
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

Constructive Hypervolume Textures

B. Schmittα, A. Paskoβ, V. Adzhievγ and C. Schlickα

α LaBRI , University of Bordeaux, France.
β Faculty of Computer and Information Sciences, Hosei University, Japan.
γ National Centre for Computer Animation, Bournemouth University, UK.

Abstract
The concept of solid texturing is extended in two directions: constructive modeling of space partitions for tex-
turing and modeling of multidimensional textured objects called hypervolumes. A hypervolume is considered as
a point set with attributes of both physical (density, temperature, etc.) and photometric (color, transparency, dif-
fuse and specular reflections, etc.) nature. The point set geometry and attributes are modeled independently using
real-valued scalar functions of several variables. Each real-valued function defining geometry or an attribute is
evaluated in the given point by a procedure traversing a constructive tree structure with primitives in the leaves
and operations in the nodes of the tree. This approach provides a framework for modeling, texturing and visualiza-
tion of 3D solids, time- dependent and multidimensional objects in a completely uniform manner. We introduced
a special modeling language and implemented software tools supporting the proposed approach. The concept of
constructive hypervolume textures is independent of the geometry representation. We provide examples of textured
Frep and BRep objects as illustrations.

1. Introduction

A lot of research efforts in computer graphics have been
devoted to the improvement of the realism of synthetic im-
ages. It appeared that sometimes to apply only colors to vis-
ible surfaces is not enough. Thus, other shading parameters
were introduced, such as transparency, diffuse, specular, or
reflectance properties. This allows the graphics system user
to obtain more realistic images. Several existing methods of
texturing are dependent on the representation of the object
one wants to render. Some methods may be applied to poly-
gonized objects, others to implicit surfaces. Such methods
are briefly described in the second section of this paper. A
method, called solid texturing19, 21, allows for texturing ob-
jects, regardless of their nature. Furthermore, this method
provides realistic textures patterns, such as wood, marble or
water, and very convincing effects, such as fog or fire. The
concept is to define a color space partition where some shad-
ing properties are defined in each subset. Nevertheless, the
method suffers from a lack of flexibility in its application.
For instance, if an object is deformed, it may be very diffi-
cult to apply the same modification to the shading parame-
ters space.

In this paper, we introduce a new texturing technique ex-

tending the concept of solid texturing, where the space par-
tition appears naturally as a part of a constructive multidi-
mensional model of a point set with attributes called hyper-
volume. The general model discussed in Section 3 supports
modeling 3D, time-dependent and multidimensional point
sets with arbitrary attributes presented as scalar functions.
The models of geometry and attributes are similarly con-
structed using primitives and operations and represented by
individual construction trees. The space partition for textur-
ing is then defined by a procedure traversing corresponding
construction trees and assigning necessary attributes to the
given point in space.

In Section 4, we apply the discussed constructive hyper-
volume model to tackle the long-standing problem of textur-
ing static three-dimensional, time-dependent, and multidi-
mensional implicit surfaces and more general FRep solids18.
However, there are no obstacles in applying the proposed ap-
proach of constructing textures to parametric surfaces, BRep
and other solids, because representations of point sets and
its attributes can be completely independent. Section 5 de-
scribes briefly the extension of the HyperFun language14 for
supporting constructive hypervolume modeling, correspond-
ing software tools and obtained results.

c© The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org


B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

2. Existing Texturing Techniques

Several texturing techniques exist in computer graphics to
embellish geometric objects. In the following, we will use
the texture definition given in11, where the term texture is
defined as "anything that is evaluated at a point using only
information local to that point is a texture". Texturing is usu-
ally decomposed into two steps, known as the texture pattern
definition and the texture application, or mapping.

To create a pattern, one can either scan a picture (or even
hand-paint it) or use a function to generate it automatically.
Several methods exist to create such functions; some of them
are based on Fourier synthesis3, or on a fractal subdivision
13. In the book9, a complete description of different meth-
ods of making such functions can be found. Very realistic
textures can be obtained, because they take into account the
fact that many natural materials are non- homogenous, and
may have complex internal structures. This set of methods is
called Procedural Pattern Generation.

Once the pattern is defined, one has to think about how
to apply it to a surface. The texture mapping introduced in
6 was the first solution proposed allowing to apply some 2D
color patterns (digital images or procedural function) to a
parametric surface. Many other works in this area followed
and extended the application of a color to some other shad-
ing parameters3, or to the modification of a surface proper-
ties such as the normal vector perturbations, i.e., bump map-
ping 4. Various texture mapping techniques exist, like spher-
ical, cylindrical, or gaussian mapping, and can usually be
described as mapping<3→<2. Surfaces to be textured was
first restricted to parametric one, and then extended to im-
plicit surfaces20, 27, to skeleton-based models28, both with a
special parameterization process, or even a completely dif-
ferent approach, such as the one in22, for instance, where
the idea is to cover an arbitrary surface using overlapping
copies of a texture patch, and to define some local parame-
terizations ("lapped texture").

The previously exposed texture mapping is widely used,
but this solution encounters some difficulties due to the re-
quirement of parameterization of the considered surface.
Other texturing methods exist, like cellular texturing10,
which is applicable to any kind of surfaces, but is restricted
to a certain kind of texture.

An alternative is the concept of solid texturing initially
introduced in19, 21. The method defines procedurally a tex-
ture pattern in the object 3D-space, with the help of func-
tions called solid texture functions. Given a point(x,y,z) on
the surface of the object, the shading values are defined as
Ti(u,v,w), where the coordinate space is mapped to the shad-
ing space using a simple identity mapping. The main advan-
tage of this method is that it does not require anymore extra
complex steps for parameterization, and solves many prob-
lems existing with the previously exposed methods, such as
continuity of the texture between patches, for instance. An-
other valuable property of this method is that it can be ap-

plied to any kind of surfaces, and, in particular, to more arbi-
trarily complex ones. Indeed, solid texturing can be thought
as the definition of space where a procedural texture is de-
fined everywhere. But the way to define the space partition
is arbitrary, and does not rely on a solid framework. There
is another method to define a space partition with a more ro-
bust structure, but only applicable to implicit surfaces. Blob-
Tree31 is a hierarchical tree structure with implicit surface
primitives as leaves and operations (blending, warping, and
Booleans) as nodes. A special attribute node can be placed
anywhere in any non-terminal position, and values specified
by this node will be the default attributes for nodes lower in
the hierarchy. Another attribute node deeper in the down this
tree will override the more shallow one. Such a scheme sup-
poses a fixed discipline of assigning attributes to the entire
implicit surface rather than particular space points.

In this paper, we introduce a texturing process applica-
ble to surfaces, 3D solids, animated and other multidimen-
sional objects. In some sense, the proposed method extends
the solid texturing method, but in our case, we use a spe-
cial constructive tree for each shading attribute to define the
space partition.

3. Constructive Hypervolume Model

The simplest volume object can be thought as a 3D point set
with a single scalar attribute given in any of its points. Here,
the 3D point set can represent geometry of a real world ob-
ject. The scalar value can represent density, temperature or
any other physical characteristic. A more general hypervol-
ume object is a multidimensional point set with multiple at-
tributes given in any of its points.

In general, the hypervolume model can be expressed as :

(G,a1,a2, . . . ,ak) (1)

whereG is a multidimensional point set andai is an attribute.
In 3D case, a point set G can be defined using any exist-
ing representational schemes for solids: BRep (polygonal or
curvilinear boundary surface), CSG (Constructive Solid Ge-
ometry), spatial partitioning (voxels, octrees, etc.), genera-
tive models (parametric function representation), ray repre-
sentation, FRep (real- valued function representation), and
others23, 25, 24, 16, 18. While some of the traditional represen-
tations such as CSG or BRep have multidimensional exten-
sions30, 12, the generative model25 and FRep18 have been
initially formulated as multidimensional models. Attributes
ai can be represented by scalar, vector, or tensor fields de-
fined on the multidimensional point setG. For example, one
needs to introduce a 4D point set and at least three scalar
values to model a textured time- dependent object.

This model is general enough to cover objects considered
in such different research areas as solid modeling, heteroge-
neous objects modeling, and volume graphics. In traditional
solid modeling, an object is supposed to be homogeneous

c© The Eurographics Association 2001.



B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

inside, for example, with the fixed density. The proposed
model covers such solids, if a constant scalar field is applied.
To model heterogeneous solids and other 3D objects with at-
tributes addressed in the general model of15, one has to de-
fine different properties as scalar fields on the level of primi-
tives and introduce the rules of combining these scalar fields
when doing set-theoretic, blending and other operations on
such primitives. Usually, quite simple point sets such as rect-
angular blocks are processed in volume graphics. Intensity
and other visual characteristics are defined by scalar values
in the nodes of the discrete grid or in scattered points inside
the point set. A point subset with the scalar value equal or
greater a given threshold is visualized.

In Constructive Volume Geometry (CVG)8, a spatial ob-
ject is defined as a tuple of scalar fields defined in 3D space.
Special attention is paid to the first field in the tuple, which
is an opacity field specifying the visibility of every point in
space. In a conceptual distinction from it, the important fea-
ture of our hypervolume model is that object’s geometry and
its visual and physical characteristics are represented inde-
pendently. This can easily be found in reality where, for ex-
ample, the shape of the object does not necessarily predefine
its color and vice versa. Such purely optical characteristics as
transparency or opacity are usually neither dependent on the
geometric shape nor define it as was suggested in8. There
are scalar fields directly connected to the object’s geome-
try. The density field and other scalar fields proportional to
it determine the object’s boundary and its internal structure.
The other possible source of confusing the shape model with
the model of some property is the fact that implicit surface
models2 generate scalar fields. Such scalar field defines the
object’s boundary (e.g., as a zero value isosurface) but in
general does not have optical or other physical meaning and
cannot be used to represent properties. Moreover, this scalar
field can be scaled or undergo some non-linear transforma-
tions without changing the object’s geometry, which is not
acceptable in the case of the physical property model.

A survey of modeling techniques for point sets with at-
tributes and details of the hypervolume model with the out-
line of the formal framework can be found in17. Here, we
use a specific implementation of the presented hypervolume
model:

(F,s1,s2, . . . ,sk) (2)

whereF(X) and si(X) are real-valued scalar functions of
point coordinatesX in n-dimensional space. We use here
FRep18 to represent point sets. Therefore,F is at leastC0
continuous function positive inside the point set, negative
outside, and has zero value on its boundary. Functionssi(X)
represent attributes and are not necessarily continuous.

The main distinctive feature of FRep is that the real- val-
ued functionF defining the point set is evaluated in the given
point by a procedure traversing a tree structure with primi-
tives in the leaves and operations in the nodes of the tree.

This tree is similar to one used in CSG and is created during
the construction process of the object. In contrast to CSG,
the sets of primitives and operations are not fixed and can
easily be extended without redesigning the modeling sys-
tem. Solids bounded by algebraic surfaces, skeleton-based
implicit surfaces, and convolution surfaces, as well as pro-
cedural objects (such as solid noise), swept objects, and vol-
umetric (voxel) objects can be used as primitives (leaves of
the construction tree). Many operations such as set-theoretic,
blending, non-linear deformations, metamorphosis, sweep-
ing and others have been formulated for this representation
in such a manner that they again yield continuous real-valued
functions as their output18, 26.

The attribute functionssi can be defined in a similar way.
Each attribute has an associated tree with primitives and op-
erations that can be borrowed from FRep and extended by
attribute specific ones. The tree structure reflects the con-
struction logic of the attribute definition. The functionsi is
evaluated in the given point by a tree traversing procedure.
Thus, symmetry in treating the point set and its attributes
can be achieved in a sense of the constructive nature of the
definition and internal representation.

In this paper, we apply the discussed constructive hyper-
volume model to tackle the long-standing problem of tex-
turing static and time-dependent implicit surfaces and FRep
solids. Here,F(X) represents the object geometry andsi(X)
may represent any attribute suitable for texturing such as
color, opacity, diffuse and specular reflections, and others.
However, there are no obstacles in applying the proposed ap-
proach of constructing textures to parametric surfaces, BRep
and other solids, because representations of point sets and its
attributes can be completely independent.

4. Constructive Hypervolume Texturing

In this section, on the basis of the introduced general model
we set the framework for the constructive hypervolume tex-
turing. Using the solid texturing defined in19, 21, we propose
first to build a constructive tree in order to define a partition
of the space where the object to be textured is placed. Most
of the following examples are concerned with colors, but the
extension to other shading parameters such as ambient re-
flection, diffuse and specular reflectance is straightforward.
Figures illustrate application of this concept to all of these
shading parameters.

4.1. Constructive Solid Texturing

As we mentioned earlier, we consider hypervolumes, de-
fined as(F,s1,s2, . . . ,sk). In this subsection, we will deal
only with 3D objects, particularly implicit surfaces and FRep
solids. In 3D space, our approach can be considered as ex-
tension of the solid textures concept. When one applies solid
texturing to an object, he/she has to create a space partition

c© The Eurographics Association 2001.



B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

Figure 1: Constructive solid texturing: From left to right : Original model; original static 3D shape; constructive 3D solid
representing the space partitioning for texturing; textured shape.

of the object space, where each subset contains different ma-
terial property. Then, the shading parameters are computed
for each point in space, where its position determines which
subset it belongs to, and eventually the corresponding at-
tributes. One difficulty is how to define such subsets. Ac-
tually, a subset can be thought as a solid object and has to
provide for each point an answer to the question: "Is it in-
side or outside the subset?" In the affirmative case, the cor-
responding solid texture function is applied. It is well known
that the best way for point membership classification against
a 3D solid is to apply a Constructive Solid Geometry (CSG)
tree. Nevertheless, CSG suffers from a lack of variety due
to the restricted set of available primitives and operations. It
means, if one wants to decompose the coordinate space into
complex subsets, it may be too difficult or too time consum-
ing, or even impossible. A much more powerful solution is
to use FRep as it will be shown in the following.

Complex space partitioning can be obtained using a con-
structive FRep tree, as it is shown in Fig. 1 and in Fig. 2.
The initial object in Fig. 1(left) is an FRep object (a model
of a real sculpture "Naked" by Russian artist I. Seleznev)
mainly composed of unions between convolution surfaces.
The space partition has been defined with union of three
swept spirals (Fig. 1(second picture)). Different shading pa-
rameters are assigned to each spiral. Then, when the tree
traversing procedures are applied to the construction trees of
the initial object and space partition, we obtain both defining
function value for the sculpture and shading values. An an-
other non-trivial space partition is shown in Fig. 2. A simple
block is considered as the object to be textured. The space
partition has been defined with three ellipsoids and default
RGB color values outside of them, corresponding to a gradi-
ent of the red and green components along the x and y axes.
The ellipsoids have been deformed using a non-linear space
mapping. The bottom one contains a noise red pattern, the
middle one - a checker pattern, and the top one - a sinusoidal
blue pattern. Note that for the last one, the blue lines fol-
low the deformation of the ellipsoid. To obtain such space
partition and texturing with traditional methods can be quite
difficult and really time consuming. Since the space parti-
tion has been defined with a constructive tree, we call this
method constructive solid texturing.

Figure 2: Non trivial space partitioning. Three ellipsoids
deformed by non-linear space mapping. Notice the blue pat-
tern, a simple sinusoid, follows the deformation.

4.2. Constructive Texturing Tree

This sub-section provides description of some particularities
of the constructive texture tree. After a general overview, we
will make some remarks on the meaning of set-theoretic and
other operations illustrated by the union between two tex-
tured objects.

The constructive solid texturing tree has somewhat differ-
ent meaning if one compares it to a construction FRep tree.
In both cases, they are equivalent to a real- valued function
obtained by a tree traversing procedure. In the case of Frep
solid modeling, this function defines point membership and
has to be continuous. The constructive solid texturing tree
is used in a different way. If, for the given point, the defin-
ing function of the space partitioning solid is positive, i.e.,
the point belongs to this solid, then, one can evaluate an at-
tribute function by applying the tree traversing procedure to
the texturing attributes in the tree. Thus, we add the operator
"if" as a node in the constructive texture tree. Furthermore,
the continuity requirement for the attribute functionssi(X) is
not necessary in the case of texturing, and "jumps" between
colors are allowed, as one can naturally see in a checker-
board pattern, for instance. When one builds a constructive
tree to model a geometric solid, the use of set-theoretic and
other operations such as blending is required, but the visual
result of such operations should be clearly defined. Let us

c© The Eurographics Association 2001.



B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

Figure 3: Examples of different union operations. Top left
shows disconnected blocks. The first union operation (top-
right) gives the priority to one pattern, the second (bottom-
left) shows min/max operations on the color components and
(bottom-right) some user defined operation.

consider a very simple solid, defined as the union between
two blocks. The corresponding tree will be composed of a
union operation between two block primitives. The resulting
object is easy to imagine. But some problems arise if one
assigns different colors or texture patterns to each primitive.
For instance, if one of the blocks is textured with a red and
green brick pattern, and the other pattern is made of concen-
tric circles with two different browns, the color of the union
can be set in many different ways.

Fig. 3 shows some results of such union. A single def-
inition of the union is used for the geometric FRep model
18, but several definitions are possible for the constructive
texture tree. In Fig. 3, different operations were applied as
examples to illustrate the variety of available operations. In
this example, the color attribute was composed of an RGB
vector. It clearly appears that the multitude of different possi-
bilities becomes infinite if one considers another color space,
such as HLS, XYZ, La*b* and others. To change the color
space is meaningful if one considers, for instance, a blend-
ing union, which requires attributes interpolation along the
added material. Even if one can deduce a formula to inter-
polate the color, it clearly appears that the RGB color space
does not suit this purpose. If one mixes two bright colors
with an equal brightness, the most natural result would be
also a bright color. This result is very difficult to achieve us-
ing the classical RGB model, and the solution is to change
the color model to HLS, for example. The interpolation func-
tion can then be applied only to the luminosity component.

These simple examples lead to the conclusion that a tool,
which uses constructive solid texturing, has to allow enough
freedom in order to be able to define all the attribute func-
tions easily. The HyperFun language answers this need, as it
is exposed in the next Section.

4.3. Constructive Time-dependent Texturing

There is a long-standing interest in time-dependent tex-
turing concerned, in particular, with a concept of "shade
tree" model7, and later used in some scene- graph based
rendering environment29. The extension to a time depen-

dent texture of our method is straightforward, and includes
this feature. When one creates a 4D model, i.e., an ani-
mation for instance, the functions of a hypervolume model
(F,s1,s2, . . . ,sk) can be expressed asF(X) andsi(X) with
X = (x,y,z, t). The geometric and attribute trees are defined
using the FRep approach. The similitude in the way these
trees are created is the framework for many possible exten-
sions. It implies that each transformation that occurs in the
first tree can also occur and is supported in the attributes tree.
For instance, consider the cube with a 3D color grid pattern
of Fig. 4(top-left), and apply a twist to it. The problem with
the definition of solid textures is that the space partitioning is
done during a separate step than the modeling one, and does
not support such transformation. The straight application of
solid textures leads to the result shown in Fig. 4(top-right),
where one can see the twisted cube, and a "transformation
independent" grid pattern. In the real world, if one twists the
grid patterned cube, he/she expects a result similar shown in
Fig. 4(bottom-left), where the pattern follows the twist dur-
ing the time-dependent transformation. Fig. 4(bottom-right)
shows another frame of the animation, where another trans-
formation, namely tapering, is applied. The angle of the twist
is increasing in time until the given limit is reached, then ta-
pering is applied, where the scale at the base of the block
is time dependent. While this operation is applied, the grid
texture and the space partition change. As it can be seen in
Fig. 4(bottom-right), some of the grid stripes become yellow
according to a sinusoid function with a time dependant pe-

Figure 4: Time dependant texture. The original patterned
cube (top-left). A twist applied onto the geometrical ob-
ject, and a solid texture (top-right). (bottom-left) The same
twist with a constructive solid texture. (bottom-right) Time-
dependent twisting, tapering and texture pattern.

c© The Eurographics Association 2001.



B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

riodicity. The main advantage of constructive solid texturing
is that the space partition also changes in time. As it can be
seen in Fig. 4(bottom-right), two blocks were added only to
the constructive solid texture tree at the corners of the orig-
inal block, one with a blue color pattern, and the other with
dark yellow. Transformations of the FRep object geometry
also occur in the constructive solid texture tree, and the vi-
sual result is the transformation of all texture patterns.

4.4. Constructive texturing in multiple dimensions

Multidimensional models are conventional in mathematics,
natural sciences and data mining. Here, we illustrate appli-
cation of our approach to scientific visualization. As an ex-
ample, we propose to construct a visual representation of
a function of six variablesf = f (x1,x2,x3,x4,x5,x6). This
function was first introduced to illustrate unstable states in
plasma physics. Assigning zero value to the function defines
a star-shaped isosurface as an elementary object in the cells
of the animated spreadsheet as illustrated in Fig. 5. The ele-
mentary shape illustrates function dependence on three vari-
ables x[1], x[2], and x[3]. Changes of isosurfaces along rows
and columns of the spreadsheet illustrate function depen-
dence on x[5] and x[6]. Changes of the entire spreadsheet in
time show how the function depends on x[4]. Formally, the
following types are assigned to the geometric coordinates:

x[1]→ x x[4]→ t
x[2]→ y x[5]→ u
x[3]→ z x[6]→ v

(3)

where t is a dynamic variable corresponding to physical
time, u andv are spreadsheet coordinates. Three time steps
of the animated spreadsheet are shown in Fig. 6. We used
this function as a basis to show that the way the constructive
solid texturing method was defined is independent of the di-
mension of the model. Fig. 6 shows coloring of the shapes
for three different time steps. The red component is a func-
tion of x[1], x[4] and x[5], the green depends on x[6]. The
space partition has been done with the use of a union be-
tween the star shape and a torus. The radius of the torus is
time-dependent, and it grows in time. A transparency value
has been assigned to it. The result shows that the use of a
multidimensional object for constructive texturing tree be-
comes meaningful, and visualization of the dependence be-
tween variables becomes easier.

5. Implementation

5.1. Language for Hypervolume Modeling

HyperFun1 has been developed as a high-level specialized
language for parameterized description of functionally based
multidimensional geometric models. While being minimal-
ist and suitable for easy mastering , it supports all main
notions of FRep. The version of the language that is open
now 14 allows for only defining a geometric shape. Here, we

?

t

¡¡ ¡¡

¡¡

-

6

¡¡ª

x

y

z

-

6
u

v

Next Cell (Column)

Next Cell

(Row)

Next Spreadsheet

Figure 5: Animated spreadsheet concept: a spreadsheet has
(u,v) coordinates. Each(u,v) pair corresponds to a cell con-
taining a 3D object with(x,y,z) coordinates. Spreadsheet
changes in time with thet coordinate.

briefly present a new version that makes it possible to deal
with the constructive hypervolume model of any degree of
generality.

A model in the HyperFun language can contain the speci-
fication of several hypervolume objects parameterized by in-
put arrays of point coordinate{xi} and numerical parameters
{ai} whose values are to be passed from outside the object.
Each object is defined by a function describing its geometry,
where the function’s name coincides with the object’s name.

The extension we propose, (and which has been imple-
mented), is the adjunction of a set of scalar functions{si}
representing attributes. The use of a such array is not a re-
quirement, and may be used only if necessary. In this paper,
we used this array to define the shading parameters of the
considered object. The corresponding scalar functions were
defined inside the HyperFun model, at the same time as the
"geometric function". An another possible way is thesi at-
tributes can be passed from the outside within the object’s
program to be (if necessary) modified. The separation be-
tween the "geometric" function and the "scalar" functions
increase the flexibility while dealing with hypervolume ob-
jects.

Within a HyperFun program, the object’s attributessi are
considered as abstract real-valued functions. There can obvi-
ously be models that could greatly benefit from such a tech-
nology that actually allows us to introduce "generic" objects
with subsequent generation of their different instances. For
example, the same attribute can be treated (without change
of the program in HyperFun!) as color, or as transparency,
or as density, or as temperature, depending on circumstances

c© The Eurographics Association 2001.



B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

Figure 6: Animated spreadsheet of a constructive hyper-
volume 6D point set with 13 photometric attributes : three
frames of animation for three time stepst = 0,1,2.

and available application software features. However, if the
user considers it appropriate, it is possible to fix the at-
tribute’s meaning as early as on the modeling stage. If it
is the case (as in this paper’s examples), the library of spe-
cialised functions can be useful.

In principle, the language is self-contained and allows
users to build objects from the scratch, without using any

pre-defined primitives. However, its expressive power is
greatly increased by availability of the system "FRep li-
brary" that is easily extendable and can be adapted to a
particular application domain and can even be customized
for needs of a particular user. The current FRep library ver-
sion in general use contains the most common primitives and
transformations of a quite broad spectrum.

Taking into account that texturing often requires non- triv-
ial mathematical skills and specialist knowledge (e.g., in
color theory), we have been developing the library functions
that can facilitate creating constructive hypervolume textur-
ing models. For examples, a function which is able to return
a pseudo-random value, or functions who generate automat-
ically a space partition (similar to a checker-board pattern
for instance), and also functions defining operations such as
set-theoretic, blending and others.

5.2. Examples

As we mentioned before, the proposed approach is applica-
ble to different geometric models. Fig. 7 illustrates the ap-
plication, respectively from left to right,of the constructive
solid texturing to an Frep object, a polygonized Frep object,
and a standard BRep object (the Stanford Bunny). The con-
structive solid texturing tree for the object of Fig. 11a was
built together with the constructive FRep tree and used the
same subtrees in some parts. The original constructive FRep
tree helped to define the space partition for the mesh color-
ing in Fig. 7(middle). The most difficult task was to build
a constructive solid texturing tree for a BRep model in Fig.
7(right). Some special interactive tools are needed to support
visualization of a BRep model overlapping with the visual
representation of the constructive tree.

6. Conclusion

In this paper, we used a general hypervolume model as a
framework. A hypervolume is considered as a multidimen-
sional point set with multiple photometric attributes (color,
transparency, diffuse and specular reflections, etc.) and other
physical attributes (density, temperature, etc.). The point set
geometry and attributes are modeled independently using
real-valued scalar functions of several variables. Each real-
valued function defining geometry or an attribute is evalu-
ated in the given point by a procedure traversing a construc-
tive tree structure with primitives in the leaves and opera-
tions in the nodes of the tree. By applying this general model
to texturing, we extended the well-known concept of solid
texturing in two directions: constructive modeling of space
partitions for texturing and modeling of multidimensional
textured objects. We discussed some operations specific for
constructive solid texturing. The proposed approach allows
for modeling, texturing and visualization of 3D solids, time-
dependent and multidimensional objects in a completely uni-
form manner. We introduced an extension of special mod-
eling language called HyperFun and implemented software

c© The Eurographics Association 2001.



B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

Figure 7: Application of the constructive solid texturing to (from left to right) an FRep object, a polygonized Frep object, and
a BRep object (the Stanford Bunny).

tools supporting the proposed approach. The tools will soon
be available for downloading from HyperFun Project Home
Page14.

The concept of constructive hypervolume textures is inde-
pendent of the geometry representation. We provide exam-
ples of textured Frep and BRep objects as illustrations. The
hypervolume model can also accommodate 3D and higher
dimensional voxel arrays to represent geometry or attributes
of different (not only photometric!) nature using appropri-
ate interpolation procedures. Incorporating and experiments
with voxel arrays, applications of volume rendering as well
as multiple-material rapid prototyping of modelled objects
will be the subjects of our future research.

References

1. V. Adzhiev, R. Cartwright, E. Fausett, A. Ossipov, A.
Pasko, V. Savchenko, HyperFun project: a framework
for collaborative multidimensional FRep modeling ,
Implicit Surfaces ’99, Eurographics/ACM SIGGRAPH
Workshop, Université de Bordeaux 1, France, Septem-
ber 13-15 1999), J. Hughes and C. Schlick (Eds.), pp.
59-69.

2. J. Bloomenthal et al., Introduction to Implicit Surfaces,
Morgan Kaufmann, 1997.

3. J.F. Blinn, M.E. Newell. Texture and reflection in com-
puter generated images.Commun. ACM19:(10)542-
547, October 1976.

4. J.F. Blinn. Simulation of wrinkled surfaces.Computer
Graphics. SIGGRAPH’82 Proc., 16:21-29, 1982.

5. J. Blinn, A generalization of algebraic surface drawing,
ACM Transactions on Graphics, 1:(3)135-256, 1982.

6. E.E. Catmull. A subdivision algorithm for Computer
Display of Curved Surfaces.PhD thesis, Department of
Computer Science, University of Utah, December 1974.

7. R.L. Cook. Shade trees. Computer Graphics.
18:(3)223-231, 1984.

8. M. Chen, J. Tucker, Constructive Volume Geometry,
Computer Graphics Forum, 19:(4):281-293.

9. D.E. Ebert et al. Texturing and Modeling : A practi-
cal approach. ISBN 0-12-228760-6.A.P. Professional,
USA, 1996.

10. K. W. Fleischer, D.H. Laidlaw, B.L. Currin, A.H.
Barr. Cellular Texture Generation.Computer Graph-
ics Proc., Annual Conference Series, ACM SIGGRAPH.
ACM Press, pp. 239-248, 1995.

11. A.S. Glassner. Principles of Digital Image Synthesis.
ISBN 1-55860-276-3Morgan Kauffmann Publishers,
USA, 1995.

12. A. Gomes, A. Middleditch, C. Reade, A mathematical
model for boundary representations of n-dimensional
geometric objects,Fifth Symposium on Solid Model-
ing and Applications, W. Bronsvoort and D. Anderson
(Eds.), ACM Press, pp. 270-277, 1999.

13. S. Haruyama, B.A. Barsky. Using stochastic modeling
for texture generation.IEEE Computer Graphics and
Applications, 4:(3)7-19, March 1984.

14. HyperFun Project: Language and Software for FRep
Modeling, URL:http://www.hyperfun.org

15. V. Kumar, D. Burns, D. Dutta, C. Hoffmann, A frame-
work for object modeling, Computer-Aided Design,
31(9):541-556, 1999.

16. J.P. Menon, R. Marisa, J. Zagajac, More powerful solid
modeling through ray representations,IEEE Computer
Graphics and Applications, 14(3):22-35, 1994.

17. Pasko A., Adzhiev V., Schmitt B., Constructive Hy-
pervolume Modelling, Technical Report TR-NCCA-
2001-01, National Centre for Computer Animation,
Bournemouth University, UK, 2001, , ISBN 1-85899-
123-4..

18. A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, Func-
tion representation in geometric modeling: concepts,

c© The Eurographics Association 2001.



B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

implementation and applications,The Visual Com-
puter, 11(8):429-446, 1995.

19. D.R. Peachey. Solid Texturing of Complex Surfaces.
SIGGRAPH Proc.’85, 19(3):279-286, USA, 1985.

20. H. Pedersen. Decorating Implicit Surfaces,Proc.
of SIGGRAPH 95, Computer Graphics Proc., Annual
Conference Series, pp. 291-300.

21. K. Perlin. An Image Synthesizer.Computer Graphics,
SIGGRAPH Proc.’85, 19(3):287-296, USA, 1985.

22. E. Praun, A. Finkelstein, H. Hoppe. Lapped Textures.
SIGGRAPH 2000, pp465-470, USA.

23. A. Requicha, Representations for rigid solids: the-
ory, methods, and systems,ACM Computing Surveys,
12(4):437-464, 1980.

24. J. Rossignac, Through the cracks of the solid model-
ing milestone, From Geometric Modeling to Advanced
Visual Communications,S.Coquillart, W. Strasser, P.
Stucki (Eds.), Springer-Verlag, 1994, pp. 1-75.

25. J. Snyder, Generative Modeling for Computer Graphics
and CAD,Academic Press, 1992.

26. V. Savchenko, A. Pasko, Transformation of function-
ally defined shapes by extended space mappings,The
Visual Computer, 14(5/6):257-270, 1998.

27. J.-P. Smets-Solanes. Vector Field Based Texture Map-
ping of animated Implicit Objects,Computer Graphics
Forum, 15(3):289-300, 19960.

28. M. Tigges, B. Wyvill, A Field Interpolated Tex-
ture Mapping Algorithm for Skeletal Implicit Surfaces,
Computer Graphics International ’99, IEEE Computer
Society, 1999, pp. 25-33.

29. Steve Uptill, "The Renderman Companion",Addison-
Wesley, 1990.

30. K. Wise, A. Bowyer, Using CSG models in many di-
mensions to map where things can and cannot go, CSG
96 Set-theoretic Solid Modelling:Techniques and Ap-
plications, Information Geometers, UK, 1996, pp. 359-
376.

31. B. Wyvill and E. Galin and A. Guy, Extending the CSG
tree. Warping, blending and Boolean operations in an
implicit surface modeling system,Computer Graphics
Forum, 18(2):149-158, 1999.

c© The Eurographics Association 2001.



B. Schmitt, A. Pasko, V. Adzhiev and C. Schlick / Constructive Hypervolume Textures

c© The Eurographics Association 2001.


