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Abstract 
In this paper, we present a system that has the ability to deform terrain for Real-time Strategy Game with general PC 
hardware specifications. Various effects could be simulated in real-time such as raising and lowering the ground, 
creating a large chasm, or levelling the terrain. Effects such as ordering a unit to fire that then destroys part of a 
mountain could also be replicated. We present our implementations and techniques in using terrain deformation 
algorithms, Real-time Optimally Adapting Meshes, texture design and terrain generations. An analysis of the speed and 
memory usage of the system with respect to different PC hardware systems is also presented. 

 
 
 
1. Introduction 
 
Deformable terrain is a feature rarely found in current Real-time 
Strategy Games (RTS). A system that allows to deform the terrain 
and to see the results on screen has great potential in terms of both 
fun and strategies of game-play. 
 
Computer games are continuously evolving. Technology that is 
new and fancy today will be old and worn tomorrow and the PC 
games industry is always looking for new ways to improve their 
games; How can they take advantage of the never ending advances 
in CPU and graphics card speed? What can be done in a game 
depends upon many factors, however the speed of average users’ 
computers is possibly the most limit ing of all.  
 
Advances in graphics tend to happen first followed later by 
advances in game play features. In this paper, we present our 
system, which is focused on adding significant deformable terrain 
game play features to an existing genre. 
 
In many computer games, the traditional isometric view has been 
changed into a fully 3D environment. Total Annihilation by 
Cavedog Entertainment 1 was released in 1997 and was the first 3D 
RTS game. Upon release, it was considered one of the best RTS 
games and was a benchmark against which many others were 
measured. The terrain was 3D with accurate line of sight and arcs 
of fire. The units were also 3D models, however the rest was very 
much simpler. The terrain was based upon a tile system and it was 
not possible to deform the terrain at all.  
 
Some of the weapons in the game were huge weapons of mass 
destruction. One in particular was extremely powerful, the ‘Big 
Bertha’. It was a very long range and deadly, but quite inaccurate 
artillery gun. The building in the game took a long time to build 
and each shot used up an amazing amount of resources, but if it hit 
a building, the building was destroyed. One of the key 
considerations was where to build the building. Other than making 
sure it was in range, the most vital consideration was that its arc of 
fire could hit the enemy base. Getting this wrong would mean that 
the shells trajectory would cause it to hit the top of the mountain 
rather than go over and into your enemy’s base. One of the 
disappointments with the game was that if it could destroy any 
building in one shot, why would the mountain be unharmed? 

 
Populous 3: The Beginning by Bullfrog 2 was released about 2 
years ago and was among the first 3D RTS game to allow the 
terrain to be deformed. This game had a unique terrain system 
within which players can raise and lower the terrain, create 
earthquakes and even create volcanoes. However, there were many 
restrictions to what was possible. There are a limited number of 
heights for the terrain, about six. The terrain works by having each 
effect use a kind of template. There are many places where a 
deformation cannot be done, such as a volcano on high ground. In 
addition, the effects are not very accurate. This is because the 
terrain works by recognising set combinations and patterns and 
then knows how to translate this into an appropriate grid of 
polygons. This method works very well, but it relies upon 
constraining the possibilities. One that would not be possible with 
this technique would be a small dent in the terrain, for example.  
 
Tread Marks 3 is an arcade style 3D battle tank combat and racing 
game written by Longbow Digital Arts. This game proved very 
interesting due to its impressive terrain and how well it makes use 
of it. This is a good example of where adding deformable terrain to 
a game has raised the enjoyment level and ‘fun factor’ of the game. 
 
To develop a RTS game with incorprated terrain deformation 
features would raise a number of challenges in both technique 
implementations and system design. From terrain generation point 
of view, there are areas to be considered: 
 
- How to define the terrain. 
- How to store the terrain internally. 
- How to render the terrain. 
- How to deform the terrain. 
 
Terrain generation and rendering is certainly not a new topic and 
many research methods have been published in the past 4, 5, 6, 7. 
These methods vary greatly in complexity and quality, most of 
them emphasise on terrain visualization and, however, few of them 
deal with terrain deformations. This is where the challenge lay. 
 
In this paper, we present a system that has the ability to deform 
terrain for Real-time Strategy Game with general PC hardware 
specifications. Various effects could be simulated in real-time such 
as raising and lowering the ground, creating a large chasm, or 
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levelling the terrain. Effects such as ordering a unit to fire that then 
destroys part of a mountain could also be replicated. We present 
our implementations and techniques in using terrain deformation 
algorithms, Real-time Optimally Adapting Meshes, texture design 
and terrain generations.  Our system design and implementations 
are described in the next section. An analysis of the speed and 
memory usage of the system with respect to different PC hardware 
systems is described in section three. The final section of the 
paper, section 4, presents the results and discussion. 
 
2. Algorithms for Terrain Generation 
 
The manin consideration in choosing which method in our terrain 
deformation system is two fold. The method should allow fast and 
efficient terrain generations and deformations on general PCs 
avaiable to most players. The techniques should also allow the 
most terrain rendering task to be taken effectivly by graphics card 
so that more CPU time available for other areas of the game such 
as 3D sound and artificial intelligence. 
 
2.1 Rendering consderations – voxels rendering vs. 

polygon rendering 
 
Voxel rendering method 8, 9, has been used in many games for 
terrain generation 10 with great success. The advantages of the 
method are that it gives landscapes an extremely detailed and 
"organic" look due to the ray casting method. Whilst, with 
polygons, the ground of terrain is often flat, or at best, it is made 
up of flat areas that give the ground a looking unevenness. It takes 
too many polygons to draw natural looking ground for current 3D 
cards. Once the terrain has been updated, the rays cast for 
rendering will reflect the new terrain shape. A second advantage is 
that with some optimisations, such as the one introduced by 
Cohen-Or et al 11, is that a form of level of det ail (LOD) is 
implemented automatically. Despite many advantages in voxel 
techniques and the advances in speed 12, 13, they remain too slow. 
Determining where the ray intersects is highly processor intensive. 
However the major drawback of the algorithm is the lack of 
hardware acceleration. Modern consumer level graphics cards only 
accelerate polygon data. With the huge difference that hardware 
acceleration can make, voxel rendering does not look to be the way 
for our implementation This is becoming increasingly true every 
month as faster graphics cards are released that allow a greatly 
increased number of polygons to be used at any one time. Now 
those terrains that once would not have been feasible, are gradually 
becoming achievable. Consequently our implementation is a 
polygon based rendering system. 
 
2.2 Binary Triangle Trees for Terrain Deformation 
 
Duchaineau et al 4 presented a method for maintaining an optimal 
polygon mesh. The basic structure is using binary triangle trees. 
There are several advantages of this structure, firstly, each node 
only has two descendants, and secondly it uses triangles, which are 
simpler to deal with than voxels. Duchaineau et al. went on to 
show how this structure could be used to maintain an optimal mesh 
that includes LOD techniques. Their method splits and merges 
triangles as necessary according to terrain variation, distance from 
camera and maximum polygon count. Finally, as an added on 
advantage of the data structure, highly efficient frustum culling can 
also be achieved.  
 
The main concern with this technique is that the generated terrain 
is not in an efficient form for optimal rendering speed on modern 
graphics hardware. However, it has been suggested that by 
reordering the triangles slightly, either triangle fans or triangle 
strips could be created which is far more efficient. Overall, this 
method is highly suited to our task. Not only is it simple, efficient 
and suitable for games, it also can easily cope with deformations. 
Our terrain deformation implementation is based on Real-time 
Optimally Adapting Meshes. In our system, the terrain could be 

loaded from a height-map, converted to a polygon mesh and then, 
during the game, be updated and continuously optimised. It also 
allows users to configure the detail settings in order to run 
optimally on their personal machine. The algorithm could even be 
aware of current frame rates and consider this when optimising the 
terrain 5. 
 
The binary triangle structure is the key component of the program. 
It deals only with right-angled isosceles triangles. At the top level, 
there is one triangle, which then has two descendants, and each of 
them have two descendants etc as shown in figure 1. This is fixed; 
each node either has no descendants or two and the shape of the 
triangles are always the same. 
 
Since each level of subdivision does not replace the level above, 
the number of triangles after n levels of division is: 2(n+1) – 1. 
Although this is quite a high number of triangles, only the bottom 
level are drawn while the rest can be used for frustum culling and 
collision detection algorithms. 
 
Each triangle is stored as a node, with each node being aware of its 
‘parent’ and its two ‘children’ as shown in figure 2. It is important 
to mention that since the structure contains only triangles, and the 
terrain to be built is square, there must actually be two trees at all 
times. These structures are linked together and are often treated as 
one. Each node has to keep track of several things in order for the 
structure to be maintained. Each node needs to know its three 
neighbours. These are highly important for coping when a triangle 
has to be split. Details of the algorithm are in reference by 
Duchaineau et al 4. The details of our implementation are listed in 
Appendix A. 
 
 
 
 
 

 
 

Figure 1. This diagram demonstrates how the triangles are 
split. 
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Figure 2: The resulting tree shaped pattern 
 
 
2.3 Texturing  
 
The second consideration for our system design is texturing. 
Texturing a terrain can be a complex task. "Texturing has been the 
single biggest headache with landscapes in the game - allowing the 
mission editor to select a texture for every square and dynamically 
generate the combination textures for squares that are at a lower 
detail level, as well as automatically texturing the terrain based on 
vertex material." 14 
 
Applying a texturing to each polygon will not work satisfactory 
unless the textures are applied with great precision. The challenge 
is that the textures are square but the triangle that it is being 
applied to it is not, so obvious texture can occur. The second 
concern with texturing is that because the terrain is deformable, the 
textures would need to be updated accordingly. A final 
consideration is the number of textures applied to the terrain, up to 
four textures might need to be applied to each triangle. This would 
result in a large performance hit even on state of the art graphics 
cards as the most number of textures the cards can process in one 
pass is three. If four were used, then two passes would be needed 
for the graphics card to draw the triangle. This would reduce the 
speed of the rendering time by half. Therefore, a new approach has 
to be taken. 
  
An alternative is to make use of unique textures for the terrain 
instead of tiling textures 15. With modern graphics cards having up 
to 64MB of memory, it seems sensible to use this memory on the 
card and using more than one or two textures for terrain, which 
will add visual richness to a game. This is the approach taken for 
the implementation in our system. The benefits are numerous.  

 
- The terrain can be textured using just one texture. This 

leaves a second or even third textures to perform 
special effects such as dynamic lighting using light-
maps or even moving water effects, without incurring a 
major speed hit. 

- The generated textures can be made by blending any 
number of other textures together. For example, rock, 
grass, mud and shrapnel damage textures could all be 
blended into one. 

- By generating the terrain at load time and only updating 
a small part of it at any one time, texture generation is 
kept to a minimum during the game. 

- The generated textures can be created once and then 
saved on to the hard disk for future use. 

- Incorporating mipmapping is as simple as enabling it in 
a standard graphics API. 

 
Rather than generate one big texture, the system should be able to 
split up the texture into several smaller parts. For example, a 
512x512 terrain could be split into 4 square generated textures or a 
1024x1024 might be split into 16. However, the size of these 
textures needs to be considered. Using too many or too few could 
be highly inefficient and therefore the size of these generated 
textures should be configurable. It is also worth noting that some 
older graphics cards, such as the Voodoo 3, have a maximum 
texture resolution of 256x256. Therefore, this should be the default 
size. 
 
A simple image height map can be used to store the terrain height 
information. The advantages are convenience, rather than having to 
write ones own file tools to create the maps, standard image editing 
packages can be used, such as Paint Shop Pro or Adobe 
PhotoShop. There is however one major drawback with a standard 
height map. The problem is from the fact that the system is only 
storing a height value at each location, no texture information is 
included. This indicates that texture information has to be derived 
from the height values alone. A more conventional way of 
generating terrain with textures involves linking certain heights 
with certain textures. For example, low terrain might be sand and 
water while high terrain might be snow and rock. While this 
system is adequate, its main draw back is that mountain lakes for 
example would never be generated. Although this is not a huge 
problem, it does limit the freedom and variety of the maps. To 
overcome this drawback a two-part height map is used in our 
system. The first image is a standard grey scale height map 
therefore it allows 256 different heights. The second map uses 
several different key colours to represent different terrain types. 
The advantage of this method is that terrain designer can place 
complex terrain types in a game such as a sandy beach and a lake 
high up in the mountains. 
 
The terrain generated in our system uses two types of image maps: 
actual height map and the second is the terrain type map as shown 
in figure 3. Figure 3a shows the actual height map and the figure3b 
shows the terrain type map. Green represents grass, yellow 
represents sand and blue as water. The rendered result is shown in 
figure 4. 
 
The screen shot in figure 5 shows a large terrain based upon a 
1024x1024 height map. Some of the main features include snow 
peaked volcano with lake in crater, jagged rocks jutting out of sea, 
and small rivers running down the sides of the mountain can be 
seen. All of these are possible with the high -resolution height maps 
and pixel level accuracy of the texture generation. Fine details can 
easily be incorporated in the map. The two maps, height map and 
terrain type map, which created the terrain, are shown in figure 6a 
and figure 6b respectively. 
 
 
2.4 Control system  
 
The camera and control system designed in our system are to be 
simple and easy to use as it is intended for using in a game. Several 
camera movements are needed to be controlled. They are: 
 
- Moving the camera forward, backwards, left and right. 
- Moving the camera up and down. 
- Rotating the camera left and right. 
The keys chosen are based upon several factors, but mainly those 
which would be obvious, convenient and close together as shown 
in table 1.  
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Camera Forward 
Camera Back 
Camera Left 
Camera Right 
Camera Up 
Camera Down 
Rotate Left 
Rotate Right 

Up Arrow 
Down Arrow 
Left Arrow 
Right Arrow 
End 
Home 
Delete 
Pg Down 

                      
Table 1: Control keys 

 
3. Speed and Memory Analysis  
 
The speed and memory analysis procedure to test the system has 
been run on a variety of other machines. 
 
Two elements were tested, firstly the terrain rendering speed, in 
frames per second and secondly the time taken to perform a terrain 
demonstration program, timed in milliseconds. Both of tests were 
performed at 640x480 in windowed mode using the smaller 
512x512 world with the cameras in the same place. The reason for 
using the smaller window and world size is so that all machines 
have a possibility to run the program at an adequate speed. The 
desktop colour depth was set to 16-bit colour if possible. 
 
The first test was run on ten PC’s with varying specifications. The 
objective was to try as wider range of CPU’s, graphics cards and 
memory configurations as possible. The test machines, listed in 
order of CPU MHz speed, are as follows: 
 
 CPU Graphics Card Mem. OS 

A Intel PII 300  TNT2 M64 196MB Win98  

B AMD K6-2 350 TNT 128MB Win2k  

C 2 Intel PII 350  GeForce DDR 384MB Win2k  

D Intel Celeron 366  TNT 64MB Win98  

E Intel Celeron 400  TNT2 Ultra 320MB Win2k  

F 2 Intel PII 450  3DLabs Glint 512MB Win2k  

G Intel PIII 600  ATI Rage Pro 128 128MB Win2k  

H Intel PIII 800  GeForce2 GTS 256MB WinME  

I AMD Duron 900  GeForce2 MX 196MB WinME  

J AMD Athlon 1.3  GeForce2 GTS 512MB Win2k  

 
Table 2: Ten PC specifications 

 
There are a large variety of specifications in the test machines, 
with all factors varying greatly. Also included in the table 2 are the 
different operating systems run on each machine. This information 
is included because benchmarks were significantly higher on 
machines running Windows Millennium Edition (WinME) than 
that on Windows 2000 Professional (Win2k). However there are 
still many other variables to be taken into account such as differing 
driver versions, memory speeds and so forth. The results table 3 
shows the number of frames per second that each of the test 
machines obtained. 
 

Time Taken for Demo (Lower is Better)

3.42

3.61

3.22

3.02

2.74

0

1.9

1.46 1.44

0.9

0

0.5

1

1.5

2

2.5

3

3.5

4

A B C D E F G H I J

Machine

T
im

e
 (

S
e

c
o

n
d

s
)

 
Table 3: The number of frames per second on each of the test 

machines 
 

A demonstration program is used and timed to test the terrain 
deformation time. The results are shown in table 4 in which the 
graph shows that the biggest influence on frame rate is the speed of 
the graphics card. This is not surprising as when nothing is 
moving, there is very little for the CPU to process. However, the 
reverse is true.  
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Table 4: Frame rate Benchmarks 

 
The program ran on almost all tested machines with the most 
common hardware specifications and the speed was acceptable 
under the circumstances. The terrain is highly detailed and 
extremely adapting. As the above testing showed, the frame rates 
are high, however the time taken to perform the deformations is 
still long. The reason for this is that our system codes have not 
been significantly optimised and many improvements can be done 
in this area. 
 
4. Disscussions and Conclusion 
 
 
Binary triangle trees have been proved to be highly robust and very 
efficient for terrain deformations. The capability of the method to 
generate a triangle mesh both quickly and with controllable 
complexity is very suited to RTS games. Keeping the triangle 
count down is very important to maintain acceptable frame rates. 
The end result of the terrain deformation implementation can be 
seen in the screen shots in figure 7, which shows only a smaller 
part of a terrain textured. The image in figure 8 shows the same 
terrain but in wire frame. The different sizes of triangle are clearly 
visible. The bands of rocky outcrops can be seen where there is a 
steep increase in the slope of the terrain. Also the darker areas at 
the edge are where the sand and water meet. 
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A small built in demonstration has been coded into the system that 
runs through a series of deformations that allow users to see the 
terrain adapt when many deformations occur. The terrain used in 
the demonstration is a small terrain. Ten random deformations 
occur followed by a series of scripted ones. The terrain is 
completely flat water mid way through the demo and so the 
reduction in triangles is clearly visible. At the end there is a small 
mountain created on an island in the centre of the map as shown in 
figure 9. Snow effect is also shown in figure 9. The snow starts 
from high above the ground and slowly falls onto the terrain. When 
the snow hits the ground it settles over time and so the terrain 
slowly starts to be covered in snow. 
 
The texture generation in the system involved a great amount of 
work, but the results show that it was clearly worth it. The end 
results demonstrate the great control possibilities with our system, 
the terrain can be completely flattened and then a new terrain 
created. Meanwhile the texture is constantly being updated to 
reflect the change in terrain. The effect is further emphasised by 
the snowing effect. This shows the capability of the system to 
manipulate the textures with permanent effects. When the snowfall 
is switched off, the snow still stays on the ground. The whole 
effect is still done using single pass texturing. 
 
The current system could be improved in several areas. The split 
only approach currently employed is adequate in the creation of the 
triangle mesh, but a split and combine approach would be better 
for the purpose. The next stage would be to traverse the binary 
triangle tree, updating only those that have been tagged. This alone 
should result in a large speed improvement due to reduce the 
number of calculations and the memory bandwidth required when 
recalculating the whole terrain. 
 
One other area for improvement is the texturing. The current 
system works very well for most terrain types, however its one 
weakness is that the texture will get stretched on near vertical 
cliffs. One possible approach to solve this problem is to use a 
similar technique as used in Outcast 15. This simple idea is to mark 
off special polygons, i.e. those with a very steep gradient. This 
could be done using a special colour code in the terrain type map 
or simply checked for when generating the triangles. When such a 
triangle is to be drawn, an alternat ive texturing method could be 
applied. 
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Appendix A 
 
This section of  code calculates the intger points along a line, 
effectivly resolving the equivilent of scan lines in the rasterisation 
of polygons. This is done for the three edges in each triangle.  Our 
terrain deformation implementation is based on Real-time 
Optimally Adapting Meshes and details of the method are 
described in 4. In our system, the terrain could be loaded from a 
height-map, converted to a polygon mesh and then, during the 
game, be updated and continuously optimised. It also allows users 
to configure the detail settings in order to run optimally on their 
personal machine. The algorithm could even be aware of current 
frame rates and consider this when optimising the terrain 5. 
 
Taking each edge { 
    Step through from start vertex to finish vertex in y { 
        Increase x by slope of edge 
        Record point in array. 
    } 
} 
 
Using these ‘scan lines’ the variation in height is calculated. This is 
multiplied by the number of height values checked and then 
compared to an arbitrary detial level. The purpose of multiplying 
by the number of heights is to decide that smaller polygons are 
split less. 
 
Count = 0 
 
Taking each of scan lines { 
    Check height for all points between the start and end (incl.) { 
        If height > largest 
            Largest = height 
        If height < smallest  
            Smallest = height 
        Count + 1 
    } 
} 
 
If (highest -lowest)*count > detaillevel 
    Return true 
Else 
    Return false 
 
The following pseduo codes extract  generate the terrain textures 
upon load up. Taking each texture grid in turn, the texture is 
generated and then writeen out to a file for use later. 
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genTextures() 
{ 
 Load terrain textures and abort if any failed. 
 
 For each texture grid square { 
  Generate texture 
  Write texture to file 

} 
} 
 
For a given texture grid, the texture is then created. It takes it pixel 
by pixel and blends two textures at a time. A third or subsequent 
texture can then be added. 
 
createGenTexture () 
{ 
 Create pointers to terrain  types. 
 
 Go through each pixel of generated texture{ 
  Find the slope for that pixel 
  Get the type for that pixel 
 
 First texture is the terrain type of the pixels 
  Second texture is usually rock 
 

Destination pixel is first texture times blend 
plus second texture times one minus blend 
 
Third texture is blended with above. 

} 
} 
 
 
Appendix B 
 
This is the node structure used for terrain deformations. One of 
these contains all the information for one triangle. The parent, 
child and adjacent pointers then link this node to the rest of the 
tree. 
 
typedef struct node_str 
{ 
 float point1[3]; 
 float point2[3]; 
 float point3[3]; 
 
 unsigned short generation; 
 short texnum; 
 
 unsigned int terrain[3][2]; 
 float texcoords[6]; 
 float heightaverage; 
 
 bool draw; 
  
 node_st r *parent; 
 node_str *child[2]; 
 node_str *adjacent[3]; 
} Node; 
 
The following code extract calculates the blend factor. It uses the 
diference in height between the point and its right neighbour and 
difference in height between it and its bottom neighbour. A look up 
table is then used to find the overall blend value. 
 
float findBlendFactor(int x, int y) 
{ 
 int vector1; 
 int vector2; 
 int vector3; 
 

 float blends[10] = { 0.0, 0.0, 0.0, 0.3, 0.6, 0.7, 0.85, 0.9, 
0.95, 1.0 }; 

 
 vector1 = getHeightFor2(x+1, y) - getHeightFor2(x-1, y); 
 vector2 = getHeightFor2(x, y+1) - getHeightFor2(x, y-1); 
 vector3 = abs(vector1 + vector2); 
 
 if( vector3 >= 10 ) 
  vector3 = 9; 
 
 return blends[vector3]; 
} 
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Figure 3a: The small terrain height map 

 
Figure 3b: The small terrain type map 

 

 
Figure 4: The rendered results from the high maps 

 
Figure 5: The large deformable terrain  

 

 
Figure 6a: The height map for the large terrain 

 
     Figure 6b:  The terrain type map for the large terrain 
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Figure 7: The deformed terrain 

 

 
Figure 8: The deformed terrain in wire frame 

 

       
                  Figure 9: The deformed terrain with snowfall  
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