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Abstract
This paper presents an approach for real-time rendering of physically accurate reflection effects in virtual environments.
We apply a hybrid rendering of an OpenGL-generated scene, blended with correct reflection characteristics of selected
scene objects.
The core of the approach consists of a special type of ray tracing, the so-called vertex tracing. Real-time performance,
even for complex CAD scenes, is achieved by progressive adaptive refinement, (derived from the geometry in object
space) as well as by parallelization of the algorithm. A mesh-based load balancing yields a uniform distribution of the
computing load in a heterogeneous network with resources with widely varying performance.
The performance of the overall system is demonstrated using a truck interior in a Virtual Reality simulator.

1. Introduction

Computer graphics offers a broad spectrum of methods for the
simulation of light distribution, which reach from the strongly
approximate to the physically accurate. Ray tracing has been
established as the de facto standard approach for accurate ren-
dering of specular reflections. Although it is extremely compu-
tationally intensive, ray tracing is widely applied for the calcu-
lation of high quality lighting scenarios. In combination with
other lighting approaches, such as radiosity, ray tracing is also
suitable for global illumination computation. At the other end of
the spectrum, hardware-supported environment mapping simu-
lates reflecting surfaces at real-time frame rates; however, it is
not geometrically accurate, and only renders a plausible first im-
pression of a reflecting surface.

Our application for real-time, accurate rendering is an inter-
active computation to simulate reflection effects on instrument
covers in a truck interior (figure 1). Here a glare-free readability
of the instruments represents a substantial criterion for the ve-
hicle ergonomics. Glare not only depends on the reflection co-
efficients of the surface, but also considerably on the shape and
orientation of the instrument cover. From a practical standpoint,
the reflection coefficients cannot be reduced arbitrarily, there-

Figure 1: Simulation of reflections on instrument cover

fore technical designers must orient themselves toward adapting
the shape of the reflector.

Typically, ellipsoid shaped reflectors are employed for this
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purpose. It is known that all light rays passing through focus F1
of an ellipsoid are reflected toward the second focus F2 (figure
2). If a weakly diffuse reflecting object (black component in the
interior) is located at F1 and F2 is the eye point of the driver,
only the small amount of light energy that is reflected by the
dark surface at F1 reaches the eyes of the driver.
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Figure 2: Geometry of rays in the ellipsoid example

However, the geometric solution of using ellipsoid reflector
surfaces (or other geometric shapes with comparable optical
characteristics such as paraboloid or hyperboloid) can represent
only an idealized form of the instrument cover, since the eye
point of the driver may vary in position. Thus an optimal reflec-
tor shape needs to be verified experimentally to guarantee mini-
mal glare, as well as compatibility with the cockpit design. This
application background justifies the requirement for geometric
accuracy, as well as for real-time performance of the software
developed in this research.

The Vertex Tracing approach introduced in this paper follows
an adaptive ray tracing approach (which drastically reduces the
number of rays) in combination with parallel computation. Fur-
thermore, ray tracing is only applied to the actually reflecting
surfaces, in combination with hardware-accelerated OpenGL
rendering for the rest of the VR scene. The primary ray is gener-
ated directly from the tesselated reflector geometry with subse-
quent adaptive refinement in object space, rather than in raster
(image) space. The distributed computation in a heterogeneous
network uses dynamic load balancing with a demand-driven
strategy. For additional acceleration, the necessary ray object
intersection test on CAD data employs optimized collision de-
tection. Complex CAD models are organized in a bounding box
hierarchy6.

In the following, after a short overview of related work, the
function of the adaptive vertex tracer is described. After that we
discuss the parallel mode of operation of the vertex tracer with
dynamic load balancing. The results are demonstrated with a
complex VR scene example.

2. Related Work

Today’s ray tracing systems achieve their relatively high per-
formance only by combining several acceleration methods. In
addition to the many methods for acceleration of the intersec-
tion test, there also exists a broad set of approaches within the
area of progressive or parallel ray tracing. Already, many tech-
niques have been investigated to accelerate ray tracing21. For in-
stance, fast ray intersection tests, generalized rays, a reduction
of the number of computed rays or parallelization (distributed
ray tracing) are well-known. However, so far no approach has
achieved real-time performance for large scenes (100,000 poly-
gons or larger).

Among the acceleration methods by means of progressive
ray tracing for adaptive pixel sampling, one essentially distin-
guishes uniform and non-uniform sampling. JANSEN and VAN

WIJK10 early on describe a uniform sampling approach. Here
the image plane is divided into regular squares and afterwards
gradually refined in accordance with the intensity variance of
the sub-squares. Today this method finds widespread applica-
tion, due to its trivial implementation.

Adaptive, non-uniform pixel sampling describes another way
of progressive refinement. In this method, the image plane is
considered a continuous region with no pixel boundaries. The
goal is to adapt the content of the picture with as few samples as
possible. This means, the progressive refinement depends on the
available edges and silhouettes, as regions with high contrast or
frequency differences. In this context PAINTER and SLOAN17

proposed a method to refine the image based on a 2D binary
subdivision. Depending on the variance and the number of al-
ready computed samples, a region is refined until a particular
confidence level of the image is reached.

Other sample generators7� 12 follow the strategy of the Delau-
nay triangulation18 in the image plane. PIGHIN et al.16 extended
these by a pre-calculation and the use of a Discontinuity Mesh.
Here the scene is first generated by hardware rendering, in order
to detect edges and silhouettes. The edges represent the basis of
a mesh, whose vertices present the primary ray-traced samples.
Finally, the refinement of the pre-calculated mesh is carried out
by the Delaunay triangulation.

BALA3 developed an approach describing a progressive par-
titioning in the object space with the help of so-called inter-
polants. In this case, the interpolants are constructed around the
scene objects. They approximate the radiation within the cor-
responding area of the object and can be refined in accordance
with the requirements. The generation of the image is carried
out as line-by-line scanning within the specified representation
error. A primary ray meets a valid interpolant and the corre-
sponding pixel is determined by its radiation values.

The parallelization of adaptive progressive ray tracing be-
comes far more difficult compared to sequential implementa-
tions, due to dependencies of samples accross refinement levels.
Discontinuity edges can occur because of the distribution of the
image space over different processors.
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NOTKIN et al.12 and REISMAN et al.19 reduce this problem
by shooting additional samples at the region boundaries. Also,
REISMAN et al. distribute only connected convex regions, in or-
der to keep the boundaries between the slave areas as small as
possible. Both methods are based on a distributed memory sys-
tem with static load balancing, requiring analysis of the scene
variance in a pre-processing step. However, for better balancing,
additional dynamic distribution is performed, and the slaves can
exchange their tasks among themselves.

The approach presented in our paper is based on adaptive
progressive ray tracing with non-uniform sampling. The paral-
lelization of our approach is carried out by dynamic central load
balancing, and also works for heterogeneous networks.

3. Vertex Tracing

As described above, the approach introduced in this paper
is based on a hybrid representation of the VR scene using
OpenGL-generated graphics, in combination with ray tracing.
The geometry of the scene is already in tesselated form. There-
fore it is advantageous to generate so-called secondary rays di-
rectly from reflecting surfaces in object space, and to adaptively
refine the polygon mesh. Here the arrangement of the vertices
in object space determines the coincidental variance of the pri-
mary samples, which are assumed to be distributed reasonably
over the image plane.

Owing to the fact that the vertices in object space represent
the starting point for each ray, we named our approach Vertex
Tracing.

In traditional ray tracing, for each pixel of the image plane
a so-called primary ray is sent into the scene and ist tested for
possible collision with all scene objects8. The primary ray com-
putation takes n�m�k calculation steps, where n and m define
the size of the pixel raster, and k is the number of objects and
thus the number of ray-object intersection tests per pixel. For an
average rendering task, potentially several billion primary ray
object intersections need to be carried out. These primary ray
intersections are completely avoided by our approach.

Rather, in the case of our vertex tracer, the primary rays are
generated directly between the eye point and the corresponding
vertices (figure 3). In order to ray-trace only the visible object
areas of the reflector, we distinguish between hidden and vis-
ible vertices. Before starting the actual ray tracing process all
vertices are checked for visibility. In the case of a complete cov-
ering of the reflector, no ray tracing cost will result.

The visibility test is carried out by an ID-buffer, which is
essentially a Z-buffer. All objects of the scene are indexed by
a unique color-ID and rendered into the ID-buffer. Based on
the resulting color-ID the visibility of each vertex is determined
(figure 3).

Vertices of an edge are transferred to the base ray-tracer (a
classical recursive ray-tracer for single rays), if and only if at
least one of the vertices is visible. Thus it is ensured that only

visible polygons are rendered� . After that, valid edges are stored
in EdgeList, sorted by their length in the projection plane (figure
6), and are available for the subsequent refinement process.
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Figure 3: Vertex-based primary ray determination

The reflected and the refracted rays are calculated for each
visible vertex, its incident primary ray and its normal. Also, so-
called shadow sensor rays emanate from the position of the ver-
tex toward the respective light sources.

For determination of a possible object collision, these sec-
ondary rays are passed to the base ray tracer. The base ray tracer
first tests each ray for intersections with the voxel space2 and
only tests for collision those nodes of the object hierarchy tree6

that passed the voxel test.

The intensity value (color determined by the Phong illumina-
tion model) and the determined ray tree9 from the recursive ray-
tracer are the basis for the progressive refinement of the mesh.
In order to reliably detect potential discontinuity edges as well
as non-linearities, the two vertices of a polygon edge are com-
pared by such criteria. If the condition is fulfilled, a subdivision
of the edge or the adjacent polygon edge is performed according
to the refinement strategy (see paragraph 3.1).

Using the color intensities of the vertices determined by the
base ray tracer, already a preview image can be produced. The
intensity values are interpolated linearly by means of Gouraud
shading, carried out off-line. This results in a texture image in
separate memory which is copied into the frame buffer and com-
bined with the rest of the scene, using stencil buffer, z-buffer and
alpha blending operations. Consequently, we are able to visual-
ize each step of the refinement process at user-defined breaks of
computation.

The refinement of a polygon is terminated if the length of
the edges projected onto the image plane falls below a minimal

� The case that all vertices are covered by concave or several objects,
such that sections of the polygons remain visible, is not considered at
the moment.
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threshold l. In this case all pixels covered by the polygons of the
last refinement step would be calculated by the base ray-tracer
and are drawn directly on the image plane. This step is called
triangle filling. It is the last step of the refinement and it enables
the representation of discontinuity edges with pixel accuracy.

3.1. Progressive adaptive refinement

In contrast to other methods, our subdivision method operates
not directly on faces but on the edges in EdgeList. Each edge is
tested for subdivision, and if necessary, a new vertex is inserted.

The advantage of this method is the identical generation of
child faces with a common edge e (figure 4). The explicit subdi-
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Figure 4: Edge-based subdivision of neighbouring triangles

vision of adjacent faces, in order to prevent possible discontinu-
ities between the face boundaries can therefore be avoided. In
particular, with regards to a distribution of the ray tracing over
several processors, no dependencies between the faces exists.
Redundancies in a distributed computation are reduced drasti-
cally. In addition, the edge-based method generates only one
new vertex vnew per iteration cycle and therefore only one new
ray needs to be calculated by the base ray-tracer, although four
new faces (child faces) are created, when two adjacent parent
faces are subdivided.

Figure 6 shows the base algorithm for adaptive refinement.
The refinement process is terminated if EdgeList contains no
more edges. Based on the initial edges, starting with the longest
edge, each edge is tested for a necessary subdivision with re-
gards to the ε criterion (CheckRefinement(), line 4). In case of
a necessary refinement (line 5) vertex vnew is inserted (see also
figure 4). The faces fR1� fR2� fL1 and fL2 (newFaces) and their
appropriate edges (newEdges) eR�eL�eN1 and eN2 are created. A
progressive refinement of a triangle after several steps illustrates
figure 5.

Each edge of newEdges is also sorted in EdgeList by its
length (line 7). Analogously to the procedure of the primary
edges, the function RaytraceEdge() carries out the visibility test
of the corresponding vertices and transfers them to the base ray-
tracer if necessary.

Line 8 allows a continuous visualization of the progressive
mesh refinement by interrupting the ray tracing at predeter-
mined times (TimeToBreak). For this purpose, faces which are
accumulated in a list newFaces, are rendered into the texture

discontinuity
edge

after the 1st step after the 2nd step

after the 3rd step after the 4th step

after the 7th step after the 19th step

Figure 5: Step by step refinement

buffer. The image produced in the previous step is preserved,
such that only within the areas of the newly added faces a fur-
ther refinement of the reflection or refraction will be visible.
Finally, the texture image is copied into the frame buffer of the
whole scene.

Refine(EdgeList, ID-Buffer)

1 Do until EdgeList is empty
2 nextEdge� EdgeList
3 Decrease(EdgeCount)
4 If (CheckRefinement(nextEdge, ε))
5 newEdges� RefineEdge(nextEdge)
6 For every newEdges ej
7 RaytraceEdge(ej , ID-Buffer)
8 If (TimeToBreak)� Render(newFaces)

Figure 6: Function RefineObject() of the vertex tracer

3.2. Convergence problems

Figure 7 shows the emergence of a typical convergence problem
in the edge-based refinement method. Two edges of the triangle
are continuously refined, but the third edge (left edge in the fig-
ure) maintains its length, since its vertices dont’t indicate inten-
sity differences. The edges of the left triangle come closer after
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several recursion steps, whereby the lengths converge towards a
value, which is above a fixed threshold. The procedure does not
terminate in this case.

discontinuity edge
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c

Figure 7: Problems with convergence

A possible solution to the convergence problem is a con-
strained refinement of the longest edge of such triangles. This
achieves a refinement of flat triangles and forces a convergence
of the triangle edges against a lower limit. The condition for the
termination is the "factor of flatness," defined as the relation v
of the edge c, i.e. the height h divided by c (see figure 7), as
follows:

if ( h
c � v)

then Refine c
else Ok.

Since the refinement process is executed based on criteria
in the image plane, a discretization of the values results because
of the pixel raster. Rounding errors can occur, and a height
h which is smaller than a pixel creates larger triangles. The
procedure may be caught in an infinite loop. In order to deal
with this precision problem, the refinement is aborted if h falls
below the threshold of two pixels. Beyond that, a pre-defined
maximum recursion depth is applied.

3.3. Performance results of vertex tracing

For a Virtual Reality application of the vertex tracer, the re-
quirement of interactive frame rates during the reflection com-
putation is crucial. For performance tests, shown in the figures
10-13 a concave curved cover glass was located in front of the
instrument in a truck interior. The complete scene consists of
approximately 97,000 polygons.

Figure 10 shows the preview of the vertex tracer. As can
be recognized in this figure, the approximate representation al-
ready offers a first impression of the reflection characteristics of
the cover glass. The reflection of the left side window clearly
appears in the lower half of the instrument cover. The total time
needed for the rendering of the scene is below 220 ms on an
850 MHz PC with a GeForceDDR graphics accelerator and
fulfils the minimal real time requirements of Virtual Reality.
In comparison, a complete ray tracing of the reflector surface
alone takes almost 2 minutes on the same workstation. Hence,

an approximately 500-fold improvement of performance can be
demonstrated here.

The figures 11 and 12 show the progressive refinement pro-
cess up to the completion of the triangle partitioning, as well
as the complete triangle filling (described above). Despite the
obviously lower computation cost, compared to triangle filling
(see table 1), the representation already is of very high quality.

Rendered Image time in s pixel factor
Reference ray tracing 110.56 184,443 1

Preview 0.22 322 502
Refinement without
triangle filling 1.43 1972 77
Refinement with
triangle filling 6.12 6790 18

Table 1: Comparison of the separate refinement steps

Figure 13 shows the resulting adaptive triangle refinement
of the vertex tracer. The approach shows a subdivision only at
high-contrast reflection edges (e.g. the side window reflection)
on the cover glass.

4. Vertex tracing in distributed environments

It is well known that classic ray tracing is suitable for paral-
lelization, yielding almost linear speed-up. Generally, there ex-
ist two main models of parallel computation, the demand-driven
and data-driven methods12. In the case of demand-driven meth-
ods, the distribution is performed dynamically, based on task
packages, whereas in data-driven approaches, the distribution is
done by static data analysis.

Due to the necessity of also implementing the presented ap-
proach in a heterogeneous network environment with restricted
communication bandwidth, we pursued the demand-driven ap-
proach. In particular, each slave possesses a complete copy of
the scene but is only responsible for an assigned part of the ob-
jects to be ray-traced.

master

slave n

slave 1

slave 0 heterogeneous network

output

.

.

.

load balancing

OpenGL shader

vertex tracer

vertex tracer

vertex tracer

Figure 8: Concept of distributed vertex tracing

The master process manages the distribution (figure 8). Based
on central, dynamic load balancing, the master determines the
"size" of the task packages that can be computed, and redis-
tributes these accordingly, after each frame.

c� The Eurographics Association 2001.



Ullmann, Schmidt, Beier, Bruderlin / vertex tracing

After the computation, the results of the slaves are combined
and blended with the OpenGL-generated scene. This concept
reduces the communication costs to a minimum, since only at
the beginning (when the triangles are distributed) and toward
the end of a computed frame (when the resulting bitmaps are
returned), communication between the master and the slaves oc-
curs.

4.1. Discussion of parallelization

As already has been observed with classical parallel ray tracing,
the speed-up of parallel vertex tracing also depends on the com-
munication costs in connection with the resulting redundancy.
In particular, in a heterogeneous network with unexpected net-
work load, a sporadic communication failure of only one slave
can exert a fatal effect on the performance of the overall system.

Tests showed that despite a consideration of the communi-
cation performance in the load balancing, strong fluctuations
cannot be balanced within a small number of frames. How-
ever, a relatively steady but unequal communication, for exam-
ple caused by a mixture of 10 and 100 MBit connections, can
be successfully balanced.

2

a) b)

2

2 10

0 04 4

4 20

6 6

6 30

8 8

8 40

10 10

10 50

processors processors

sp
ee

d
-u

p

lo
ad

d
is

b
al

an
ce

(%
)

12 12

12 60

14 14

14 70

Figure 9: Quantitative evaluation of the truck scene

Figure 9 shows the quantitative evaluation of the speed-up
(a) as well as the load-disbalance (b) in the example of the truck
scene (figure 1) but with a higher geometry complexity (about
210’000 polygons). Almost linear speed-up up to approximately
ten processors can be achieved. Accordingly, the load disbal-
ance remains below 10%. The resulting increase of the disbal-
ance negatively influences the speed-up and limits the system
for a larger number of slaves.

The frame rate for a complete refinement achieved by a sys-
tem with 20 PCs is about � 1.3 s/frame. The single processor
version for the same test case achieves about 13.2 s/frame. It
was noticeable that, particularly with a small computation load,
the communication factor has more influence and the system
cannot be faster than about one second per frame, in most cases.
Consequently, the speed-up tends toward worse behavior with a
lower computation load.

In contrast to that on a Onyx2 with 8 processors and shared
memory we obtained in a similar test scenario up to 450 ms

(Vertex Tracing without triangle filling) because of the high
communication rate.

We conclude that, in comparison, the shared memory version
generally shows better speed-up for a larger number of proces-
sors, whereas for distributed processing in a heterogeneous net-
work the communication bandwidth is becoming a bottleneck.
Despite this fact, we observe that for more complex rendering
tasks (when rendering time dominates the data transfer rate) we
can still achieve linear speed-up for a larger number of proces-
sors, even in a heterogeneous environment.

As far as the rendering quality is concerned, no difference
between distributed vertex tracing and the single processor ver-
sion is observed. As previously mentioned, this fact is due to the
edge-based refinement strategy of the vertex tracer.

5. Summary and future work

In this paper, we propose Vertrex Tracing, an approach for in-
teractive reflection computation based on the ray tracing algo-
rithm for applications in complex virtual reality environments.
To achieve this goal, the principle of primary ray computation
was extended. We directly use the mesh structure of the reflect-
ing objects in the scene to generate the primary rays, with-
out costly object-ray intersections. Using a hybrid approach,
hardware-accelerated rendering is used for diffusely reflective
objects, as well as for the visibility determination of the vertex
tracing.

Subsequently, a progressive adaptive refinement of the mesh
structure is executed by edge-based partitioning for a fast con-
vergence of the refinement process, with a minimal number of
inserted vertices needed. Additionally, with regards to paral-
lelization, the approach prevents any dependencies among the
partitioned faces.

This so-called Vertex Tracing approach was extended for ap-
plication in a distributed environment. With a focus on the use
of a standard hardware and heterogeneous networks, a central,
dynamic load-balancing was implemented. In order to cope with
bad transfer conditions and to achieve minimal communication
load, we proposed a load balancing based on the object geom-
etry, which is compatible with the concept of the vertex tracer,
proposed in this paper.

Interactive frame rates for preview quality visualization are
already achieved with the single processor version of the vertex
tracer. This, in connection with complex VR scenarios, fulfills
the requirements of Virtual Reality simulations.

Nevertheless, a number of improvements of the overall sys-
tem are necessary, in the future. For example, it will be nec-
essary to improve the quality of the vertex tracing to limit
the interpolation error arising from discontinuities and non-
linearities3 as well as to exploit the scene coherence to further
improve the computation rate.

In the area of parallelization, also the expansion of the load
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balancing on the overall scene plays a crucial role. Here bet-
ter clustering strategies will be necessary, in order to group the
overall scene into spatial sectors. Also, a combination of shared
and distributed memory system rendering has not been consid-
ered, so far. The use of several shared memory machines could
reduce the communication problem and thus realize an even bet-
ter speed-up with a larger number of processors.
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Figure 10: Preview representation

Figure 11: Representation with maximum refinement and with-
out triangle filling

Figure 12: Representation with maximum refinement and with
triangle filling

Figure 13: Representation of generated triangles

c� The Eurographics Association 2001.


