

EUROGRAPHICS 2001/Davison and Tang Short Presentations

Deformable Terrain Generation for Real-time Strategy Game

Christopher Davison and Wen Tang

School of Computing and Mathematics, The University of Teesside, Middlesbrough, United Kingdom

Abstract
In this paper, we present a system that has the ability to deform terrain for Real-time Strategy Game with general PC
hardware specifications. Various effects could be simulated in real-time such as raising and lowering the ground,
creating a large chasm, or levelling the terrain. Effects such as ordering a unit to fire that then destroys part of a
mountain could also be replicated. We present our implementations and techniques in using terrain deformation
algorithms, Real-time Optimally Adapting Meshes, texture design and terrain generations. An analysis of the speed and
memory usage of the system with respect to different PC hardware systems is also presented.

1. Introduction

Deformable terrain is a feature rarely found in current Real-time
Strategy Games (RTS). A system that allows to deform the terrain
and to see the results on screen has great potential in terms of both
fun and strategies of game-play.

Computer games are continuously evolving. Technology that is
new and fancy today will be old and worn tomorrow and the PC
games industry is always looking for new ways to improve their
games; How can they take advantage of the never ending advances
in CPU and graphics card speed? What can be done in a game
depends upon many factors, however the speed of average users’
computers is possibly the most limit ing of all.

Advances in graphics tend to happen first followed later by
advances in game play features. In this paper, we present our
system, which is focused on adding significant deformable terrain
game play features to an existing genre.

In many computer games, the traditional isometric view has been
changed into a fully 3D environment. Total Annihilation by
Cavedog Entertainment 1 was released in 1997 and was the first 3D
RTS game. Upon release, it was considered one of the best RTS
games and was a benchmark against which many others were
measured. The terrain was 3D with accurate line of sight and arcs
of fire. The units were also 3D models, however the rest was very
much simpler. The terrain was based upon a tile system and it was
not possible to deform the terrain at all.

Some of the weapons in the game were huge weapons of mass
destruction. One in particular was extremely powerful, the ‘Big
Bertha’. It was a very long range and deadly, but quite inaccurate
artillery gun. The building in the game took a long time to build
and each shot used up an amazing amount of resources, but if it hit
a building, the building was destroyed. One of the key
considerations was where to build the building. Other than making
sure it was in range, the most vital consideration was that its arc of
fire could hit the enemy base. Getting this wrong would mean that
the shells trajectory would cause it to hit the top of the mountain
rather than go over and into your enemy’s base. One of the
disappointments with the game was that if it could destroy any
building in one shot, why would the mountain be unharmed?

Populous 3: The Beginning by Bullfrog 2 was released about 2
years ago and was among the first 3D RTS game to allow the
terrain to be deformed. This game had a unique terrain system
within which players can raise and lower the terrain, create
earthquakes and even create volcanoes. However, there were many
restrictions to what was possible. There are a limited number of
heights for the terrain, about six. The terrain works by having each
effect use a kind of template. There are many places where a
deformation cannot be done, such as a volcano on high ground. In
addition, the effects are not very accurate. This is because the
terrain works by recognising set combinations and patterns and
then knows how to translate this into an appropriate grid of
polygons. This method works very well, but it relies upon
constraining the possibilities. One that would not be possible with
this technique would be a small dent in the terrain, for example.

Tread Marks 3 is an arcade style 3D battle tank combat and racing
game written by Longbow Digital Arts. This game proved very
interesting due to its impressive terrain and how well it makes use
of it. This is a good example of where adding deformable terrain to
a game has raised the enjoyment level and ‘fun factor’ of the game.

To develop a RTS game with incorprated terrain deformation
features would raise a number of challenges in both technique
implementations and system design. From terrain generation point
of view, there are areas to be considered:

- How to define the terrain.
- How to store the terrain internally.
- How to render the terrain.
- How to deform the terrain.

Terrain generation and rendering is certainly not a new topic and
many research methods have been published in the past 4, 5, 6, 7.
These methods vary greatly in complexity and quality, most of
them emphasise on terrain visualization and, however, few of them
deal with terrain deformations. This is where the challenge lay.

In this paper, we present a system that has the ability to deform
terrain for Real-time Strategy Game with general PC hardware
specifications. Various effects could be simulated in real-time such
as raising and lowering the ground, creating a large chasm, or

 The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org

Davison and Tang / Deformable Terrain for RST Games

levelling the terrain. Effects such as ordering a unit to fire that then
destroys part of a mountain could also be replicated. We present
our implementations and techniques in using terrain deformation
algorithms, Real-time Optimally Adapting Meshes, texture design
and terrain generations. Our system design and implementations
are described in the next section. An analysis of the speed and
memory usage of the system with respect to different PC hardware
systems is described in section three. The final section of the
paper, section 4, presents the results and discussion.

2. Algorithms for Terrain Generation

The manin consideration in choosing which method in our terrain
deformation system is two fold. The method should allow fast and
efficient terrain generations and deformations on general PCs
avaiable to most players. The techniques should also allow the
most terrain rendering task to be taken effectivly by graphics card
so that more CPU time available for other areas of the game such
as 3D sound and artificial intelligence.

2.1 Rendering consderations – voxels rendering vs.

polygon rendering

Voxel rendering method 8, 9, has been used in many games for
terrain generation 10 with great success. The advantages of the
method are that it gives landscapes an extremely detailed and
"organic" look due to the ray casting method. Whilst, with
polygons, the ground of terrain is often flat, or at best, it is made
up of flat areas that give the ground a looking unevenness. It takes
too many polygons to draw natural looking ground for current 3D
cards. Once the terrain has been updated, the rays cast for
rendering will reflect the new terrain shape. A second advantage is
that with some optimisations, such as the one introduced by
Cohen-Or et al 11, is that a form of level of det ail (LOD) is
implemented automatically. Despite many advantages in voxel
techniques and the advances in speed 12, 13, they remain too slow.
Determining where the ray intersects is highly processor intensive.
However the major drawback of the algorithm is the lack of
hardware acceleration. Modern consumer level graphics cards only
accelerate polygon data. With the huge difference that hardware
acceleration can make, voxel rendering does not look to be the way
for our implementation This is becoming increasingly true every
month as faster graphics cards are released that allow a greatly
increased number of polygons to be used at any one time. Now
those terrains that once would not have been feasible, are gradually
becoming achievable. Consequently our implementation is a
polygon based rendering system.

2.2 Binary Triangle Trees for Terrain Deformation

Duchaineau et al 4 presented a method for maintaining an optimal
polygon mesh. The basic structure is using binary triangle trees.
There are several advantages of this structure, firstly, each node
only has two descendants, and secondly it uses triangles, which are
simpler to deal with than voxels. Duchaineau et al. went on to
show how this structure could be used to maintain an optimal mesh
that includes LOD techniques. Their method splits and merges
triangles as necessary according to terrain variation, distance from
camera and maximum polygon count. Finally, as an added on
advantage of the data structure, highly efficient frustum culling can
also be achieved.

The main concern with this technique is that the generated terrain
is not in an efficient form for optimal rendering speed on modern
graphics hardware. However, it has been suggested that by
reordering the triangles slightly, either triangle fans or triangle
strips could be created which is far more efficient. Overall, this
method is highly suited to our task. Not only is it simple, efficient
and suitable for games, it also can easily cope with deformations.
Our terrain deformation implementation is based on Real-time
Optimally Adapting Meshes. In our system, the terrain could be

loaded from a height-map, converted to a polygon mesh and then,
during the game, be updated and continuously optimised. It also
allows users to configure the detail settings in order to run
optimally on their personal machine. The algorithm could even be
aware of current frame rates and consider this when optimising the
terrain 5.

The binary triangle structure is the key component of the program.
It deals only with right-angled isosceles triangles. At the top level,
there is one triangle, which then has two descendants, and each of
them have two descendants etc as shown in figure 1. This is fixed;
each node either has no descendants or two and the shape of the
triangles are always the same.

Since each level of subdivision does not replace the level above,
the number of triangles after n levels of division is: 2(n+1) – 1.
Although this is quite a high number of triangles, only the bottom
level are drawn while the rest can be used for frustum culling and
collision detection algorithms.

Each triangle is stored as a node, with each node being aware of its
‘parent’ and its two ‘children’ as shown in figure 2. It is important
to mention that since the structure contains only triangles, and the
terrain to be built is square, there must actually be two trees at all
times. These structures are linked together and are often treated as
one. Each node has to keep track of several things in order for the
structure to be maintained. Each node needs to know its three
neighbours. These are highly important for coping when a triangle
has to be split. Details of the algorithm are in reference by
Duchaineau et al 4. The details of our implementation are listed in
Appendix A.

Figure 1. This diagram demonstrates how the triangles are
split.

 The Eurographics Association 2001.

Davison and Tang / Deformable Terrain for RST Games

Figure 2: The resulting tree shaped pattern

2.3 Texturing

The second consideration for our system design is texturing.
Texturing a terrain can be a complex task. "Texturing has been the
single biggest headache with landscapes in the game - allowing the
mission editor to select a texture for every square and dynamically
generate the combination textures for squares that are at a lower
detail level, as well as automatically texturing the terrain based on
vertex material." 14

Applying a texturing to each polygon will not work satisfactory
unless the textures are applied with great precision. The challenge
is that the textures are square but the triangle that it is being
applied to it is not, so obvious texture can occur. The second
concern with texturing is that because the terrain is deformable, the
textures would need to be updated accordingly. A final
consideration is the number of textures applied to the terrain, up to
four textures might need to be applied to each triangle. This would
result in a large performance hit even on state of the art graphics
cards as the most number of textures the cards can process in one
pass is three. If four were used, then two passes would be needed
for the graphics card to draw the triangle. This would reduce the
speed of the rendering time by half. Therefore, a new approach has
to be taken.

An alternative is to make use of unique textures for the terrain
instead of tiling textures 15. With modern graphics cards having up
to 64MB of memory, it seems sensible to use this memory on the
card and using more than one or two textures for terrain, which
will add visual richness to a game. This is the approach taken for
the implementation in our system. The benefits are numerous.

- The terrain can be textured using just one texture. This

leaves a second or even third textures to perform
special effects such as dynamic lighting using light-
maps or even moving water effects, without incurring a
major speed hit.

- The generated textures can be made by blending any
number of other textures together. For example, rock,
grass, mud and shrapnel damage textures could all be
blended into one.

- By generating the terrain at load time and only updating
a small part of it at any one time, texture generation is
kept to a minimum during the game.

- The generated textures can be created once and then
saved on to the hard disk for future use.

- Incorporating mipmapping is as simple as enabling it in
a standard graphics API.

Rather than generate one big texture, the system should be able to
split up the texture into several smaller parts. For example, a
512x512 terrain could be split into 4 square generated textures or a
1024x1024 might be split into 16. However, the size of these
textures needs to be considered. Using too many or too few could
be highly inefficient and therefore the size of these generated
textures should be configurable. It is also worth noting that some
older graphics cards, such as the Voodoo 3, have a maximum
texture resolution of 256x256. Therefore, this should be the default
size.

A simple image height map can be used to store the terrain height
information. The advantages are convenience, rather than having to
write ones own file tools to create the maps, standard image editing
packages can be used, such as Paint Shop Pro or Adobe
PhotoShop. There is however one major drawback with a standard
height map. The problem is from the fact that the system is only
storing a height value at each location, no texture information is
included. This indicates that texture information has to be derived
from the height values alone. A more conventional way of
generating terrain with textures involves linking certain heights
with certain textures. For example, low terrain might be sand and
water while high terrain might be snow and rock. While this
system is adequate, its main draw back is that mountain lakes for
example would never be generated. Although this is not a huge
problem, it does limit the freedom and variety of the maps. To
overcome this drawback a two-part height map is used in our
system. The first image is a standard grey scale height map
therefore it allows 256 different heights. The second map uses
several different key colours to represent different terrain types.
The advantage of this method is that terrain designer can place
complex terrain types in a game such as a sandy beach and a lake
high up in the mountains.

The terrain generated in our system uses two types of image maps:
actual height map and the second is the terrain type map as shown
in figure 3. Figure 3a shows the actual height map and the figure3b
shows the terrain type map. Green represents grass, yellow
represents sand and blue as water. The rendered result is shown in
figure 4.

The screen shot in figure 5 shows a large terrain based upon a
1024x1024 height map. Some of the main features include snow
peaked volcano with lake in crater, jagged rocks jutting out of sea,
and small rivers running down the sides of the mountain can be
seen. All of these are possible with the high -resolution height maps
and pixel level accuracy of the texture generation. Fine details can
easily be incorporated in the map. The two maps, height map and
terrain type map, which created the terrain, are shown in figure 6a
and figure 6b respectively.

2.4 Control system

The camera and control system designed in our system are to be
simple and easy to use as it is intended for using in a game. Several
camera movements are needed to be controlled. They are:

- Moving the camera forward, backwards, left and right.
- Moving the camera up and down.
- Rotating the camera left and right.
The keys chosen are based upon several factors, but mainly those
which would be obvious, convenient and close together as shown
in table 1.

 The Eurographics Association 2001.

Davison and Tang / Deformable Terrain for RST Games

Camera Forward
Camera Back
Camera Left
Camera Right
Camera Up
Camera Down
Rotate Left
Rotate Right

Up Arrow
Down Arrow
Left Arrow
Right Arrow
End
Home
Delete
Pg Down

Table 1: Control keys

3. Speed and Memory Analysis

The speed and memory analysis procedure to test the system has
been run on a variety of other machines.

Two elements were tested, firstly the terrain rendering speed, in
frames per second and secondly the time taken to perform a terrain
demonstration program, timed in milliseconds. Both of tests were
performed at 640x480 in windowed mode using the smaller
512x512 world with the cameras in the same place. The reason for
using the smaller window and world size is so that all machines
have a possibility to run the program at an adequate speed. The
desktop colour depth was set to 16-bit colour if possible.

The first test was run on ten PC’s with varying specifications. The
objective was to try as wider range of CPU’s, graphics cards and
memory configurations as possible. The test machines, listed in
order of CPU MHz speed, are as follows:

 CPU Graphics Card Mem. OS

A Intel PII 300 TNT2 M64 196MB Win98

B AMD K6-2 350 TNT 128MB Win2k

C 2 Intel PII 350 GeForce DDR 384MB Win2k

D Intel Celeron 366 TNT 64MB Win98

E Intel Celeron 400 TNT2 Ultra 320MB Win2k

F 2 Intel PII 450 3DLabs Glint 512MB Win2k

G Intel PIII 600 ATI Rage Pro 128 128MB Win2k

H Intel PIII 800 GeForce2 GTS 256MB WinME

I AMD Duron 900 GeForce2 MX 196MB WinME

J AMD Athlon 1.3 GeForce2 GTS 512MB Win2k

Table 2: Ten PC specifications

There are a large variety of specifications in the test machines,
with all factors varying greatly. Also included in the table 2 are the
different operating systems run on each machine. This information
is included because benchmarks were significantly higher on
machines running Windows Millennium Edition (WinME) than
that on Windows 2000 Professional (Win2k). However there are
still many other variables to be taken into account such as differing
driver versions, memory speeds and so forth. The results table 3
shows the number of frames per second that each of the test
machines obtained.

Time Taken for Demo (Lower is Better)

3.42

3.61

3.22

3.02

2.74

0

1.9

1.46 1.44

0.9

0

0.5

1

1.5

2

2.5

3

3.5

4

A B C D E F G H I J

Machine

T
im

e
 (

S
e

c
o

n
d

s
)

Table 3: The number of frames per second on each of the test

machines

A demonstration program is used and timed to test the terrain
deformation time. The results are shown in table 4 in which the
graph shows that the biggest influence on frame rate is the speed of
the graphics card. This is not surprising as when nothing is
moving, there is very little for the CPU to process. However, the
reverse is true.

Frame Rate Benchmarks (Higher is Better)

70 69

220

67

117

0

150

495

362 350

0

100

200

300

400

500

600

A B C D E F G H I J

Machine

Fr
am

es
 P

er
 S

ec
on

d

Table 4: Frame rate Benchmarks

The program ran on almost all tested machines with the most
common hardware specifications and the speed was acceptable
under the circumstances. The terrain is highly detailed and
extremely adapting. As the above testing showed, the frame rates
are high, however the time taken to perform the deformations is
still long. The reason for this is that our system codes have not
been significantly optimised and many improvements can be done
in this area.

4. Disscussions and Conclusion

Binary triangle trees have been proved to be highly robust and very
efficient for terrain deformations. The capability of the method to
generate a triangle mesh both quickly and with controllable
complexity is very suited to RTS games. Keeping the triangle
count down is very important to maintain acceptable frame rates.
The end result of the terrain deformation implementation can be
seen in the screen shots in figure 7, which shows only a smaller
part of a terrain textured. The image in figure 8 shows the same
terrain but in wire frame. The different sizes of triangle are clearly
visible. The bands of rocky outcrops can be seen where there is a
steep increase in the slope of the terrain. Also the darker areas at
the edge are where the sand and water meet.

 The Eurographics Association 2001.

Davison and Tang / Deformable Terrain for RST Games

A small built in demonstration has been coded into the system that
runs through a series of deformations that allow users to see the
terrain adapt when many deformations occur. The terrain used in
the demonstration is a small terrain. Ten random deformations
occur followed by a series of scripted ones. The terrain is
completely flat water mid way through the demo and so the
reduction in triangles is clearly visible. At the end there is a small
mountain created on an island in the centre of the map as shown in
figure 9. Snow effect is also shown in figure 9. The snow starts
from high above the ground and slowly falls onto the terrain. When
the snow hits the ground it settles over time and so the terrain
slowly starts to be covered in snow.

The texture generation in the system involved a great amount of
work, but the results show that it was clearly worth it. The end
results demonstrate the great control possibilities with our system,
the terrain can be completely flattened and then a new terrain
created. Meanwhile the texture is constantly being updated to
reflect the change in terrain. The effect is further emphasised by
the snowing effect. This shows the capability of the system to
manipulate the textures with permanent effects. When the snowfall
is switched off, the snow still stays on the ground. The whole
effect is still done using single pass texturing.

The current system could be improved in several areas. The split
only approach currently employed is adequate in the creation of the
triangle mesh, but a split and combine approach would be better
for the purpose. The next stage would be to traverse the binary
triangle tree, updating only those that have been tagged. This alone
should result in a large speed improvement due to reduce the
number of calculations and the memory bandwidth required when
recalculating the whole terrain.

One other area for improvement is the texturing. The current
system works very well for most terrain types, however its one
weakness is that the texture will get stretched on near vertical
cliffs. One possible approach to solve this problem is to use a
similar technique as used in Outcast 15. This simple idea is to mark
off special polygons, i.e. those with a very steep gradient. This
could be done using a special colour code in the terrain type map
or simply checked for when generating the triangles. When such a
triangle is to be drawn, an alternat ive texturing method could be
applied.

References:

1. Ron Dulin, 1997, “Total Annihilation”, Review,

GameSpot UK,
http://www.gamespot.co.uk/stories/reviews/

2. Ed Ricketts, “Populous: The Beginning “ Game Review,
PC Gamer Issue 65. http://www.pcgamer.co.uk/

3. Sarju Shah, “Tread Marks” Review on FiringSquad,
http://firin gsquad.gamers.com/games/treadmarks/

4. Mark Duchaineau,Murray Wolinski, David E. Sigeti,
Mark C. Miller, Charles Aldrich, and Mark B. Mineev-
Weinstein, 1997, “ROAMing Terrain: Real-time
Optimally Adapting Meshes.” Proceedings of the
Conference on Visualisation’97 , pp. 81-88, Oct. 1997

5. Bryan Turner, 2000, “Real-Time Dynamic Level of Detail
Terrain Rendering with ROAM.” Features on Gamasutra.
3 April 2000.

6. Hugues Hoppe. 1997, “View-dependent refinement of
progressive meshes”, In SIGGRAPH’97 Conference
Proceeding, August 1997.

7. Peter Lindstrom, David Koller, William Ribarsky, Nick
Faust, and Gregory A. Turner, 1996, “Real-time
Continuous Level of Detial Rendering of Height Fields”.
In SIGGRAPH’96 Conference Proceedings, pp. 109-118,
August 1996.

8. Alan Watt and Fabio Policarpo, 2001, “3D Games Real-
time Rendering and Software Technology”, Addison-
Wesley, 2001

9. Foley and Van Dam et al., Computer Graphics – Principles
and Practice, Addison-Wesley, 1996

10. Alex Champandard, ” Voxel Landscape Engines”, Daily
Game Development News and Resources.
http://www.flipcode.com/voxtut/

11. D. Cohen-Or, E. Rich, U. Lerner, V. Shenkar
Real-Time Photo-Realistic Visual Flythrough.
IEEE Transactions on Visualization and Computer
Graphics, 2:3 (1996) 255-265

12. Thatcher Ulrich, 2000, “Continuous LOD Terrain
Meshing Using Adaptive Quadtrees,” Features on
Gamasutra, 28 February 2000.
http://www.gamasutra.com/features

13. Peter Lindstrom et al. 1996, “Real-Time, Continuous
Level of Detail Rendering of Height Fields”, In
Proceedings of ACM SIGGRAPH 96, pp. 109-118

14. Mark Allen, “Terrain Texturing “
http://www.tashco.com/terraintexturing.html

15. Franck Sauer et al., “Outcast: Programming Towards a
Design Aesthetic”,
http://www.appeal.be/products/page1/Outcast_GDC/outca
st_gdc_1.htm

Appendix A

This section of code calculates the intger points along a line,
effectivly resolving the equivilent of scan lines in the rasterisation
of polygons. This is done for the three edges in each triangle. Our
terrain deformation implementation is based on Real-time
Optimally Adapting Meshes and details of the method are
described in 4. In our system, the terrain could be loaded from a
height-map, converted to a polygon mesh and then, during the
game, be updated and continuously optimised. It also allows users
to configure the detail settings in order to run optimally on their
personal machine. The algorithm could even be aware of current
frame rates and consider this when optimising the terrain 5.

Taking each edge {
 Step through from start vertex to finish vertex in y {
 Increase x by slope of edge
 Record point in array.
 }
}

Using these ‘scan lines’ the variation in height is calculated. This is
multiplied by the number of height values checked and then
compared to an arbitrary detial level. The purpose of multiplying
by the number of heights is to decide that smaller polygons are
split less.

Count = 0

Taking each of scan lines {
 Check height for all points between the start and end (incl.) {
 If height > largest
 Largest = height
 If height < smallest
 Smallest = height
 Count + 1
 }
}

If (highest -lowest)*count > detaillevel
 Return true
Else
 Return false

The following pseduo codes extract generate the terrain textures
upon load up. Taking each texture grid in turn, the texture is
generated and then writeen out to a file for use later.

 The Eurographics Association 2001.

Davison and Tang / Deformable Terrain for RST Games

genTextures()
{
 Load terrain textures and abort if any failed.

 For each texture grid square {
 Generate texture
 Write texture to file

}
}

For a given texture grid, the texture is then created. It takes it pixel
by pixel and blends two textures at a time. A third or subsequent
texture can then be added.

createGenTexture ()
{
 Create pointers to terrain types.

 Go through each pixel of generated texture{
 Find the slope for that pixel
 Get the type for that pixel

 First texture is the terrain type of the pixels
 Second texture is usually rock

Destination pixel is first texture times blend
plus second texture times one minus blend

Third texture is blended with above.

}
}

Appendix B

This is the node structure used for terrain deformations. One of
these contains all the information for one triangle. The parent,
child and adjacent pointers then link this node to the rest of the
tree.

typedef struct node_str
{
 float point1[3];
 float point2[3];
 float point3[3];

 unsigned short generation;
 short texnum;

 unsigned int terrain[3][2];
 float texcoords[6];
 float heightaverage;

 bool draw;

 node_st r *parent;
 node_str *child[2];
 node_str *adjacent[3];
} Node;

The following code extract calculates the blend factor. It uses the
diference in height between the point and its right neighbour and
difference in height between it and its bottom neighbour. A look up
table is then used to find the overall blend value.

float findBlendFactor(int x, int y)
{
 int vector1;
 int vector2;
 int vector3;

 float blends[10] = { 0.0, 0.0, 0.0, 0.3, 0.6, 0.7, 0.85, 0.9,
0.95, 1.0 };

 vector1 = getHeightFor2(x+1, y) - getHeightFor2(x-1, y);
 vector2 = getHeightFor2(x, y+1) - getHeightFor2(x, y-1);
 vector3 = abs(vector1 + vector2);

 if(vector3 >= 10)
 vector3 = 9;

 return blends[vector3];
}

 The Eurographics Association 2001.

Davison and Tang / Deformable Terrain for RST Games

Figure 3a: The small terrain height map

Figure 3b: The small terrain type map

Figure 4: The rendered results from the high maps

Figure 5: The large deformable terrain

Figure 6a: The height map for the large terrain

 Figure 6b: The terrain type map for the large terrain

 The Eurographics Association 2001.

Davison and Tang / Deformable Terrain for RST Games

Figure 7: The deformed terrain

Figure 8: The deformed terrain in wire frame

 Figure 9: The deformed terrain with snowfall

 The Eurographics Association 2001.

