
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

Towards Rapid Reconstruction for Animated Ray Tracing

Jonas Lext
�

and Tomas Akenine-Möller

Department of Computer Engineering, Chalmers University of Technology, Sweden

Abstract
This article discusses methods for avoiding that the reconstruction of the acceleration data structure becomes a
bottleneck in animated or interactive ray tracing. Situations in which this could occur include trying to increase the
frame rate by parallelization of the ray tracing phase or by techniques such as frameless rendering. Specifically,
we explore a method for avoiding unnecessary reconstruction in rigid-body animated scenes. The method builds
a hierarchy of oriented bounding boxes containing recursive grids by applying these to the rigid bodies found in
different transforms in the scene graph. The oriented bounding boxes containing gridded objects are then kept
intact during the complete animation. Before performing intersection tests, rays are transformed to the local
coordinate system of an oriented bounding box. Using this technique, the reconstruction of the data structure can
be performed an order of magnitude faster as compared to using a recursive grid that has to be rebuilt completely
between each frame.

1. Introduction

One of the long standing goals in computer graphics is to
generate photo-realistic synthetic images. Global illumina-
tion algorithms, such as photon mapping1, are the current
state-of-the-art for this. At the other end of the spectrum is
the goal of rendering images of three dimensional scenes in
real-time, that is, faster than, say, 20 frames per second. The
best way to do this currently is to use dedicated graphics
hardware that rapidly rasterizes textured triangle primitives,
and uses the Z-buffer to resolve occlusion.

In a perfect world, both goals should be met simultane-
ously. Meanwhile, there are two ways worth exploring:

� Use graphics hardware to “fake” or approximate global
illumination effects� Use simplified global illumination algorithms in order to
reach higher frame rates

This paper focuses on the latter. As ray tracing is the founda-
tion for the majority of global illumination algorithms, and
due of the birth of ray tracing at interactive frame rates2 � 3 � 4 � 5,
our main concern here is to deal with ray tracing at as rapid
rates as is possible in an environment where multiple objects,
including the camera, are animated. This would extend the
use of ray tracing.

�
Email: lext@ce.chalmers.se

As one starts to explore the realm of animated interac-
tive ray tracing, lots of questions emerge that need to be an-
swered. Many of these questions arise due to the fact that
the ray tracing algorithm has to be parallelized in order to
achieve good performance (see Stone’s article for a treat-
ment of some of these questions5). Another way to achieve
higher frame rates, but worse image quality, is to use frame-
less rendering6. In such a framework, only a subset of the
pixels, randomly distributed in the image, is updated each
frame. Since both parallelism and frameless rendering re-
duces the amount of ray tracing work that has to be done
per CPU per frame, the bottleneck may move from the ray
tracing part to other parts of the algorithm that are not easily
parallelizable. This can be seen in figure 1. Here, the x-axis
shows the number of times the total number of pixels in an
image is divided by. The result of this is the number of pixels
ray traced by frameless rendering each frame. The horizon-
tal curve is the time it takes to reconstruct the acceleration
data structures (which are needed to get good performance
in the first place for ray tracing) for the animated objects in
the scene. The other curve shows the actual time per frame
that is spent ray tracing.

Also important is that often the complexity of reconstruct-
ing the acceleration data structures is worse than the actual
ray tracing. Many methods have linear complexity O � n � ,
while some methods has O � n logn � complexity7 � 8. In con-

c
�

The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org


Lext and Akenine-Möller / Towards Rapid Reconstruction for Animated Ray Tracing

0

0.5

1

1.5

2

1 2 4 8 16 32

T
im

e 
(s

)

Mean ray tracing time
Mean reconstruction time

Figure 1: The near horizontal curve is the reconstruction
time, while the other curve is the ray tracing time as the
number of pixels ray traced by frameless rendering is de-
creased, that is, if x � 5, that implies that only 100

�
5 � 20%

of the pixels are ray traced each frame.

trast, the ray tracing phase often has O � logn � complexity per
pixel. Therefore, it should be obvious that the acceleration
data structure reconstruction phase could become a serious
bottleneck when using a multiprocessor computer, frameless
rendering, and when there is a reasonable amount of ani-
mated objects in the scene.

In this paper, we therefore focus on the reconstruction
problem, i.e., on how to rebuild the acceleration data struc-
tures as rapidly as possible. More specifically, we use a hi-
erarchy of oriented bounding boxes that each contain a local
acceleration data structure, which in our case is a recursive
grid. The benefit from this is that for rigid-body animated
scenes, only the transform of the box need to be updated,
thus avoiding updating the local acceleration data structure
in the box. We show that this makes the reconstruction phase
an order of magnitude faster than previous methods. To mea-
sure performance, we use BART9, which is a benchmark for
animated ray tracing, and a Linux PC with an AMD Athlon
1.1 GHz processor. We compare our approach with a recur-
sive grid10.

The rest of this paper is organized as follows. Next, we
review some previous work, which is followed by section 3
where we discuss and present algorithms for updating the ac-
celeration data structures. In section 4 implementation notes
are given, followed by a presentation of some early results.
Finally, we offer some conclusions and directions to future
work.

2. Related Work

Here, we will briefly review the relevant previous work in the
area of animated ray tracing, which at the point of writing is
quite close to non-existing.

Muuss2 and Parker et al.3 have shown that it is possi-
ble to ray trace reasonably complex scenes at interactive
rates using multiprocessors. However, they focused mostly
on scenes where only the viewer was animated and not the
objects. Parker et al.3 could render few ( � 10) dynamic ob-
jects by placing them outside the acceleration data structure,
and testing these individually. They also use the concept of
frameless rendering6 in order to get higher frame rate at the
cost of image quality.

Reinhard et al.4 has presented an algorithm which we con-
sider the first attempt at ray tracing dynamic scenes. Their
data structure is essentially an octree with O � 1 � insertion
and deletion. The data structure is repeated in order to fill
space. This means that as an object leaves the data structure
on the right side, it is inserted on the left side. This implies
that the entire data structure need not be rebuilt due to such
movements.

Adelson and Hodges11 use image-based reprojection tech-
niques in order to exploit temporal coherency for faster ray
tracing. Using this technique, up to 92% of the rendering
time could be saved. However, all objects were required to
be convex, and the objects could not be animated (only the
viewer could), and this limits its use.

Glassner12 uses a 4D bounding volume hierarchy to speed
up ray tracing of animated scenes. The fourth dimension is
time, and he thus employs a space-time hierarchy to exploit
temporal coherency.

McNeill et al.13 use lazy evaluation techniques to avoid
building parts of the acceleration data structure that is not
accessed. The upper levels of an octree is built as a prepro-
cess, and the lower levels are built on demand as they are
needed. They claim that this could also be used in a dynamic
environment, but only use static environments for testing.

Oriented bounding boxes (OBBs) has been used in colli-
sion detection to speed up these queries, and in that work,
OBBs have been suggested as an appropriate bounding vol-
ume for ray tracing as well14. Cazals et al.15 have used OBBs
in a ray tracing, but not in an animated framework, and no
actual results were presented.

3. Update Strategies for Acceleration Data Structures

In this paper, we focus on two different approaches for
achieving faster reconstruction of the acceleration data struc-
ture. These are based on separating dynamic and static scene
data and lazy-evaluation techniques, respectively, and are
discussed in the following two subsections. Both methods
imply introducing a new phase between each frame, the up-
date phase, in which animated objects are moved and the
acceleration data structure is reconstructed accordingly. If
possible, only minor modifications to the part of the struc-
ture where objects move should be performed. By leaving
the rest of the structure intact, a lot of time can be saved.
The animation process is illustrated in figure 2 below.

c
�

The Eurographics Association 2001.



Lext and Akenine-Möller / Towards Rapid Reconstruction for Animated Ray Tracing

Rendering
      &
 Shading

Preprocessing
data structures etc.

Animate objects,
update acceleration

Figure 2: Phases in the animation process.

3.1. Separation of Dynamic and Static Scene Data

The traditional approach when rendering static images using
ray tracing is to tear down the scene graph, by transforming
the primitives it contains to the root system, and construct a
new hierarchy from scratch that is better suited for ray trac-
ing. In an animation, this will be required in each frame, and
the update phase introduced previously will be identical to
the preprocessing phase. This costly approach might be used
because it is not known exactly which part of the scene that
has changed and we must therefore reconstruct the accelera-
tion data structure completely.

However, if the scene graph has been modeled using dy-
namic transforms, the moving part of the scene can easily
be identified and thus separated from the static portion of
the scene data. Furthermore, if the objects within a dynamic
transform show spatial locality, they are directly suitable for
enclosing in a single bounding volume or a more complex
structure, e.g., a bounding volume hierarchy or a recursive
grid. As it is known that the objects within a single dynamic
transform do not move relative each other, we can build the
structure once and for all in the preprocessing phase. The
amount of work in the update phase is, at best, then reduced
to simply updating the transform matrices associated with
each node in the scene graph. However, as the scene objects
remain at the different nodes in the scene graph, some ex-
tra work must be spent in the ray tracing phase transforming
rays between the different nodes before performing intersec-
tion tests.

Different authors have argued that the scene graph which
results from modeling should not be particularly good for
constructing an acceleration data structure8 � 16. However, we
should be able to expect reasonable ray tracing performance
using the proposed approach if the scene graph is con-
structed with some care or if the right conditions are ful-
filled. For example, in truly interactive environments all ob-
jects that a user might pick up or move will be placed in a dy-
namic transform. Each dynamic transform will therefore by
default be associated with a single solid object in which the
triangles show good spatial locality. Constructing the scene
graph with the intent of using it to guide in the construction
of the acceleration data structure can be compared to game
programming where it should be very common to strongly
take advantage of the scene characteristics in, e.g., collision
detection for achieving greater performance. However, we
still view the proposed approach as fairly general in its ap-
plicability.

In section 4, we describe our specific implementation of
these general ideas. We use OBBs to encapsulate the objects
within a dynamic transform and also apply a recursive grid
within each OBB to speed up the ray tracing phase.

3.2. Lazy Evaluation Techniques

If the scene graph cannot be used with good result as sug-
gested in the previous section, we could resort to lazy eval-
uation techniques. The approach here is to minimize the
amount of work done in the update phase by only perform-
ing changes in those part of the data structure that are visited
by rays during the generation of a frame. This will typically
mean a tighter integration of the ray tracing phase and the
update phase as the function that updates, e.g., a voxel is
called when a ray enters that particular voxel for the first
time.

An example of this approach is given by McNeill et al.13.
Here, a lazy-evaluation algorithm for octrees is proposed in
which only the upper part of the octree is constructed wholly
between frames. Only when rays enters subvoxels in the oc-
tree in which the number of primitives is larger than the
threshold value, will the necessary lower part of the octree
be built. This method should be quite straightforward to ex-
tend to a recursive grid, which is one of the classical data
structures that we have implemented. We would then only
construct the grid at the top level and only create subgrids
for the voxels that rays actually intersects.

A possible extension that we also would like to investigate
would be based on the observation that if the number of rays
taking advantage of a complex acceleration data structure is
very small, it might not be beneficial to spend an excessive
amount of time constructing it. A better trade-off might be
to construct a much simpler acceleration structure quickly or
even skip the data structure altogether and resort to basic list-
searching. We can envision a system keeping track of how
many rays that traversed every bounding box or voxel and,
by taking advantage of frame-to frame-coherency, make an
intelligent choice on which acceleration data structure that
should be used when updating a particular bounding box or
voxel. The choice should be guided by both the number of
rays that intersected the volume and the number of primitives
that are associated with it.

4. Implementation

In this section, we describe our implementation of the gen-
eral ideas presented in section 3.1. Specifically, we outline
the implementation of the construction and update routines,
respectively.

Our method finds a separate minimal area OBB for all
the primitives in each static and/or dynamic transform in the
scene graph and also applies a recursive grid within each
OBB. If a dynamic transform has no dynamic transforms

c
�

The Eurographics Association 2001.



Lext and Akenine-Möller / Towards Rapid Reconstruction for Animated Ray Tracing

among its parents, a special OBB-grid is also applied encap-
sulating all the grids created at lower levels in that part of the
scene graph. These particular OBB-grids have to be recon-
structed between each frame due to the movements of the
subgrids they contain, and this is the main task performed
in the update phase. An alternative would have been to use
only a simple bounding volume at the highest level or noth-
ing at all. However, in the Robot scene that we consider, the
moving objects are robots composed of several parts, each
of which is placed inside a grid. All of these grids will be
placed in the outermost data structure and if this a simple
bounding volume all will have to be tested for intersection
for every ray that intersects the bounding volume. Therefore,
we expect better performance using a grid.

Pseudocode for the construction routine is given below.
The routine is called with a reference to the root node of the
scene graph as input. The output of the routine is currently a
list with references to a number of grids. One of these grids
contains the static scene primitives and the remaining grids
all encapsulate a cluster of moving objects.

Note that the minimum area OBB will be created inside
the routine that creates a grid. We use a modified version of
the algorithm by Eberly17 to find the minimum OBBs. As a
local coordinate system will be associated with each OBB,
the contained objects must again be transformed to this lo-
cal coordinate system before an ordinary grid or recursive
grid can be created inside the OBB. In the ray tracing phase,
rays are transformed to this local coordinate system before
performing intersection tests. Also note that each grid must
keep information about in which node in the scene graph
it was created and also in which node it was itself put in-
side a supergrid as this information will be needed in the
grid update routine. Finally, all grids are heterogeneous and
the resolution is calculated as suggested by Klimaszewski et
al.16.

List Create( Node &node,

List &objectsFather,

List &gridsFather )

{

List objectsLocal ;

List gridsLocal ;

for ( all objects found in node )

{

object.transformToRootFrom( node );

objectsLocal.append( object );

}

for ( all child nodes of node )

{

Create( childnode, objectsLocal, gridLocal );

}

switch( node.type() )

{

case root :

Grid grid = new Grid( node.objects, node );

gridsLocal.append( grid );

return gridsLocal ;

case static :

objectsFather.append( objectsLocal );

gridsFather.append( gridsLocal );

case dynamic :

objectsFather.append( objectsLocal );

if ( objectsFather.numberOf() > 0 )

{

objectsFather.transformFromRootTo( node );

Grid grid = new Grid( objectsFather, node );

grid.transformToRootFrom( node );

gridsLocal.append( grid );

}

if ( node has no parents of type dynamic )

{

gridsLocal.transformFromRootTo( node );

Grid supergrid = new Grid( gridsLocal, node );

for ( all grids in local list of grids )

{

grid.setFatherGrid( supergrid );

grid.setNodeFinal( node );

}

supergrid.transformToRootFrom( node );

gridsFather.append( supergrid );

}

else

{

gridsFather.append( gridsLocal );

}

}

}

The update routine is quite simple, so we do not give any
pseudo code for it. Instead, its implementation is outlined in
the following.

First note that prior to calling the update routine for each
grid in the list of grids returned by the construction routine,
the scene graph has been traversed and in each node the
transform matrices for transforming points from a node in
the scene graph to the root system and vice versa has been
recalculated corresponding to the new frame time. The ma-
trices used during the previous frame is, however, also kept
for easy access as these are needed in the update routine as
well.

When a grid calls the update routine, the OBB of the grid
(i.e. its axes and origin) is first transformed from the node
in the scene graph that it currently resides in to the root sys-
tem and from there to the node in which it was created. For
both transforms, the transform matrices corresponding to the
old frame time are used. We then check if this grid contains
primitives or subgrids. If it contains subgrids, this grid must
be reconstructed due to the movements of the subgrids. We
therefore transform all the subgrids through the transform
constructed from the OBB’s current axes and origin. All sub-
grids then perform their incremental movements by calling
the update routine themselves. Next, a new OBB is created
encapsulating all the subgrids in their new positions and then
the subgrids are transformed to the local coordinate system
of the new OBB. Finally, we create a recursive grid inside
the OBB.

c
�

The Eurographics Association 2001.



Lext and Akenine-Möller / Towards Rapid Reconstruction for Animated Ray Tracing

In the end of the update routine, the OBB of the calling
grid, whether it was created within this call of the routine
or not, is transformed back to the node in the scene graph
in which it resided when the routine was called. For these
transformations, the transform matrices corresponding to the
new frame time are used.

In the next section, the described method is compared to
the simpler approach of using a single recursive grid that
encapsulates the whole scene, including the moving objects,
and thus will have to be reconstructed between each frame.
Measurements are presented for both a simpler animation
and for the complete Robot test scene from BART9.

5. Results and Discussion

To more easily show the performance of the proposed OBB
algorithm, we first present measurements on a simple ani-
mation featuring a single robot in empty space. In this ani-
mation, the robot walks along a circular path and the camera
follows the robot so as the relative position is almost con-
stant. Figure 5 to 7 show the first ray traced frame from this
animation and also the data structure used. The images were
rendered with a maximum allowed ray tree depth of two, i.e.,
one reflection was allowed, and the image size was 300 � 300
pixels. Only one level of subgridding was used in the recur-
sive grids and ten primitives were allowed in a voxel before
a voxel was subgridded. The rightmost picture indicates the
time to ray trace each individual pixel. We use it to identify
the most time consuming parts of a data structure.

As hinted in section 4, our implementation allows us to
choose whether to apply recursive grids in dynamic trans-
forms only or also in each static transform in the scene
graph. In both cases, a reasonably good hierarchy resulted
without having to make changes to the initial scene graph
description as given in the BART files. Figure 5 illustrate
the hierarchy when grids were applied in both static and dy-
namic transforms and this was the structure used in the mea-
surements presented below. Figure 6 shows the resulting hi-
erarchy when applying grids in dynamic transforms only.

For comparison purposes, the simple animation men-
tioned above was also rendered with a single recursive grid
applied to the robot. Figure 7 shows the pictures resulting
when using this data structure. Due to the movement of the
robot, the recursive grid was fully reconstructed in the up-
date phase. The two graphs in figure 3 show the resulting
times spent in the ray tracing phase and update phase, re-
spectively, for the two data structures.

The mean total time to generate a frame is very similar,
however, the time spent in the two phases is quite different.
The time required by the OBB algorithm in the update phase
is much smaller because only a small part of the structure
needs to be reconstructed.

The hill shaped form of the curve resulting when using the

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
(s

)

Frame index

Total time
Update time

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
(s

)

Frame index

Update time

Total time
Update time

Figure 3: Time spent in the ray tracing phase and update
phase as a function of frame index for the single robot test
scene. Top graph: single recursive grid, bottom graph: pro-
posed algorithm using OBBs.

recursive grid is probably due to two known disadvantages
with axis aligned bounding boxes. As the robot turns, the
volume of the grid grows slightly due to increased misfit,
which translates into an increase in ray traversal time. Also,
in the middle of the animation, most eye rays traverse the
grid diagonally, increasing the traversal time as well.

Turning to the lower graph in figure 3, we see that, in gen-
eral, the time spent in the ray tracing phase by the OBB-
algorithm is larger than is needed by the recursive grid struc-
ture. One explanation might be the extra work introduced in
this phase due to the transformations of rays. Empirical stud-
ies have made us come to the conclusion that these trans-
formations can have a non-negligible impact on the perfor-
mance, as the floating point unit temporarily becomes a bot-
tleneck. Also, some voxels in the outermost OBB contain
several subgrids and all of these must be tested for intersec-
tion when rays passes through these voxels.

Leaving the simple test scene, we now present measure-
ments on the complete Robots test scene from the BART
benchmark suite9. In these measurements, a maximum al-

c
�

The Eurographics Association 2001.



Lext and Akenine-Möller / Towards Rapid Reconstruction for Animated Ray Tracing

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
(s

)

Frame index

Total time
Update time

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

T
im

e 
(s

)

Frame index

Update time

Total time
Update time

Figure 4: Time spent in the ray tracing phase and update
phase as a function of frame index for the Robots test scene
from BART. Top graph: single recursive grid, bottom graph:
proposed algorithm using OBBs.

lowed ray tree depth of four were used. Figure 4 (top) shows
the time spent in the ray tracing phase and the update phase
when applying a recursive grid to the whole scene including
the robots. In the bottom graph, the result when using the
proposed OBB algorithm is presented. Similar to the case
with a single robot, the OBB algorithm manages to reduce
the time spent in the update phase with roughly a factor of
ten as compared to reconstructing the recursive grid from
scratch between each frame. Unfortunately, it again requires
more time performing the ray tracing phase, particularly in
the parts of the animation where many of the robots are vis-
ible.

An additional explanation for this lower performance, be-
sides the two disadvantages with the OBB algorithm dis-
cussed earlier in this section, is the fact that we only allow
an OBB-grid to contain either primitives or subgrids. The
reason is that placing both primitives and moving subgrids
in the same grid would force us to regrid all the primitives
again as the subgrids moved, ruining the whole idea of our
approach. This works fine when dealing with a single robot,
however, when the complete Robot scene is used, the ten

robot OBBs cannot be placed within the grid covering the
city data, forcing the ten robot grids and the city grid into
a single list. The result is that every ray currently must be
tested against all robot OBBs in the scene, despite that only
some of them is visible in most frames.

A simple remedy could be based on the fact that the robots
always will be contained within the OBB covering the static
city data, a characteristic that should hold for most realistic
scenes with some static scenery and some objects moving
around within the scene. We would then extend our current
algorithm with some way to quickly remove and reinsert the
robot OBBs into the grid covering the static city data. How-
ever, this will increase the amount of work in the update
phase, and the performance gain is therefore not obvious.

Finally, returning to the graphs in figure 4, we see that in
both cases the worst time to generate a complete frame is
about 14 seconds. As the time to reconstruct the recursive
grid fully is about 1.0 seconds, and hypothetically assuming
a linear speedup when parallelizing the ray tracing phase,
the ray tracing phase would be performed faster than the up-
date phase already when using 16 processors. Doubling the
number of processors to 32 would only result in a speed up
of 33%, with diminishing returns for every extra doubling of
the number of processors. If the OBB-algorithm is used in-
stead, we could, at least in theory, use 128 processors before
the two phases again would start to take a similar amount of
time. On top on that, we could also apply frameless render-
ing to increase the frame rate, and make the arguments for
our presented algorithm even stronger. Thus, having the abil-
ity to trade time between the two phases might allow us to
better utilize large multiprocessor machines without having
to parallelize the update phase.

6. Conclusion and Future Work

We show that using the scene graph to aid in the creation of
an acceleration data structure for ray tracing of rigid body
animations has the potential of allowing fast update times
of the acceleration data structure. This can allow better per-
formance when using frameless rendering or better utiliza-
tion of large multiprocessor machines without the need to
parallelize the construction of the acceleration data struc-
ture. Specifically, our implementation, using a hierarchy of
OBBs, gave a tenfold speedup in the reconstruction phase
as compared to rebuilding a recursive grid from scratch be-
tween each frame. This was the case when using both a sim-
pler and a more advanced test scene.

Future work include improving the proposed OBB-
algorithm so that the moving objects in a scene can be
quickly removed from and reinserted into the grid struc-
ture enclosing the static scene primitives between frames.
We currently believe that this could reduce the time spent in
the ray tracing phase with only a small extra time added to
the update phase. For comparison purposes, we would also

c
�

The Eurographics Association 2001.



Lext and Akenine-Möller / Towards Rapid Reconstruction for Animated Ray Tracing

like to implement a lazy-evaluation technique as discussed
in section 3.2.

It would be also interesting to adapt the reprojection
method11 to current computer architectures and to a multi-
processing environment in order to speed up the ray tracing
process further. To be really useful, it would have to cope
with moving non-convex objects as well.

Acknowledgments

Our deepest thanks to Peter Rundberg for letting us use his
personal computer for performing measurements.

This work is funded by the national Swedish Real-Time
Systems research initiative ARTES (www.artes.uu.se), sup-
ported by the Swedish Foundation for Strategic Research.

References

1. Jensen, Henrik Wann, and Niels Jorgen Christensen, A
Practical Guide to Global Illumination using Photon
Maps, SIGGRAPH 2000 Course notes 8, July 2000. 1

2. Muuss, Michael John, “Towards Real-Time Ray-
Tracing of Combinatorial Solid Geometric Models”,
Proceedings of BRL-CAD Symposium ’95, June 1995.
1, 2

3. Parker, Steven, William Martin, Peter-Pike J. Sloan, Pe-
ter Shirley, Brian Smits, and Charles Hansen, “Interac-
tive Ray Tracing”, 1999 Symposium on Interactive 3D
Graphics, pp. 119–126, April 1999. 1, 2, 2

4. Reinhard, Erik, Brian Smits, and Chuck Hansen, “Dy-
namic Acceleration Structures for Interactive Ray Trac-
ing”, Proceedings of the 11th Eurographics Workshop
on Rendering, Brno, Czech Republic, pp 299-306, June
2000. 1, 2

5. Stone, John, “The Ups and Downs of Multithreaded
Ray Tracing and Optimization”, Ray Tracing News, vol.
12, no. 2, December 1999.
http://www.raytracingnews.com 1, 1

6. Bishop, Gary, Henry Fuchs, Leonard McMillan, and
Ellen j. Scher Zagier, “Frameless Rendering: Double
Buffering Considered Harmful”, Computer Graphics
(SIGGRAPH 94 Proceedings), pp. 175–176, July 1994.
1, 2

7. Cazals, Frédéric, George Drettakis, and Claude Puech,
“Filtering, Clustering and Hierarchy Construction: a
New Solution for Ray-Tracing Complex Scenes”, Com-
puter Graphics Forum, vol. 14, no. 3, pp. 371–382, Au-
gust 1995. 1

8. Goldsmith, Jeffrey, and John Salmon, “Automatic Cre-
ation of Objects Hierarchies for Ray Tracing”, IEEE
Computer Graphics and Applications, vol. 7, no. 5, pp.
14–20, May 1987. 1, 3

9. Lext, Jonas, Ulf Assarsson, Tomas Möller, “A Bench-
mark for Animated Ray Tracing”, IEEE Computer
Graphics and Applications, pp. 22–31, March/April
2001 2, 5, 5

10. Jevans, David, and Brian Wyvill, “Adaptive Voxel Sub-
division for Ray Tracing”, Graphics Interface ’89, pp.
164–172, June 1989. 2

11. Adelson, Stephen J., and Larry F. Hodges, “Generating
Exact Ray-Traced Animation Frames by Reprojection”,
IEEE Computer Graphics & Applications, vol. 15 no 3,
pp. 43–53, May 1995. 2, 7

12. Glassner, Andrew S., “Spacetime Ray Tracing for An-
imation”, IEEE Computer Graphics and Applications,
vol. 8 no. 2, pp. 60–70, March 1988. 2

13. McNeill, M.D.J., B.C. Shah, M-P. Hébert, P.F. Lister,
and R.L. Grimsdale, “Performance of Space Subdivi-
sion Techniques in Ray Tracing”, Computer Graphics
Forum, vol. 11, no. 4, pp. 213–220, 1992. 2, 3

14. Gottschalk, Stefan, Ming Lin, and Dinesh Manocha,
“OBB-Tree: A Hierarchical Structure for Rapid Inter-
ference Detection”, Computer Graphics (SIGGRAPH
96 Proceedings), pp. 171–180, August 1996. 2

15. Cazals, Frédéric, and Claude Puech, “Bucket-like space
partitioning data structures with applications to ray-
tracing”, ACM Symposium on Computational Geome-
try, 1997 2

16. Klimaszewski, Krzysztof S., and Thomas W. Seder-
berg, “Faster Ray Tracing Using Adaptive Grids”, IEEE
Computer Graphics and Applications, vol. 17, no. 1,
January/February 1997. 3, 4

17. Eberly, David H., 3D Game Engine Design – A Prac-
tical Approach to Real-Time Computer Graphics, Mor-
gan Kaufmann Publishers, San Diego, 2001. 4

c
�

The Eurographics Association 2001.



Lext and Akenine-Möller / Towards Rapid Reconstruction for Animated Ray Tracing

Figure 5: Left: first frame in ray-traced animation. Middle: visualization of applied acceleration data structure; proposed
algorithm with recursive grids applied in both dynamic and static transforms. Right: visualization of time spent in
ray-tracing phase by each individual pixel.

Figure 6: Left: first frame in ray-traced animation. Middle: visualization of applied acceleration data structure; proposed
algorithm with recursive grids applied in dynamic transforms only. Right: visualization of time spent in ray-tracing
phase by each individual pixel.

Figure 7: Left: first frame in ray-traced animation. Middle: visualization of applied acceleration data structure; a single
recursive grid. Right: visualization of time spent in ray-tracing phase by each individual pixel.

c
�

The Eurographics Association 2001.



Lext and Akenine-Möller / Towards Rapid Reconstruction for Animated Ray Tracing

c
�

The Eurographics Association 2001.


