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Proxy Simulations For Efficient Dynamics

Stephen Chenney† , Okan Arikan‡ and D. A. Forsyth§

Abstract
Proxy simulations reduce the cost of simulation in large virtual worlds, such as those used in training simulations
or computer games. A proxy takes the place of an accurate simulation for objects that are out of view, while the
accurate model continues to manage visible objects. A proxy must ensure that objects enter the view at reasonable
times throughout the simulation and in states that reflect their time spent out of view. The quality of a proxy
simulation is measured by how well it maintains reasonable behaviors, where the definition of reasonable depends
on the environment and its application. We present two examples of proxy simulations based on discrete event
models: one for city traffic simulation and another for multi-agent path planning and motion. For these examples,
we demonstrate dynamics computation speedups of over two orders of magnitude as the environments grow in size
and complexity.

1. Introduction

Realistic dynamic behavior is a key ingredient in many real-
time virtual environments, such as those for training or gam-
ing. The cost of generating motion is significant, and has typ-
ically limited the complexity of the simulated environment
by requiring fewer active objects and poor quality motion.
For example, a city driving environment might impose re-
strictions on the number of vehicles in the city and use only
approximate vehicle dynamics.

Ideally, only motion that is perceivable to the viewer
should be computed – any other motion cannot possibly af-
fect their experience of the environment. We therefore de-
fine the efficiency, η, of a simulation as the ratio of the work
done computing perceivable motion to the total work done.
An ideal simulator has an efficiency of one. With ideal sim-
ulation it is possible to simulate New York on a machine ca-
pable of inefficiently simulating only a small town, because
the complexity of a given view of New York is only as great
as the complexity of an entire small town.

In this paper we discuss techniques for producing effi-
cient simulations that do not sacrifice the complexity of vis-
ible motion or the user’s experience of the environment. Our
approach is based on proxy simulations, those that take the
place of the in-view simulator when maintaining dynamic
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state that is out of view. Dynamic state consists of all the
parameters that describe an object’s appearance and motion
over time. We define simulation to include any means of gen-
erating dynamic state in a virtual environment.

A proxy simulation is one that approximates out-of-view
dynamics to increase the overall simulation efficiency, while
also minimizing any errors perceived by a user. An environ-
ment uses two simulators: the original, accurate simulator
for motion that a viewer can perceive, and the proxy simula-
tor for motion the viewer can’t perceive. A proxy’s primary
task is feeding objects into the view at the right time in the
right place. Some of those objects may have been seen be-
fore by the viewer, and the location and time that they re-
appear should reflect any events that would influence the ob-
jects while they were out of view. For example, the proxy
is responsible for ensuring that when a car on a virtual race
track leaves the view, it re-enters again at a place and time
consistent with the influence of other cars on the track.

We illustrate the design of proxy simulations with two
detailed examples: a basic city traffic simulation and a tile-
based troop movement simulation typical of many computer
games. In the first case, the proxy saves work by replacing
the detailed dynamics of out-of-view traffic with a discrete
event simulation that approximates the interactions between
objects. The second case also uses a discrete event simu-
lation, but statistical models are incorporated to account for
interactions that are otherwise expensive to simulate. In both
cases a proxy simulation results in large speedups while pre-
serving the visible behavior of the simulation, allowing more
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than an order of magnitude increase in the number of simu-
lated entities.

2. Related Work

In a variety of systems an accurate simulation model is re-
placed by a cheaper approximation. Setas, Gomes and Re-
bordão describe a virtual forest environment 11 that simulates
trees as various levels of detail depending on their distance
from the viewer. Carlson and Hodgins introduced simula-
tion levels of detail 4 for hopping robots. An accurate dy-
namic model may be replaced with either a kinematic or
point-based model depending on the robot’s distance from
the viewer. Trajectories are compared to assess the quality of
the approximations. Carlson and Hodgins also question the
broader impact of approximation on system behavior, such
as possible changes induced in the outcome of a simulated
game.

Grzeszczuk, Terzopoulos and Hinton describe the Neu-
roAnimator 8: a system that replaces accurate simulations
with neural network approximations. They do not discuss
the long term stability of the approximations, nor their po-
tential effect on the global behavior of an environment as the
approximated objects interact. Yu and Terzopoulos discuss
a virtual marine environment 14 in which synthetic motion
capture is used to approximate the motion of creatures that
are outside the view frustum. The authors note that the ap-
proximations introduce significant errors into the on-screen
behavior of the fish — these are acceptable in their entertain-
ment application.

All of the above systems perform work for every object
on every frame, inherently limiting their efficiency. Chenney
and Forsyth describe dynamics culling 5, in which systems
that are outside the view frustum are ignored completely.
When systems re-enter the view, their state is updated with
deterministic and statistical approximations to reflect the ex-
pected change in state while the system was out of view.
Chenney, Ichnowski and Forsyth 6 describe a method for au-
tomating the generation of approximations for culling. The
algorithms in these papers are limited to objects that do not
move very far (so that static bounding volumes suffice to de-
termine visibility).

Sudarsky and Gotsman describe a dynamic occlusion de-
tection algorithm 13 that is applicable when the motion of an
object can be contained within a temporal bounding volume
— a bounding box that is guaranteed to contain an object
for some period of time. They attack the efficiency prob-
lem from a pure visibility perspective, ignoring the difficul-
ties of constructing bounding volumes for non-trivial motion
such as demonstrated in our examples. Many other visibility
schemes support the occlusion of dynamic objects by static
ones through the use of temporal bounding volumes (see
Cohen-Or, Chrysanthou and Silva 7 for an overview), but
only Zhang et. al. 15 discuss the use of dynamic occluders,

and then only briefly, and all ignore the issue of constructing
bounding volumes for complex motion.

Proxies aim to avoid doing work for non-visible objects.
The corresponding problem in distributed virtual environ-
ments is to avoid transmitting irrelevant dynamic state 12.
Dead-reckoning is the primary technique, in which state is
transmitted infrequently, with the state of an object approxi-
mated locally on each machine based on its last transmitted
state. The small errors due to inaccurate dead-reckoned state
are considered acceptable given the major savings in band-
width. One can also avoid transmitting the state of an object
that is out of view — referred to as area of interest manage-
ment 12. Makbily, Gotsman and Bar-Yehuda 10 describe an
algorithm for server-less distributed environments that pre-
dicts the time that must elapse before two objects are mutu-
ally interested. While their work is similar to that described
here, in a distributed environment the precise state of each
object is always known by some machine, whereas we avoid
computing such precise state at all.

Our work advances the field of efficient dynamics in sev-
eral ways. We introduce proxy simulations as a means of
tracking hidden objects, we explore the relationship between
visibility and simulation, we look at ways of measuring er-
ror, and we describe two case studies involving different sim-
ulation tasks.

3. Proxy Simulations

A proxy simulation takes the place of an accurate simula-
tor for the hidden motion in an environment. We identify
two other simulations: the accurate simulation for motion in
view, and the full simulation referring to the accurate simula-
tion model applied to the entire environment, with no proxy.
A proxy is best evaluated on quality and cost: it must be of
sufficient quality to support a viewer’s experience of a dy-
namic environment while incurring minimal cost for hidden
motion.

The simulation of out-of-view objects is dominated by
events that happen at specific times and have specific out-
comes. Chief among these events are the moments when
a non-visible object enters the visible region, such that the
viewer sees the object. We will refer to these as view entry
events. It is essential to capture view entry events to ensure
that a viewer sees the right thing at the right time. Other im-
portant events may be a car crash, or your enemy launching
an attack from their remote base. However, the viewer can
never perceive these events directly, so they are only of sig-
nificance because they influence the time when view entry
events should occur. This provides us with our first require-
ment for proxy simulation:

Proxy Requirement 1: The proxy must provide a
reasonable stream of view entry events.

Chenney and Forsyth 5 refer to this as the completeness prob-
lem, but provide no method for meeting the requirement.
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The idea of reasonable behavior is central to the above re-
quirement. Reasonable behavior is defined as a part of the
environment’s model. For example, a computer game might
require that with reasonable behavior monsters should stay
dead once killed, that they have a maximum travel speed,
that they do not pass through walls, and so on. These con-
ditions on behavior will influence the stream of view entry
events. For example, a dead monster should never move it-
self into the view. A monster that is known to be on the other
side of the maze should not be able to rapidly reach a visible
region.

It is possible to consider the stream of events produced by
an accurate simulation model as the only reasonable event
stream. However, this is an overly restrictive requirement.
The aim of a virtual environment is, after all, to provide a
particular experience for the viewer. This experience is al-
most never precisely defined down to the timing of individ-
ual events — rather it is focused on ensuring that an appro-
priate set of things happen at appropriate times. In a game,
for instance, it is not necessary for the enemy for appear at
the 27th second of the game, only that they appear sometime
around the 27th second. In any case, most real world systems
cannot supply very high degrees of accuracy. We assume that
the designer of an environment can define a model of what
is reasonable, and proxy simulations must be held account-
able only to that model. In section 4.4 we demonstrate one
way of validating that a proxy meets the requirements for
reasonable behavior, although we note that any discussion
of reasonable behavior is likely to be highly dependent on
the nature of the particular environment.

It is not sufficient merely to know when an object re-enters
the view, it is also necessary to know the object’s state at that
time. This state must be reasonable or a viewer will detect
an error. This gives us our second requirement for a proxy
simulation:

Proxy Requirement 2: The proxy must provide
reasonable state for objects when they re-enter the
view.

Chenney and Forsyth 5 refer to this as the consistency prob-
lem, and provide a high level approach to solving it. We pro-
vide further examples of solutions to this requirement. Note
once again the emphasis on reasonable motion: the proxy is
acceptable if it satisfies a designer’s goals for quality.

Finally, a proxy simulation is intended to save work:

Proxy Requirement 3: The proxy must be signif-
icantly cheaper to compute than the accurate sim-
ulation.

Ideally the proxy should cost nothing, in which case we
would have an ideal simulator as defined in section 1. This is
only possible if no work is done to identify view entry events
and no work is done to generate reasonable state for re-
entering objects. While this can be achieved under extremely
limiting conditions, such as no viewer motion and perfectly

Figure 1: The traffic simulation, in which cars move through
a maze-like network of streets, stopping at intersections as
shown here. Each car is uniquely numbered so a viewer may
track its progress.

predictable object trajectories, most interesting cases require
that some work be done to compute reasonable view entry
events. To see the problem, consider the specific case of a
car on a circular race track where the viewer can see only the
start-finish line. Say the viewer sees a car cross the line and
subsequently leave the view. To achieve perfect efficiency
we must be able to predict, with no effort, the precise time
that that car will re-enter the view. But that time requires
knowledge of the location of all the other cars on the track
and how they interact with the specific car in question, so
it is highly unlikely we can immediately compute an accu-
rate re-entry time without doing something to evaluate the
interactions.

Having outlined the basic requirements for a proxy simu-
lation, in the following sections we work through two case
studies in proxy design: a traffic simulation and a dynamic
path planning simulation typical of many gaming environ-
ments.

4. Traffic Simulation

The traffic model simulates tricycle cars moving through a
maze-like network of roads (figures 1 and 2). Each road is a
visibility cell, open only at the ends. We use a cell and portal
algorithm 9 to identify at run-time roads that are at least par-
tially visible from the current viewpoint. We now describe
reasonable behavior that we wish to maintain, and a proxy
that reproduces such behavior at a significantly reduced cost
as indicated by experimental results.

4.1. Reasonable Traffic Behavior

The accurate model takes time-steps of fixed length 0.01s.
On each step it sets an acceleration for each car to be used
throughout the step, and then numerically integrates the mo-
tion of each car. Numerical integration is necessary because

c© The Eurographics Association 2001.



Chenney, Arikan and Forsyth / Proxy Simulations For Efficient Dynamics

Figure 2: A map view of the city while a proxy is in use.
The cluster of white cells to the upper left of center are the
roads potentially visible from the view shown in figure 1. The
intensity of other cells corresponds to the number of events
processed by the proxy for that road during the previous sec-
ond of simulation time. Note that most of the roads are grey,
indicating that no events were processed and hence that no
work was done for those roads.

the orientation and wheel rotations for each car are spec-
ified via a differential equation with no closed form solu-
tion. The time-step is kept short to reduce errors in our Euler
integration scheme. Other integration schemes do not offer
significant speedups in this case, and make it significantly
more difficult to manage the behavior of cars at intersections.
In any case, the longest useful time-step for any integration
scheme for 20fps rendering is 0.05s.

Cars moving under the accurate model exhibit the fol-
lowing traits that together define reasonable behavior for the
traffic:

• When a car reaches an intersection, it makes a random
choice of which lane to follow next, selecting among the
lanes that are not heavily congested.

• The cars obey stop-sign rules at intersections: they come
to a stop, wait their turn to move into the intersection, and
then pass through, allowing the next car in.

• Between intersections, each car follows a pre-defined ac-
celeration profile, except that cars slow to avoid collisions
with the car in front. If the car in front stops, so will the
follower, causing queues to form at intersections as cars
line up waiting to enter.

Together, all of these properties lead to one property that
is visible to an adversarial user and sensitive to all of the oth-
ers: car travel times. A viewer can measure travel times by
noting the location of a car at two distinct points in time. If
in a proxy simulation the cars don’t make random choices,
then the density of cars will be wrong which will impact
travel times. If cars don’t stop, or jump the queues at in-

tersections, they will get places too fast. Cars following the
wrong acceleration profile will move too fast or slow.

We use travel times as our primary measurement of the
proxy’s plausibility. Individually, the other properties should
be satisfied within the visible regions, but in hidden regions
the viewer cannot directly determine the density, or detect
whether cars are stopping at intersections, so the proxy need
not produce measurements for such things. In addition to
travel times, we also visually assess the quality of the proxy
by watching cars as they enter the view.

Note in particular that a viewer may be aware of the ex-
istence of traffic jams and other such phenomenon, having
seen them in the recent past. The viewer is therefore aware
of the factors influencing travel times and we must take such
knowledge into account in the proxy model. For instance,
it is not possible for the proxy to assume independence be-
tween cars — the travel time must be conditioned in some
way on the location of the other cars in the simulation.

4.2. A Discrete Event Traffic Proxy

Recall the proxy’s tasks: to ensure that cars enter the view
at the right place and time, and to provide state for cars that
re-enter the view, all with a minimum of computation.

4.2.1. Visibility and the Proxy

Rather than identify precisely when cars become visible, we
instead choose to identify when cars enter the potentially vis-
ible set of roads. The accurate simulation then takes over,
and ensures that a car is in the correct place when the viewer
actually sees it. Cars enter the visible set of roads in two
ways: they can drive onto a road that is already visible, or
they can be on a road that becomes visible as the viewer
moves. Note that the model we use places no restrictions on
viewer motion.

The proxy simulation keeps track of all the cars on ev-
ery road in the city, and the time when each car entered its
current road. This ensures that we know which cars become
visible if the viewer sees a road, and also provides enough
information to account for traffic jams and other interactions
between cars. On each frame, the visible roads are checked
for cars that weren’t previously visible. Such cars are put in
an active list for the accurate simulator to simulate, while all
other cars are managed by the proxy. Also on each frame, the
locations of cars on the active list are checked against the set
of visible roads, and cars that are no longer visible are taken
of the list and handed back to the proxy.

The proxy must compute the appropriate times for cars to
move from one road to the next, and hence keep the asso-
ciations between roads and cars correct. To determine when
updates are required, we use a discrete event model for the
motion of the cars. This model only considers a car when
it might be moving from one road to the next, and does no
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processing for that car at other times. We thus achieve sig-
nificant cost savings with the proxy, because the overhead of
managing an event queue for many objects is much less than
the cost of an accurate simulation for those objects.

The discrete event model uses two events, and there may
be zero or one event in the queue for each car. The events
are:

Enter events occur when a car might reach the end of a road
and enter an intersection. We schedule these events opti-
mistically, and test whether the car is really entering the
intersection only when the event is processed.

Exit events occur when a car moves out of an intersection
and onto a road proper.

Each lane maintains a list recording which cars are currently
on that lane, and in which order. This allows us to identify
visible cars when we identify visible roads. Each road in-
tersection maintains a list of the cars that are at stop signs
waiting to enter the intersection, and in what order they ar-
rived. Cars store pointers back into any intersection and lane
lists that they are currently on.

When an Enter event is processed, the car may be free to
enter the intersection, it may be stopped waiting for another
car in the intersection, or it may be queued behind cars that
are already stopped. Depending on the case, we shift the car
among the lists and possibly schedule a new event for it. Exit

events are processed by scheduling the car’s next Enter for
the soonest time that it could reach the end of the road, which
is computed in a preprocessing step based on the length of
the lane and the acceleration profile of the car. If necessary,
we also wake other cars that were stopped at the intersection
this car is leaving and schedule new events for them.

Sometimes Enter event processing moves a car into a vis-
ible road, in which case it is removed from the proxy and
passed over to the accurate simulation. Because the car was
previously stopped at an intersection, it is simple to compute
other parts of its state as described below. Furthermore, we
may have to insert events when a car exits the visible region
and is taken over by the proxy.

By processing events in the correct order, the proxy main-
tains the correct associations between cars and roads, taking
into account all the important dependencies between cars.
Work is only performed when an event is processed, result-
ing in highly efficient simulation. The assumptions made in
scheduling future events introduce some errors, but we claim
that they are small, and our experiments described below
support that. It remains to discuss how state is set when an
object re-enters the view.

4.3. Generating Complete State

The proxy must supply complete state for cars that re-enter
the view. This can happen in two ways:
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Figure 3: The speedups achieved by the proxy simulation.
We see almost two orders of magnitude speedup for 12800
cars in the simulation.

Arrival: the car may drive onto a visible road when it
enters an intersection. But cars always enter an intersection
from a standing start and aligned along the road, so we know
its correct position (the end of the road), speed (zero) and ori-
entation. We do not know the correct rotation angle for each
wheel, which is determined by the length of the path trav-
eled by the wheel. But we can safely assume that a viewer
has no idea exactly which path a wheel has taken, so we set
the rotations randomly.

Exposure: the viewer may turn a corner and reveal an
entire road and all the cars on it. We isolate the road, shifting
it back in time to the entry time for the first car on the road,
and simulate just the road forward from there to the current
time, adding cars at the time they entered according to the
proxy, and stopping all the cars in a queue at the end of the
road (where they must be stopped, or they would not be on
the road). This process generates highly accurate state for
cars re-entering the view, but significant lag may result when
a busy road comes into view. This lag could be reduced with
a more aggressive approximation strategy, such as simply
placing all the cars on the road stationary in a queue, at the
expense of greater errors.

4.4. Results

The city traffic environment using the proxy described above
generates visually reasonable behavior when compared to a
full model. It also achieves significant speedups, allowing
the simulation of cities larger than could be handled with
an accurate simulation alone. We performed a set of exper-
iments to determine the proxy’s efficiency, and another to
measure its quality.

We determined the dynamics computation speedup
achieved as the number of cars in the simulation is increased,
by comparing the time taken to simulate one frame of dy-
namics at 20fps (0.05s of simulated time per frame) with

c© The Eurographics Association 2001.



Chenney, Arikan and Forsyth / Proxy Simulations For Efficient Dynamics

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000 12000

E
ffi

ci
en

cy

Number of Cars

Traffic Proxy Efficiency

Proxy
Full

Figure 4: The efficiency achieved with the proxy and full
simulations, computed according to the definition in sec-
tion 3. The efficiency drops as the number of objects in-
creases. This is expected, because the traffic density is kept
constant as the total number of objects grows. Hence the
number of objects in view remains roughly the same, as does
the amount of work done simulating those objects. Yet the
number of out of view objects is increasing, so more total
work is required and the efficiency declines. We get proxy
efficiencies ranging from 45% for the smallest city with 400
cars down to 8% for the largest city with 12800 cars, while
the full simulation efficiency ranges from only 3.1% down to
0.1% for the largest city, reflecting more than an order of
magnitude gain in efficiency.

the full model and the proxy. The city size was increased
along with the number of cars, keeping the overall density
constant. For each data point we averaged timing data from
four runs each of ten minutes duration with different sets of
initial conditions. A different animated viewpoint was used
for each run to simulate a moving viewer. All computations
were performed on a Pentium III 800MHz. The speedup is
plotted in figure 3. From the same data we computed the
efficiency of the proxy simulation, plotted in figure 4. Our
data indicates that it is possible to accurately simulate only
2000 cars in real-time on this machine, while the proxy could
simulate 12800 cars using only 0.07 seconds of real time for
each second of virtual time.

A tough test for the quality of the proxy is to examine the
estimates it produces for travel times. We do this by fixing
the path of one car, and running multiple simulations with
the other cars starting in different configurations. We then
compare the average time it takes the car to follow its path
when the proxy is employed and then the accurate model is
employed. This experiment is the virtual equivalent to de-
termining how long it takes to drive home from work, and
checking how both the accurate and proxy models estimate
how that time varies over different days. The results are plot-
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Figure 5: The average time taken by a car to reach various
way-points on a fixed route, as estimated by the full model
and the proxy model. The way-points are numbered from 1
to 10 across the bottom. The error bars represent one stan-
dard deviation. The averages were computed by fixing the
path of one car, then running multiple simulations with the
other cars starting out in different configurations. The times
estimated by the proxy are reasonably close to those esti-
mated by the full model, with a roughly 1% difference in the
estimates, and almost the same variance.

ted in figure 5, using data gathered from ten simulation runs
in a city with 1600 cars.

These results indicate that the proxy achieves significant
speedups while producing very accurate estimates of system
behavior. Note, however, that the efficiency of the system as
a whole goes down as more and more out of view objects are
introduced. This is to be expected: we still do some work for
every out of view object, so as more are added more time is
spent working on them, reducing efficiency. The only way
to avoid the efficiency drop is to ignore some objects com-
pletely, by adding and deleting them entirely at a boundary
or by some other method.

5. Case Study: Path Planning and Collision Avoidance

Real time strategy games provide an important example of a
very large virtual environment with complex object dynam-
ics. Typically, a virtual battle is modeled by simulating the
behaviors of individual objects that move on a 2D terrain
or attack other objects on the user’s orders. In such games
path planning and collision avoidance between objects con-
stitute the bulk of the computational workload of the simula-
tor, due to both the large numbers of objects and the typically
high complexity of path planning and collision detection al-
gorithms.

Reasonable behavior for objects in this model has them
following shortest paths between two points, always avoid-
ing obstacles and each other. Hence the time taken to get
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somewhere and the path taken depends on the nearby ob-
jects. The primary concern for gaming applications is that a
player who knows about the proxy should not have an advan-
tage over a player who does not. Thus, the proxy simulation
should meet the following requirements for every individu-
ally identifiable object:

• Objects in any part of the battlefield should not pass
through stationary obstacles (otherwise the informed
player could "teleport" units).

• Inter-object interactions must be accounted for. For exam-
ple, an object should not be able to pass through a bridge
whose entrance has been blocked by other static objects.

• Objects should have speeds consistent with their environ-
ments. For instance, the average speed of an object should
be low if it has interacted with lots of other dynamic units
recently. This means that objects should (a) arrive at their
destinations at times consistent with a full simulation and
(b) have encounters along their paths that are also consis-
tent. For example, objects should encounter ambushes at
reasonable times.

We first describe how the accurate simulation achieves
this behavior. This description is intended to give the flavor
of our path planning implementation, rather than be com-
plete. We then move on to our proxy model. See 2 for a
detailed description of the path planning algorithm and its
proxy.

5.1. Accurate Path Planning and Collision Avoidance

The path planning and collision avoidance is done in three
steps. Firstly, an initial path that does not pass through any
fixed obstacles (represented as simple polygons) is con-
structed. This is accomplished via the precomputed visibil-
ity graph of the obstacle polygons (figure 6). In this context,
if two points are mutually visible then an object can move
on the line connecting them without colliding with a fixed
obstacle. The visibility graph has a node for each vertex of
each fixed object and two nodes are connected with an edge
if the vertices can see each other. Free space is also parti-
tioned into regions such that points in the same region have
the same visible obstacle vertices (the same horizon). Note
that the shortest path between any two points that are not di-
rectly visible to each other must involve going to a vertex on
the horizon of the beginning point, traversing zero or more
edges on the visibility graph to a vertex in the horizon of the
ending point and finally going to the ending point (figure 6).

Using precomputed shortest paths between any two point
of the visibility graph, the vertices in the horizons of the be-
ginning point and the ending point can be enumerated pair-
wise to find the shortest path. Note that if the points are di-
rectly visible to each other, than the shortest path between
them is the straight line which can be detected by ray-casting
in 2D. Since the number of vertices in the horizon of any
point is small, the shortest path enumeration can be done

A

B

D
C

Figure 6: Shaded polygons represent obstacles on a 2D
terrain. The filled circles are the obstacle vertices and form
nodes in the visibility graph. Dashed lines are the edges of
the visibility graph for these obstacles. The horizon vertices
for points A and B are circled in dashes and dots respec-
tively. Note that a shortest path between any two points must
first reach a vertex of the horizon of the starting point, tra-
verse zero or more edges in the visibility graph and go from a
vertex in the horizon of the destination point to the final des-
tination point. The shortest path between A and B is shown
in the figure.
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Figure 7: There are static objects, groups 1 and 2, on a
moving object’s intended path (shown as a dashed line). The
possible paths are enumerated by considering traversing the
left and right sides of the obstructing group (1) and contin-
uing the process recursively. Note that traversing one side
of the obstructing group (1) may reveal other obstructions
(2). The plans discovered this way can be represented as a
binary tree whose leaves are the candidate paths.

quite fast. Moreover, the complexity of this space decom-
position is usually small, so the whole precomputation can
be stored very efficiently. Finally, with the shortest paths be-
tween any two obstacle vertices available, the enumeration
can be repeated to get the second or third best routes if the
best one is blocked by other objects.

The piecewise linear path plan for objects A can still in-
tersect other mobile objects along the way. Collisions with
stopped objects (static) and moving objects (dynamic) are
handled differently as dynamic objects can move out of the
way whereas we may need to plan around the static objects
(figure 7). The collisions are detected by checking the future
locations of object A for some time (plan ahead time) for the
presence of any other object, B. If a collision is found and
B is static, then the right and left sides of B are evaluated
for a detour. This process is continued recursively for any
collisions found during the process until all alternatives are
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evaluated or a good enough path is found. Note that the num-
ber of recursions (maximum recursion depth) done at this
step controls the quality of the path. Moreover, the amount
of time in the future that is checked for any collisions also
provides a quality versus computation time tradeoff. If the
colliding object B is dynamic, then the path plan for A is
evaluated to decide whether to wait to let B clear the path or
actively plan around it as if it was static.

In order to expedite the collision checking, we use a hi-
erarchical decomposition of space and tune the parameters
controlling the path planning and collision avoidance (plan
ahead time and maximum recursion depth) for optimal per-
formance. We also employ partial path planning where the
path plan is constructed only for some time in the future is
constructed and objects re-plan their paths if they reach the
end of their partial plans before reaching their final destina-
tion.

5.2. Proxy Model Overview

In order to obtain the necessary visibility information, we
subdivide the battlefield to smaller rectangles that act as our
cells. The viewer has a rectangular overhead view of the bat-
tlefield, so can only see the cells that intersect with this rect-
angular region. Only the objects that are in these cells may
be visible.

Like the traffic example, the proxy model for path plan-
ning and collision avoidance is a discrete event simulator
that is used to manage the membership information of every
object for every cell. More specifically, the proxy is used to
make sure cells contain a list of objects that are time stamped
with their entry and exit times to the corresponding cell. At
every frame, dynamic state for objects entering any of the
visible cells is obtained from the proxy simulator and the
proxy simulation is turned off for those objects. Similarly,
objects leaving the visible cells are switched to the proxy
simulation.

The proxy simulator gathers the path plans for the objects
that it needs to simulate and inserts each object into the cells
that its path plan intersects in the future. The proxy simulator
also marks each object with the corresponding entry and exit
time stamps for every cell that it is scheduled to visit. The
time stamps are computed by considering the object’s speed
and the other objects with which it is expected to interact
along the path. These can be identified using a spatiotempo-
ral data structure for each cell that reports space-time path
intersections within that cell.

The outcomes of detected interactions are approximated
by delays to the interacting parties’ original path plans.
These delays are sampled from a probability distribution
over delays that is learned in a preprocessing phase that runs
the full simulation and gathers statistics on delays. The dis-
tribution is represented as a mixture of gaussians and learned

using an EM algorithm 3. This is adequate for capturing rea-
sonable speed relationships for the dynamic objects.

Introducing a delay in an object’s intended plan may in-
validate some of the interactions that have been computed
previously, in particular all those objects that previously ex-
pected to interact with the delayed object. Thus, all the fu-
ture interactions must be rechecked after the introduction of
a delay. Since objects can have very long path plans into the
future, this step may involve re-computation of interactions
for lots of other objects already in the proxy simulator. We
overcome this problem by computing interactions only for a
particular amount of time in the future and rechecking. The
amount of time that we will compute an object’s interactions
is controlled by a latest interaction time parameter.

Since only dynamic objects are considered by the proxy
simulator and the path plans for every dynamic object al-
ready account for the stationary obstacles and static objects,
the first two requirements for reasonable behavior from sec-
tion 5 are automatically satisfied. The third is satisfied by
the introduction of probabilistic delays learned form the full
simulation.

The main source of error in the proxy simulator is the ap-
proximation of dynamic object interactions as delays. This
usually a reasonable assumption considering the fact that dy-
namic objects can not block a path (they either move out,
or we plan around them). These delays are sampled from
delay statistics gathered from the full simulation as a pre-
processing step, so on average they are consistent with the
full simulation. One infrequent case where the proxy is seri-
ously awry is when two objects deadlock in try to pass, but
we claim this has a very little effect on the behavior of the
simulation as a whole.

5.2.1. Events for the Path Planning Proxy

Our discrete event simulator has four different events:

Stop: An object in the proxy simulator has reached its des-
tination. The proxy simulator computes the time to stop
by adding the delays computed for the dynamic object in-
teractions to the original estimate of the time to stop and
inserts this time into the event queue. When this event
happens, the proxy simulator switches the object from dy-
namic to static and removes it from all the cells that it has
been associated with.

Replan: Since objects may also have partial path plans,
the validity of a path plan may expire before the object
reaches its final destination. In this case the proxy must
generate a new plan from the last point in the current plan
to the final target of the object.

Reinsert: Note that the proxy simulator only considers a
finite time in the future for dynamic object interactions
in order to avoid discovering interactions too far in the
future that will be rolled back when one of the interacting
parties collide with another object before the interaction.
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Figure 8: The real time required to simulate 1 second of
simulation time as a function of the log of the number of ob-
jects on a constant density terrain. The upper curve (dashes)
represents the simulation without proxy and the lower curve
(full) represents the simulation with proxy. The dotted hori-
zontal line is the real-time cutoff. Since the object density is
constant for all simulations, the user sees approximately the
same number of objects in the view. Since the proxy simula-
tor does very little work for the invisible objects and their
interactions are handled using a discrete event simulator,
the simulation cost increases much slower than the full sim-
ulation. The very fast increase in the full simulation cost
comes from the fact that the path plan revisions needed to
avoid collisions between dynamic objects tend to snowball,
while the proxy approximates dynamic-dynamic object inter-
actions with probabilistic models, thus avoiding local path
plan revisions.

Thus it needs to go back and compute new interactions
periodically to capture all dynamic interactions for each
object. This event is generated for every object when their
latest interaction time is hit.

Entry: This event is scheduled for objects in the proxy sim-
ulator that will enter one of the visible cells. When this
event happens, the proxy simulator deletes the object from
its previously associated cells and samples a state for the
object. Since the proxy simulator has the path plan for ev-
ery object, it can sample a point on this path as a function
of the entry time and all the interactions that the object
carried out in the proxy simulator.

The full simulator checks if an object has moved out of the
visible cells whenever the new position of the object is com-
puted and sends these objects to the proxy server.

5.3. Results

We have tested our proxy simulator on different maps with
different numbers of uniquely identifiable objects. Figure 8
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Figure 9: The efficiency as a function of the number of ob-
jects on a constant density terrain, computed directly from
the definition in section 3. The efficiency falls because as the
number of out of view objects increases we must perform
some, even if only a little, work for each one.

shows the amount of real time required to simulate 1 second
of virtual dynamics as a function of the number of objects at
a constant density on a Pentium III 800MHz computer. For
all the simulations, objects are distributed randomly on the
map and pick random places to go. The object density on the
terrain is kept constant by increasing the size of the world as
the number of objects is increased.

Increasing the number of objects increases the number
of possible interactions quadratically. Since the full simu-
lator needs to re-plan in order to avoid collisions, it may
have to deal with additional collisions that the revised plan
may cause, suffering additional cost for every interaction
that needs plan revision. On the other hand, the proxy simu-
lation approximates these interactions with probabilistic de-
lays and thus does not re-plan. Even though the proxy simu-
lator still detects all the interactions between the dynamical
objects, the cost of handling these interactions is consider-
able cheaper than the full simulation. Figure 9 shows the ef-
ficiency for the same tests.

6. Conclusion

We have defined proxy simulations for virtual environments
and given the basic requirements of their implementation.
The traffic and path planning case studies clearly demon-
strate the effectiveness of proxy simulations for reducing the
cost of motion generation, suggesting that a proxy simula-
tion can manage at least two orders of magnitude more ob-
jects than a full simulation, without significantly sacrificing
the quality of a user’s experience. There are many possible
future research directions.

There are various statistical aspects implicit in our discus-

c© The Eurographics Association 2001.



Chenney, Arikan and Forsyth / Proxy Simulations For Efficient Dynamics

sion of reasonable proxy behavior. The idea of reasonable
behavior is best modeled in statistical terms, and in both our
case studies we use simple statistics to either validate the
performance of the model or as part of the proxy itself. Sta-
tistical techniques may provide a way to further quantify the
behavior of proxy models. For instance, it is likely to be im-
portant to retain the average behavior of objects, but not so
important to restrict the variance. It is also unlikely to matter
if one car in a hundred has an outrageous travel time. Ex-
ploiting this may allow even greater efficiency gains.

The quality metrics we use are potentially more demand-
ing than necessary. In the traffic simulation, for instance,
not every car is likely to be important to a viewer. A large
amount of work could be saved by relaxing the travel time
constraint on non-essential vehicles, which could free us to
completely ignore them if they are not influencing the im-
portant objects. This is essentially what current traffic re-
lated games do: the viewer and their immediate adversaries
are important, but they are always close together around the
viewer, allowing all other cars to be simulated only in a
sphere about the viewer 1. A proxy simulation could extend
this idea to important objects that range widely, and would
otherwise require a very large active sphere.

Finally, proxy simulations that include random compo-
nents, like our tile-based path planning example, appear to
offer very large efficiency gains. They also provide us with
a handle on scenario management in virtual environments.
The proxy has a choice, made randomly in our model, for
how the object should behave. If instead this choice is made
based on some other criteria, like its benefit to constructing
a scenario, the proxy can guide the simulation in particular
ways. For instance, if we wish to test a trainee soldier with
an unexpected enemy encounter, the travel times for enemy
objects could be manipulated to ensure that they intersect the
trainee.

The ultimate aim is to construct tools that automatically
generate proxies, given an accurate model and the desired
quality measures. Such tools will require advances in many
areas, including proxy design, statistical inference and event
modeling techniques.
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