EUROGRAPHICS 2001 / Jonathan C. Roberts

Short presentations

CORBA Visualization Platform

Thierry Benoist, W. T. Hewitt, Nigel W. John

Manchester Visualization Centre

Abstract

Virtual Reality applications mainly fall into two
categories: on one hand, applications handling a
virtual environment in which users interact, on the
other hand scientific visualization applications han-
dling post processing of data. The former makes
use of proprietary network protocols to allow re-
mote users to share the same experience, whereas
the latter makes use of other proprietary network
protocols to spread the computation load over sev-
eral computers. This research aims at using a
standardized network architecture, CORBA, to de-
velop a VR application capable of handling a multi
user virtual environment, in which scientific sim-
ulation occurs. The computation power necessary
to run the simulation is distributed across several
machines, once again through CORBA. CORBA
does allow very heterogeneous platforms to com-
municate; this paper unveils the latests results in
validating and testing this new kind of heteroge-
neous visualization environment.

1 Introduction

VR'has become in the last ten years an abun-
dant source of excitement. The constantly growing
power of computers allows us to achieve each year
new levels of performance, endowing this field of
study with an extraordinary dynamism. The grow-
ing success of Reality Centers in academia as well
as in industry opens more and more research and
development opportunities based on VR technolo-
gies.

Furthermore, the introduction of Internet in the
mass market gave birth to distributed VR, whose

1vVirtual Reality

©The Eurographics Association 2001

concept is to allow remote users to share the same
virtual experiment. This union between network-
ing and VR is fairly recent and different problems
arise due to the wide range of 3D hardware and 3D
software libraries.

In short, the VR world is for the time being very
heterogenous, no real effort being made to bridge
the gap between different hardware/software solu-
tions.

The current paradigm in distributed graphics is
to share an environment among users, each graph-
ics workstation obviously renders the scene via its
own graphics subsystem, the CPU time being re-
served for altering the virtual environment. This
can be done through user interaction, or through
calculation results, a process known as post pro-
cessing, if you want to simulate a phenomenon for
instance.

The problem in the former statement is that you
do not have access to a lot of computing power on
a graphics workstation or even on a graphics server
such as SGI Onyx2s[1].

For jobs requiring a lot of computing power, the
approach currently taken consists in first doing the
calculation on a HPC? facility and then viewing the
results of the simulation through a VR application.

The goal of this work is to present a brand new
approach to distributed VR using as a reference
model computational steering, see Figure 1. This
paper addresses the issues raised in this short intro-
duction, therefore investigating a solution to solve
heterogeneity in distributed VR applications and
integrating HPC in those very applications.

We will first present an overview of related work
to set a context to this research, then the general
aims of the projects will be discussed. Finally the
current achievements as well as the future work will
be presented.

2HPC: High Performance Computing

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Benoist, Hewitt and John / CORBA visualization platform

[= lation

Dataflow

Graphics transformations User Interaction

Results display

Figure 1: Computational steering
Computational steering is a reference model where the user in-
teractions influence the rendering process and the simulation
process. Influencing the rendering process might be for instance
viewpoint changing whereas influencing the simulation might be
a real time change of an experiment parameter.

2 Related Work

In order to set a proper context for this thesis, we
will review here the research being conducted in
this area and relate it to the research presented in
this report.

Let us underline first the two main different types
of research conducted in VR:

The first approach consists of defining a virtual
environment possibly shared, where many users can
interact. In this area the research aims at reducing
the network lag by implementing alternative strate-
gies.

The second approach is scientific visualization.
You have a simulation running on a supercomputer,
which generate a huge dataset. Why not then using
a VR facility to project you and your dataset into
an immersive environment? There you can tamper
your dataset at will.

Now that we have briefly sketched the two main
approaches in VR research, let us be more specific
about them.

2.1 Shared VR environments

Today, workstations capable of handling millions of
polygons a second are so cheap, that a brand new
range of applications involving high performance
3D is born. Let us have a closer look at one of
them, for example, the Maverik[4] and Deva[5][3]
software.

©The Eurographics Association 2001

Maverik is a system for managing display and
interaction in virtual reality applications. It is
designed to address the challenges of VEs where
many objects have real geometry and therefore fa-
cilitate interaction. This is in contrast to reliance
upon techniques such as texture mapping, popular
in computer games, which provide the illusion of
complexity, but do not afford interaction with the
majority of the environment.

Maverick is a very proven product as it has been
widely tested and upgraded over time. However it
has the following drawbacks:

e It is written in C: the lack of object methodol-
ogy makes it harder to maintain, and some-
times awkward to use when programming
Maverick applications in C+-+

e It is monothread. Hence it will not gain any
advantage from running on a parallel machine

e It has no network capabilities by itself. Al-
though this point has been addressed by Deva,
an extra library allowing different instances
of maverick, or any other Deva-compatible
viewer, to interact. Of course, that induces
an overhead as you need to implement an in-
terface between your viewer and your commu-
nication layer.

Let us now say a little bit more about Deva|9].

The Deva Project aims at developing a multi-user
VR system to support distributed complex virtual
environments. The Deva system aims to address
two specific issues: complexity of behavior, and ge-
ographical distribution. These two factors are actu-
ally very strongly related in as much that the means
by which behaviour is described in a virtual envi-
ronment affects the techniques used to distribute
that behaviour around a multi-user virtual envi-
ronment.

The tandem Maverik - Deva is a fairly well
proven solution, although still under development,
which is used in a lot of different projects such as
[6], [7] and [8]to achieve distributed VR.

2.2 Scientific Visualization

All the previous systems were dealing with user in-
teraction in a distributed VE3. The user was inter-

3Virtual Environement

Benoist, Hewitt and John / CORBA visualization platform

acting with the environment and other users. As
you want a lot of users, most of the above applica-
tions will run on typical workstations. Therefore,
their aims are different than those in scientific vi-
sualization.

Here, we are dealing with a dataset generated by
some simulation, and we want to make the most of
it. Therefore immersion can help in understanding
the data as you can watch them from every an-
gle, in 3D. Also you can apply transformations on
the set of data, so that you can focus on a partic-
ular aspect. That is what products like AVS and
Covise[14] are about.

Open GL Vizserver is also relevant. It presents
a way to use the network to export Scientific visu-
alization rendering.

2.2.1 Scientific Visualization Toolkits

Scientific Visualization toolkits like AVS[10][11]
and NAG Explorer[15] are popular visualization ap-
plication software and development environments.

They accept the data produced by instruments,
or by scientific and engineering simulation software
and support a comprehensive set of data types.
They create a visual display of your data in a va-
riety of forms using a wide array of visualization
techniques. Typically, they employ modular archi-
tecture comprised of many separate, yet tightly in-
tegrated, sub-systems that each provide important
capabilities.

Modules are the building blocks. A module is an
independent computing element (C or FORTRAN)
which is represented by a rectangular icon on the
screen. Each module performs a specific visualiza-
tion function or set of functions. Alternatively, you
can build your own modules to extend or customize
the software. External programs or subroutines
written in C or FORTRAN can be converted into
modules.

However, most of these toolkits do not support
distributed modules easily.

2.2.2 OpenGL Vizserver

SGI has developed OpenGL Vizserver[2], a tech-
nical computing solution designed to deliver ad-
vanced visualization capabilities and performance
to the desktop. OpenGL Vizserver allows users
to view and interact with large data sets from a

©The Eurographics Association 2001

Application

OpenGL Vizsarver Server }»”————”% """""

ByNGRUEL]

BJJNGRURIS

SERVER

CLIENT

Figure 2: Vizserver architecture

desktop system at any location in an organiza-
tion. OpenGL Vizserver transmits compressed im-
ages from the Onyx2 frame buffer, resulting in the
fastest possible update to the client desktop system
see Fig 2.

In other words, Vizserver is a good solution to
export an OpenGL rendering over a network, sim-
ilar to exporting a XWindow display. However, it
has the following limitations: it does not work in
stereo, it requires a sustained network bandwidth -
100 base T recommended- , as it sends over the net-
work the content of the Onyx2 pipe’s framebuffer
and finally the serverside is only available for Onyx2
computers, although you can export the rendering
to any openGL platform, Irix, Linux and SunOS
being currently supported.

2.3 The visualization

Model

CORBA

If you consider the software designed for shared
VEs, then it is clear that many of the issues related
to sharing VEs have been, or are being, solved.
What we try to introduce here is a new concept
of shared VR, using interactively supercomputers
to generate environments.

We are not addressing network lags or high end
research on existing VR applications. What we try
to do here is to validate a concept that may open at
a later stage opportunities for further research and
development. In fact, all the software presented
above used their own proprietary network layer and
run on graphic workstations or graphic supercom-
puter. What if you could use a network protocol so
generic that it could be used anywhere, and what
if we could run the part of the code which is not

Benoist, Hewitt and John / CORBA visualization platform

linked to graphics on a supercomputer like a Cray
T3E?

The second kind of software identified, dealt with
scientific visualization. Once again a lot of work
has been done in this area, and software like AVS
and COVISE are neatly adapted. What we will
do here is to render into the VE so that you can
see the phenomenon actually happen, which may
add to the understanding as much as just analyzing
results. You can of course generate data while you
watching the simulation that you can browse later
using AVS or COVISE. Analyzing datasets with
AVS or COVISE will tell you what happened as
this work will tell you how it happened.

3 Aims

3.1 Introduction

This section presents the goals of this research,
highlighting the key issues and the features that
are to be achieved.

This research tries to fill a gap in HPC, namely
interactive HPC. HPC is tightly linked to batch
computing as it is the only true way to ensure the
full use of the machine at any time, thus giving
the best cost performance ratio. Hence most of
supercomputers are today used in batch mode, and
scientific visualization then allows the browsing of
the results.

The subsequent lack of interactivity is significant
as you can only browse ‘frozen’ results. One of
the goals of this research is to make an interactive
use of supercomputers, for instance user input such
as changing parameters are taken into account real
time.

This is one of the biggest difference between vi-
sualization and VR. In visualization you try to get
the most of the representation of a given set of data,
while in VR you have the notion of environment,
something you can see evolve and react with. This
project intends to merge those two concepts.

Hence the application resulting from this re-
search, at the crossroads of HPC, scientific visu-
alization, VR and simulation must deal with the
following key issues:

e extended portability, in order to link HPC,
with network and display management.

©The Eurographics Association 2001

Display Device Display Device Display Device
(2D screen) (3D screen) (reality center)
f)
Server

Environment changer

Environment changer
(HPC results)

Environment changer
(HPC results)

(Userinput)

Figure 3: Main overview of the system, seen as a link between

HPC and Display devices

e Modularity, as the code will be run on different
machines: it is very unlikely to see a supercom-
puter such as a T3E with a graphic pipeline.
So it becomes necessary to break the code into
several components or modules. The modules
will have to be adapted to their hosting com-
puter while communicating via a common in-
terface.

e fast and transparent network layer for the pre-
vious modules to communicate.

Therefore the key features the system should pro-
vide are:

e Portability. The software should run on a wide
range of computers from T3E to Linux PCs

e Scalability. The software should run on any
number of machines simultaneously

e Real time high end simulation. The applica-
tion should be able to run any simulation on
a supercomputer and display the results real-
time.

A high level figure showing the main strategy is
shown on Figure 3. These features are described in
the following sections.

3.2 Developing a high end Simula-
tion platform
Simulating a reactive environment is the ultimate

purpose of this project. Simulation is addressed is
as follows:

Benoist, Hewitt and John / CORBA visualization platform

API-specific
Object 1

API
|| specific |
Client

API-specific
Object 2

Objectn

API-specific |
Object1 API

I specific
Client

Environment
modifier 1
Environment
modifier 1

World Manager
Object 2

Objectn

Object 1

API
API-specific I specific —]
Object 2 Client

Environment Environment
modifier 1 modifier 1

APL-specific
Objectn

] el

Figure 4: Tllustration of the system from a lower level.
Each box represents one module. We can see here the environ-
ment hosted by the server then all the modules connected to
it.

First, you create an empty environment and wait
for the graphics clients to connect. The environ-
ment is then populated by objects. Eventually,
some modules, also called environment modifiers,
alter the objects.

Typically modulesare to be optimized for parallel
computing using MPI or pthreads for instance and
graphic clients are to be optimized for the hardware
they are running on.

As it has being said previously, the application
will run the same with any number of modules and
graphic clients connected on it. The structure of
the resulting architecture is shown in Figure 4.

4 Achievements

4.1 Introduction

This section describes currently implemented fea-
tures.

In the first place, it is important to understand
the client-server paradigm. Here, a class named
Worldsmanager plays the role of the server. It can
be seen as an embodiment of the virtual world. It
has knowledge of every single object in the envi-
ronment. It provides the only way to create, access
and transform objects.

The server has no graphics ability of any kind,
as we want it to be independent from any graphic
library so that it can be compiled on any platform,
not only graphics workstations. Of course any
transformation occurring on a given object must

©The Eurographics Association 2001

result in a change that is seen on a display device.
Hence it is the role of the server to forward any
transformation to all the graphic clients, instantia-
tion of the class World. We will see in greater de-
tail how servers and clients interact at a later stage.
What is obvious from the previous paradigm is the
importance of networking.

As it has been said, the server is the one and
only way to create, access and transform objects.
All those operations are run in some modules - or
environment modifiers, remotely. As we aim at de-
veloping a distributed system on various platforms,
we need a homogeneous network layer to link all
those platforms together with the minimal hassle
and the maximum efficiency.

The current implementation consists of:

the deployment/port of CORBA.

the implementation of generic clients, section .

the implementation of a server.

a basic module management.

4.2 Platform independent network
layer

4.2.1 Introduction

As we discussed earlier, the network layer is a key
issue of any distributed application.

We want an efficient, programmer friendly,
portable environment. In other words, we do not
want to reinvent the wheel by implementing a spe-
cific protocol and all the portability tests “is this
host big Indian ?” and everything of the like.

As the implementation of this project is in C++,
a good answer to those concerns is CORBA.

4.2.2 CORBA deployment

The first part of the work was to support a maxi-
mum number of CORBA platforms. Once a plat-
form is made CORBA-compliant, you can start de-
veloping a port of the main code.

Most main code ports required no code modifi-
cation at all thanks to the efforts that have been
made to keep the C++ code clean, and also mostly
thanks to CORBA. Hence, the key issue is to port
a CORBA ORB itself. Therefore it is relevant

Benoist, Hewitt and John / CORBA visualization platform

to choose an ORB with numerous supported plat-
forms.

ORBaccus[12] proved to be a good choice in this
regard. It is also opensource software, so it can be
ported where needed. A lot of ORBaccus resources
can also be found on the web. Finally ORBaccus
has proven itself fast and reliable. It is the solu-
tion adopted by the US military for their ballis-
tic missiles division and by NASA for their Hubble
telescope amongst others.

ORBaccus has also proven itself easy to deploy
on most platforms except for the Cray T3E under
Cray UNICOS/mk.

Making the T3E CORBA-compliant involved:

e Rewriting all low levels CORBA functions
e Patching the IDL compiler

e Patching the JThreads/C++ library. ORBac-
cus being multithreaded, it makes use of a
thread library built upon pthreads.

e Patching the CORBA name service.

Eventually, all the following platforms have been
made CORBA-compliant:

e CRAY T3E under UNICOS/mk

e SGI Origin 2000s and Onyx2s under IRIX 6.5
e Linux PCs (debian & redhat)

e IBM SP under AIX 4.

The clients have been successfully tested on SGI
02000s, Onyx2s and Linux PCs using GeForce and
fireGL cards under Xfree4.

4.3 Implementation

4.3.1 Introduction

Figure 5 shows a mid-level UML class diagram, il-
lustrating the internal architecture of the system
and the different interactions it deals with.

At startup, the server is initiated and the clients
register themselves. Each client represent an
opened window on the virtual environment. The
actual environment is stored on the server, whereas
the perceived environment is stored on the client.
Here is a straightforward analogy: think of a tree in

(©The Eurographics Association 2001

WorldsManager

0 il

0.
World r_impl GObject
1| |ox

j\ 1 /
o
GObjectwm_impl

S world_impl Eye GObject_impl

o

| | AN

Eye_impl Teapot Cube

of the _impl classon ahost B.
CORBA link. Typically a crossnetork link

CORBA Wrapping class. All its method are overridden i the
corresponding_impl class. A function call to a CORBA wrapping class
on ahost A will result in afunction call in the corresponding function

Figure 5: UML Class diagram of the system.
The Server Worldsmanager impl is linked through CORBA
to the graphics clients World_ impl via the CORBA wrapping
classes World and Worldsmanager. Each client owns a view-
point Eye_impl shared with the server through Eye. The
server’s representation of the world is a list of objects encap-
sulated in the GObjectwm _impl classes. To every single object
on the server is attached a list of GObjects each of them being
the remote representation of this very object on a client. At this
stage, such an object can only be a Cube or a Teapot.

a field. This is data about the environment, hence
the fact there is a tree in the environment will be
stored in the server. What you see when you look
at that tree is not the actual tree. You see the inter-
pretation the brain makes of the signals traveling
along the optic nerves. The perception of the same
object in terms of shape and colour for instance
may vary. A fly and an eagle would not have the
same vision on the very same tree. Therefore, in
our paradigm, the fly and the eagle are two differ-
ent clients. Of course at some level the perceived
environment and the actual environment are to be
consistent.

When we create an object, the server tells all
the clients that there is something new to be dis-
played and each client does just that but in its own
way. What is important here is to understand that
for each object GObjectwm_impl created on the
server, there is a link to every representation GOb-
ject_impl on every client.

Now that this structure is in place, we can notice
it is also adapted to handle object transformations.
Let us consider this tree again. The role of the
server is to convey information to the input of the
display pipe of the client. If the server is informed
that the tree has changed in some way, then it will

Benoist, Hewitt and John / CORBA visualization platform

P2

*

Pl P2 \Pr PIr
R

‘Screen plane

user'seyes

Figure 6: Stereoimpression.
Both views are projected on one frame simultaneously, the im-
ages being interlaced columnwise.

contact all the clients to tell them so. What you
will see afterwards depends entirely on the client.

The source of the information ’the tree has
changed’ will be a module. The means to convey
the information from the module to the server and
from the server to the clients is CORBA.

4.3.2 Client features

As we said earlier, the client’s role is to interpret
and display an environment. It has a proper data
structure representing its vision of the world, but
only a server can update this data structure by is-
suing a CORBA request.

The characteristics of a client are numerous,
among them:

e type of vision (2D or 3D)

e Optics specification (Angle of vision, perspec-
tive specification,...)

e type of renderer (OpenGL, DirectX, Custom
renderer...)

e type of rendering (shading, lighting...)

e rendering capabilities. In other words, which
objects and which transformations the client
can handle.

The 3D display device that we have used is a Dres-
den D4D Screen [13]. To achieve stereo impres-
sion as shown on Figure 6, a prism mask has been
mounted on the panel of the screen. Using this
prism, the left eye of the user can only see even
columns of pixels, whereas the right eye can only
see the odd columns, as shown on Figure 7.

©The Eurographics Association 2001

\ |/

\ [Y

\ |/

\ |

O 0
. Even pixel column

0dd pixel column

Figure 7: Dresden 3D display

Let us stress that all clients are multithreaded.
One thread deals with the X event loop and the
OpenGL calls. Some other threads -the number
varies- deals with the network. As their respec-
tive domain is varied, graphics and network com-
ponents rarely interact directly, the overhead due
to synchronization is thus reduced to a minimum.
They interact through directive FIFO* stacks - one
per object, as shown on Figure 8. The network
threads pushes in the stack the incoming direc-
tives (e.g. transformations), whereas the OpenGL
thread, when it comes to the refreshing code, pops
all the transformation from the stack of each ob-
ject. Applying transformations to an object is im-
plemented through a 4x4 matrix M that is owned
by the object.

This matrix reflects all the transformations ap-
plied to the object. Hence, applying a new trans-
formation consists in updating this matrix by mul-
tiplying it by the relevant transformation matrix 7'.
If the transformation to be applied is local, the up-
date to perform is M = MT. If the transformation
is global then the update to perform is M =T M

4.3.3 Server features

As we have seen in the previous section the client’s
role is to handle incoming directives from the
CORBA layer and generate a graphic output. The
server’s role is to handle inputs from the mod-
ules and generate directives for the clients. So
whereas clients are based half on CORBA, half on
a specific graphic API, the server is based only on
CORBA. Therefore it can be compiled and run on

4FIFO: First In First Out queuing model.

Benoist, Hewitt and John / CORBA visualization platform

3=
=

Transformation 4
Network thread Pointer

Transformation 3

Transformation 2

Graphic thread Pointer .
e el e | Transformation 1

Figure 8: Directive stacks
The figure above shows a directive stack for a given object. The
green arrows show the evolution direction of the pointers. The
network pointer drawn in blue points at the last received trans-
formation while the graphic pointer drawn in red points at the
next transformation to apply to the object.

any CORBA enabled platform with no need of any
extra library. So far servers have been successfully
installed and tested on IBM SP, SGI Origin2000
and Onyx2, Linux PC, Cray T3E.

As the server makes use of native multithread-
ing, it is beneficial to run it on a multi processor
machine with a decent pthread library. The typical
platform for a server would be an SGI Origin2000,
although it works fine on a single CPU Linux PC.

Basically the server is a router. It has knowledge
of all the connected clients, and of all the IORs of
those clients objects. Therefore calling a transla-
tion on a local server object for instance, will initi-
ate such a loop:

o while there is still a client to consider after this
one

— send a CORBA translation call to the cor-
responding object on that client

— consider the next client

Therefore all the modules point to the server, and
the server points to all the clients.

As for the raw features, the server in its current
state of development handles simple object creation
and transformation, namely cubes and teapots,
makes use of native multithreading, it is portable
and scalable. Thread numbers and all data struc-
tures are dynamic. You can connect as many clients
as you want. It is also evolutive. All the structure
is in place to handle more objects types, included
non trivial objects such as DXF files.

4.3.4 Modules Features

There is two main kinds of modules: interactive and
global modules. Interactive modules are modules

©The Eurographics Association 2001

dealing with user inputs for instance. They obey
a push model, which means that any request com-
ing from such a module will be executed at once.
Global modules are not yet implemented and are
discussed in the future work section.

The case studies in the next section shows how a
interactive module operates.

4.4 Case study

For the time being, the system only accepts interac-
tive modules. Those modules obey the push model,
the server having no control over them. An inter-
active module will execute faster than a module
obeying the pull model as the server does not have
to handle modules synchronization, reducing net-
working overheads. Each module is executed in
the same 3D environment, however they have no
knowledge of one another whatsoever. Each mod-
ule runs a self contained simulation in its own time
frame: the notion of time is not common to the
whole environment but proper to each module.

Interactive modules can be used when one mod-
ule is enough to describe a whole simulation. They
can also be used for comparison purposes. Suppose
you wrote the same piece of code with threads and
MPI and you want to compare them visually. As
they are not synchronized, the modules will run at
maximum speed, and you will be able to actually
see the difference in efficiency.

You can also test the impact of distributing a
module by running the same module simultane-
ously locally and remotely.

Two modules have been implemented to demon-
strate interactive module use. It is important to
say that those modules were C++ programs and
only a few extra lines of code were needed to turn
them into multithreaded corba modules.

The first module to be developed was a teapot
race. You specify a number of ‘contestants’ and
the module creates the corresponding number of
teapots, creating a thread to handle each. After-
ward, each thread advances randomly its teapot
and sleeps for a random amount of time then re-
peats the operation. There is no synchronisation
whatsoever between the threads in the module.
They can freely access the corba ressources, the
synchronization being dealt with at the server level.

The second module to be implemented was a ba-
sic multithread resolution of the n-body problem.

Benoist, Hewitt and John / CORBA visualization platform

Figure 9: This example shows how 64 lkg material points
- represented by small cubes- contained in a cubic meter get
distorted by the gravity field of a single passing 1000 tons cube.
The 1000 tons cube starts attracting the other cubes. But doing
so it draws them closer and closer to each other until a point
where it no longer applies the predominant force. Then, lkg
cubes will deviate each other quite violenty, resulting in a pretty

quick and wide spread.

Each body has got a thread working out speed ac-
celeration and position from the position and mass
of all the other bodies. This does require synchro-
nization on the module level, the point being that
any thread concurrency model will work just fine
with this system. Each thread computes data for
the next instant then waits for all the other threads
to be done. When this occurs, a main thread ad-
vances the clock and starts all the other threads
over again. An example of this module running is
shown on Figure 9.

5 Future Work

5.1 Objects Representation Im-

provements

For the time being, an object is represented by what
it can do, such as rotation or translation. This in-
terface is essentially one-way, from the module to
the object, and therefore does not allow the mod-
ule to read any information it may need to gen-
erate transformations. In other words, currently,
only the module creating the object knows about
its properties through local structures.

Therefore, the CORBA representation of an ob-
ject is to be refined in adding ‘properties’. Object
properties can be anything, from physical param-
eters such as mass, velocity, charge, to diverse pa-

©The Eurographics Association 2001

rameters such as name, type.

5.2 Module Management Improve-
ments

Numerous improvements need to be done in this
area.

Global modules support is to be written. Those
modules obey a pull model. A module manager in
the server will ‘ask’ each module to run a pass at
a given frequency, which can be considered as the
time differential dt.

Another issue to deal with is the problem of pri-
ority. When modules are running, you may wish
to have them respect a precedence constraint, for
example. Suppose for instance, you are simulat-
ing an object with variable mass, with magnetic
and gravitational fields applied on it, for instance
a magnetic levitation train. Such a problem can
be solved using three modules, each of them deal-
ing with Lorenz/Laplace forces, Newton forces, and
with mass changing. It is clear that you want the
action of gravity and magnetism to be simultane-
ous. You will also want the new mass computed af-
ter each gravity-magnetism pass. Therefore, mod-
ules will have to be endowed with a priority. In the
previous example, gravity and magnetism have the
same priority, whereas the mass changing module
has a higher priority.

To sum up, the module manager will have to re-
spect two rules. On one hand all modules with
equal priority are run concurrently and their out-
puts are mixed before refreshing the display device.
On the other hand, when a module with a priority
n is run, every module with a greater priority will
have already perform its pass for the current dt.

6 Conclusion

This paper demonstrates that a strong development
basis has been built for further work. The network
layer works across diverse platforms, from the Cray
to PCs through SGI supercomputers. Clients and
servers have been developed and tested successfully
with excellent frame rates, even with an extensive
network use through CORBA. Technically speak-
ing, a multi user heterogeneous CORBA environ-
ment has been set up successfully with limited mod-
ule support. However it is still under heavy devel-

Benoist, Hewitt and John / CORBA visualization platform

opment which prevents any significant testing on [14] COVISE Homepage,
heavy datasets. The next step will be to add more http://www.hlrs.de/structure/organisation/vis/covise/
features into the system, especially at the module

level, so that thorough testing can be conducted. [15] Numerical Algorithms Group (NAG) home-

page http://www.nag.co.uk

References

[1] SGI, Onyx 2 technical information,
http://www.sgi.com/onyz2/

[2] SGI,OpenGL Vizserver information,
http://www.sgi.com/software /vizserver/overview.html

[3] AIG homepage, http://aig.cs.man.ac.uk

[4] Maverick homepage,
http://aig.cs.man.ac.uk/systems/Maverik /index.html

[5] Deva Homepage,
http://aig.cs.man.ac.uk/systems/Deva/

[6] Pettifer S.R., West A.J, Crabtree A."Tales of
the Distributed Legible City", in proc. of 2nd
Annual I13Net Conference, Sienna, Italy Octo-
ber 1999.

[7] Pettifer S., West A., Crabtree A. & Murray
C., "Designing shared virtual environments for
social interaction", in proc. 3rd Workshop on
Human Computer Interaction, Kings Manor,
York University, 1999.

[8] Marsh J, Pettifer S. and West J., "A tech-
nique for maintaining continuity of perception
in networked virtual environments", in proc.
UKVRSIG’99, Salford, September 1999.

[9] Pettifer S.,"An operating environment for
large scale virtual reality", PhD Thesis, The
University of Manchester, 1999

[10] AVS homepage, http://www.avs.com

[11] International AVS Center,
http://www.iavsc.org

[12] ORBaccus website, CORBA resources,
http://www.ooc.com

[13] A. Schwerdtner and H. Heidrich, "Dresden 3D
Display: A Flat Autostereoscopic Display",
Electronic Imaging / Photonics West 1998,
San Jose, California, 1998

©The Eurographics Association 2001

