder globally.  Figure 8c 
illustrates the result of a locally deformed cylinder.  
Figure 9a shows the construction of a toothpaste 
container. The main body of the container is 
constructed by applying a freeform deformation on 
the cylinder shown in Figure 8. The container is 
further deformed using FFD giving the result of 
Figure 9b. Figure 10 shows the result of deforming 
a thick circular disk followed by subtracting a 
rectangular block from the deformed disk. 
 
 
7. Conclusion 

 
This paper presented an approach for deforming 
solid models represented in CSR. An object is 
constructed by subtracting depression trunctets 
from the union of outer trunctets and the 
polyhedron core. Deforming a CSR solid is to 
evaluate the deformed polyhedron core and 
trunctets. The deformed polyhedron core is 
obtained by deforming the vertices of the 
polyhedron.  Trunctets are deformed by a surface 
fitting approach.  Six approximately evenly 
distributed points on a trunctet of the object are 
used to define the quadric patch of the trunctet.  By 
expressing these points in barycentric coordinates 
of the defining tetrahedron, weights defining the 
trunctet can be evaluated.  Applying free-form 
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runctet 
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deformation on these points allows the surface of a 
deformed trunctet to be evaluated.  Tests on an 
experimental system showed that the approach is 
promising and is capable of generating complex 
freeform solid objects using freeform deformation. 
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(b)     (c) 

 
Figure 8  Deformation of a cylinder model 
(a) The undeformed cylinder 
(b) The globally deformed cylinder 
(c)  The localy deformed cylinder 
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Figure 9  A toothpaste container 
(a) The construction of a toothpaste container 
(b) The deformed container 
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Figure 10  A deformed disk with a rectangular 
through hole 
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