
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

Game Based Interfaces

Holger Diener and Hagen Schumacher

Fraunhofer Institute for Computer Graphics Rostock, Germany

Abstract
Complex menu and dialog structures prevent users from working intuitively with standard applications. In this
paper, a new kind of user interface is suggested based on concepts of computer games. Defining a new structure
for the functionality of an application will simplify users adjustment to new applications and will improve their
everyday work. Usability tests based on eye tracking devices are described to verify the correctness of this game
based interface approach. In addition, other game based concepts are introduced, which can be transferred to
standard applications to improve the usability.

1. Introduction

Today, current applications occlude their functionality be-
hind a highly complex menu and dialog structure. This
seems to be necessary, because of the increasing scope of
functionality that was integrated into applications during the
last years. As a sales argument, it is important to offer as
much functionality as possible. If experts still get along with
these applications, then occasional users are deterred from
such extensive applications. The vast number of possibili-
ties suppresses any motivation to explore the application on
their own. Reading the manuals before using the applica-
tion is time-consuming and not much fun. Finally, users will
switch to easier and simpler application, even if those do not
offer all functionality that is needed.

It cannot be the intention of future applications to offer re-
duced possibilities for the one reason to keep the application
clearly arranged and easy to use. Nevertheless, without new
structures and concepts for user interfaces more and more
functionality will shortly lead to unusable applications.

If we consider the entire software industry, a source for
solutions can be found in the computer games section. In
computer games, the rise of functionality is as high as in
standard applications. For example, compare one of the first
computer gamesPong(1975) with a complex modern simu-
lation games likeAges of Empire. In spite of complex func-
tionality, computer games are still very popular. One reason
for the popularity is certainly a different tenor towards games
respectively standard applications. However, the most im-
portant reason is a better mediation of functionality using
new concepts and ideas.

In this paper, we suggest a new approach for user inter-
faces in standard applications: game based interfaces. New
concepts and ideas from computer games can reform the
work with standard applications like word processing or
CAD. The transfer of these concepts from game software
or shortgamewareto standard software in everyday work or
shortworkwarewill simplify users adjustment to a new ap-
plication and will improve their everyday work. It is a good
starting point to increase the efficiency of work.

Our first approach concentrates on restructuring the appli-
cation functionality into new layers that depend on different
situations or tasks. Each layer can be represented by different
user interface structures. This approach is a result of obser-
vations of computer games. Some games use restricted user
interfaces specialized on only a few tasks and change the in-
terface whenever the situation or task changes. We think that
restructuring the functionality respective the user interface
of workware is a good way to improve everyday work. The
restructuring methods will be described in more detail in the
second section.

To compare game based interfaces with common user in-
terfaces we will perform usability tests. More details about
the tests and the test system will be given in section three.

In the fourth section, we will describe possible extensions
and approaches for future work that deal with analysis of
user behavior to generate personalized layers of functional-
ity for every user.

c© The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org


Diener and Schumacher / Game Based Interfaces

2. Restructuring functionality

Many of today’s application programs show that increasing
functionality often contradicts good operability. We need a
new structure, which offers the user only the needed func-
tionality, to overcome the problems that arise from the com-
mon tree-like menu structure, like long access time for spe-
cial functions, very long menus and confusing dialogs.

2.1. Basic concepts

This section gives an overview about the terms and objects
mentioned in this paper. We will concentrate on the function-
ality of applications. Why do we need applications at first?
Because, we have a number of problems, a work scenario,
which have to be done, and we need a suitable application
as a tool that supports us to finish the work. The application
can fulfill this requirement if it contains the needed function-
ality. Therefore, we can differentiate between thework sce-
nario as a basic motivation, thefunctionalitywe need to ful-
fill this scenario, and theapplicationthat provides the func-
tionality. All three concepts are associated; if the scenario
changes, we need new functionality and probably a new ap-
plication. Because, today’s applications are often oversized,
the correlation between needed functionality and application
is not one-to-one, we often use an application, which con-
tains much more functionality than needed. How to provide
simpler applications with only the necessary functionality, is
the main concern of this paper.

We are not dealing with all problems of a scenario at the
same time but one after the other. Our current problem is al-
ways a part of the whole scenario. It can be a scenario by
itself, a sub scenario, or a single task. Therefore, we do not
need the whole functionality necessary to solve the whole
scenario, but only enough functionality to solve our current
problem. Let us consider all functionality that we need to
complete a work scenario as an abstract space. Sub scenar-
ios or single tasks will then correlate to certain subspaces of
functionality. These subspaces contain exactly the function-
ality that is needed for the given sub scenario or task. We
call this subspacefunctionally closedto emphasize that also
functions are included that are indirectly needed, i.e. needed
by other functions.

Whenever our current problem changes we need other
functionality to solve the problem. We can of course use
an application, which is capable to handle all problems in
our work scenario, i.e. which provides all the necessary
functionality. However, this application would contain much
functionality that is not necessary for the current problem
and would be much more complex then a small application
that is just suitable for the current problem. In smaller and
simpler applications, it would be easier to find the functions
and to perform the given tasks. In section2.3 we will dis-
cuss two possible realizations to generate smaller applica-
tions which are suitable for the given sub scenarios: a build-
ing block principle and a filter method.

Figure 1: Overview of the basic concepts

2.2. Partial ordering of functionality

As mentioned above we need certain functionality to process
all problems within a work scenario and all sub scenarios
correlate to certain subspaces of this functionality. Letfmax

be the functionality space, which is needed to complete the
whole work scenario and letF be the set of all functionally
closed subspacesf ⊆ fmax. These subspaces can be disjoint
or have a nonempty intersection. Using the include relation,
we can define an partial order≤ on F with f1 ≤ f2 :if and
only if f2 contains all functionality off1, for all f1, f2 ∈ F .

fmax is the greatest element of this partial order and be-
cause only finite functionality is necessary to complete a
work scenario,fmax is finite. Therefore, it is easy to see that
for every two subspacesf1, f2 ∈ F there is a smallest ele-
ment fsup∈ F with f1 ≤ fsup and f2 ≤ fsup. With this we
can define a supremum operator∨ in F . If we also include
the empty subspace off0, which theoretically represents an
empty application, we can also define the infimum operator
∧. With supremum and infimum operator the setF has all
properties of a lattice.

2.2.1. Functionality nesting and suborders

For every partial order there is a bijective mapping onto a di-
rected graph, therefore we can visualize the order by a Hasse
diagram (see figure2). The elements of the order are mapped
onto nodes, and comparable elements of the order are con-
nected by an edge, if there is no other element of the order
between them. In the defined partial order, two elementsf1

c© The Eurographics Association 2001.



Diener and Schumacher / Game Based Interfaces

and f2 are comparable, iff1 contains f2 or vice versa. As
the elements of the order are subspaces of functionality, the
order defines afunctionality nestingand every element is a
nesting level. If every functionality space correlates to an
application that provides this functionality, the order will de-
fine an application nesting as well. Again, if we can provide
simpler applications with only the necessary functionality,
we would get a direct correlation between tasks, functional-
ity, and applications.

Figure 2: An example for a partial order of functionality.
The dark areas represent the functionality of the current level
that is available by the user interface

For every subsetF1 of F we can define a partial order
by limiting the functionality order≤ on F to the subsetF1.
With this,subordersare defined within the functionality or-
der. Each suborder can contain different functionality spaces
and therefore it represents a set of tasks or sub scenarios.
Two examples of suborders are given in section2.2.2.

Some of the suborders are linearly ordered and can be rep-
resented by a chain within the graph structure of the func-
tionality order. We can generate such a suborder by adding
functionality step by step to a subspace with minimum func-
tionality. The complexity will increase from level to level
and will end with the greatest elementfmax. Thereby each
individual level element is a functionality subspace that rep-
resents a certain task or sub scenario and contains all sub-
spaces of a lower level. If we consider applications corre-
lated to the functionality spaces, this means, we will gener-
ate a hierarchy of applications that are suitable for the corre-
sponding tasks. Of course, we can generate a linear suborder

by starting with the entire functionality and reduce it from
level to level until the desired or minimal level of function-
ality is reached.

2.2.2. Examples of suborders

Training software for a given application can serve as an ex-
ample for a work scenario represented by a linear suborder
or chain in the Hasse diagram. The entire functionality of a
complex application is unsuitable for beginners. It would be
a better way to start with a small functionality space and to
switch to a higher level with more functionality whenever
the user is used to the current one. In games, this is done on
a regular base: Either you play level by level with increasing
difficulty or you can determine a skill level at the beginning
of the game. The game can be adapted to our skills. If we do
not manage one level, we do not reach a more difficult level.
This logical structure should also exist in learning programs.
Only functionality should be offered, that is necessary and
desired.

Thereby the principle of functionality nesting is very im-
portant to ensure that all functions already learned are avail-
able in higher levels. Rising in the suborder of functionality
enables a user to learn the whole functionality of an appli-
cation step by step. The presentations of the functionality
spaces must also correspond with the functionality nesting,
so that user interfaces on higher levels cover user interfaces
on lower levels. Two realizations will be described in sec-
tion 2.3.

Word processing software is another example for a func-
tionality suborder. It can range from the functionality space
of a simple text editor like "Notepad" to the functionality
space of a complex application like "Word" with a mul-
titude of functions. The functionality space of Notepad is
the minimal element and the functionality space of Word is
the maximal element of the suborder. To include more ele-
ments in the suborder, we can increase the functionality of
the minimal element by adding more functions such as para-
graph formatting, drawing elements or undo functionality.
This will generate a functionality space at a medium level in
the suborder, which corresponds to applications like "Write"
or "Wordpad". Of course, there are many different suborders
for the text-processing scenario. Depending on projects or
tasks these suborders can contain more elements or can even
be non-linear orders i.e. can have incomparable elements.

2.3. Game based interface

To increase the usability of workware we need simpler ap-
plications with only the necessary functionality to fulfill the
current problem of the work scenario. This approach is a re-
sult of observations of computer games. Some games use
restricted functionality specialized on only a few tasks and
change the available functionality whenever the situation or
task changes. Because we create a new kind of interface for

c© The Eurographics Association 2001.



Diener and Schumacher / Game Based Interfaces

workware that originates in computer game concepts, we
call this new approachgame based interface.

The functionality order of section2.2can organize the ex-
isting functionality with respect to the given work scenario.
This section will describe two possible technical realizations
to create applications suitable for the different functionality
spaces. First, we will describe the building block principle,
which can be used to create a suitable structure when a new
application is developed. Second, we will explain the filter
method, which can be used to restructure existing applica-
tions.

2.3.1. Building block principle

The idea of the building block principle is the assembling of
a new, suitable, and individual application from small inde-
pendent software components: the building blocks. In this
case, we are not restricted to the functionality of a given
application. Some applications are using this approach by
means of plug in software to extend their functionality. How-
ever, concepts to restructure the complete application or to
adjust the user interface to a certain problem with small
building blocks are still missing. A visionary solution would
be the development of a highly component based system,
which can integrate plenty of modules from different soft-
ware producers. Users can purchase a basis system to pro-
vide a minimal set of functionality and can buy necessary
extensions via the Internet later. However, this vision needs
an extended cooperation of industry and research institutes
to be fulfilled.

To test a simple variant of the building block principle we
are developing a new desktop based on games to organize
start menu and bookmarks. All programs on the computer
together with all bookmarks will be the building blocks to
generate an individual structure of the given data. An analy-
sis of usage frequency with respect to the current problems
can structure programs and bookmarks into different clus-
ters. These clusters contain necessary applications and book-
marks to solve a special problem. For example, one cluster
contains all tools and data to prepare a lecture. This includes
presentation software, drawing utilities, and bookmarks for
content retrieval. Another cluster contains tools to write a
proposal. This cluster includes word processing software,
calculation tools, and a bibliography. There can also be clus-
ters for communication, time management, and many others.
Therefore, most clusters represent functionality spaces that
do not include each other, but are non-comparable elements
of the order.

To organize the clusters, we will generate a city-map-like
structure, with quarters specialized for certain problems. A
small overview map allows fast and easy navigation within
the structure to select each cluster. Because each cluster con-
tains only a few programs or bookmarks, we get a fast access
to all items. A visual authoring tool will be developed to gen-
erate the map and to arrange all items in this structure.

2.3.2. Filter method

The filter method can be used to restructure the functionality
of an existing application on the presentation level. It creates
a new user interface to control the application and to hide
existing functions, which are not necessary for the current
task or situation. Therefore, it represents a kind of filter that
reduces the complexity of the application.

The implementation is done with an interface window that
superimposes the original application and hides the old com-
plicated menu structure. This interface window offers only
controls for the necessary functions to solve certain parts of
the given work scenario. Hereby, common controls are used
together with new interaction methods like hotbox2, rhyth-
mic menus4 and other concepts3 5. We do not change the
functionality of the given application directly, but we change
the user interface to make functions available or unavail-
able. Therefore, each user interface correlates to a certain
subspace of functionality. Changing the level of functional-
ity can be done manually with special control elements in
the interface window, which symbolize different problems
or skill levels.

The working area of the application is still visible and can
be accessed directly. The interaction with the working area
is filtered to be able to react on users behavior according to
the current functionality level.

3. Usability tests

We have developed a game based interface for workware in
order to increase the efficiency of work, to simplify users
adjustment to a new application, and to improve the rela-
tionship between user and application. We are carrying out
different tests to verify that game based interfaces are pro-
viding these benefits.

First, we need a test to measure the performance of the
new interface compared to a common one. This is done with
usability tests based on the RealEYES system1 developed
in our institute. The RealEYES system makes use of an in-
frared camera to recognize the users point of view and com-
pares it with the current mouse position. A complete screen
capture and video records of the test person are made to
monitor the whole test for a detailed examination afterwards.
Based on an analysis of the relation of mouse position and
point of view, the displayed content, and the video material
it is possible to detect whether expectations of the users are
fulfilled or whether the users are confused by the interface.
With the RealEYES system, we are testing the same appli-
cation with a standard interface and with a new game based
interface. Thereby applications will vary from word process-
ing software to research applications developed in our insti-
tute. A list of tasks will be prepared and will be given to test
participants by a moderator. These tasks will vary in their
difficulty and working time.

Second, the data we get from the RealEYES system must

c© The Eurographics Association 2001.



Diener and Schumacher / Game Based Interfaces

be normalized with respect to the pre knowledge of the users.
Therefore, we are also developing a questionnaire to col-
lect more qualitative data additional to the quantitative data
recorded by the RealEYES system. The questionnaire will
ask about the pre knowledge of the user and the feelings con-
cerning the program while accomplishing the tasks. By that,
we hope to identify the influence of being already accus-
tomed to a user interface. This factor is of great importance
when we compare the quantitative results.

Additionally we would like to confirm a higherfun factor
for the user while using a game based interface. This means
that the relationship between user and workware improves.
The questions about the users feelings concerning the pro-
gram will provide the necessary data.

Comparing the qualitative and quantitative results for dif-
ferent kind of applications and different structures of func-
tionality will generate reliable data to confirm the described
benefits. These data will be available in autumn this year.

4. Future work

In the previous sections, we described an approach for a new
structure of functionality. This approach bases on the level
system of games and it is not the only one to establish game-
ware concepts in workware. Other concepts that can be used
are the analysis of user behavior with corresponding reac-
tion, story and screenplay concepts and personalized soft-
ware. We will give some ideas on each of these game con-
cepts and how they can be used in a working environment.

4.1. Analysis of user behavior

A linear suborder for training software as described in sec-
tion 2.2.2 can also be used to develop a rating system for
workware users. If the functionality of an application is
nested, see section2.2.1, we can evaluate the improvement
of the user qualification very easily by looking at the current
functionality level. A rating system could be more useful, if
user behavior is analyzed automatically when working with
the application. This analysis could also be applied to adjust
an application to the current situation or task, instead of man-
ual controls. In real time strategy games, the game engine
analyzes the players behavior and reacts to it in an appro-
priate way. If we can transfer this concept to workware, the
applications could guess the strategic goal of a user action
and could respond for example with a more suitable inter-
face.

4.2. Story and dramaturgy

One of the most powerful concepts of gameware is the story
behind the game. Using a story makes it considerably easier
to mediate the usage of an interface. If a button with a sword
can control a knight in a computer game, we can certainly
expect that the knight will fight when the button is pushed. It

is much harder to mediate the meaning of buttons in work-
ware. For some situations it is possible to invent a story for
standard applications, again learning software is an example.
In addition, the use of stories for certain functions makes it
easier to remember the function. A slightly different method
is the dramaturgy. Here it is possible to place some special
effects within the user interface to change the users behavior
in the right way. Like a film, the application manipulates the
user actions.

4.3. Personalized software

A story establishes an emotional relation between player
and game. The player immerses in a personal virtual world.
We can also establish an emotional relation between a user
and an application by changing the application in something
more personal. This could be an individual design of buttons
and controls or a new structure of functionality suitable for
a special user. The personalized software helps to memorize
the usage of the application and makes it more fun to work
with. If we combine this approach with the individual anal-
ysis of user behavior, an application would be able to adapt
itself to the user and would not expect the user to adapt to
the application.

5. Conclusions

Within this paper, we have introduced the new concept of
game based interfaces, which is a way to transfer concepts
of computer games to applications of everyday work. We
have described a method to restructure the functionality of
an application in order to generate a restricted user interface,
which is specialized on only a few tasks and situations and
can be changed whenever the task or situation changes, see
section2.3.2. First observations have shown that using such
interfaces can solve problems that arise from the common
tree-like menu structures, like very long menus and confus-
ing dialogs and therefore long access time to special func-
tions. The usability tests will verify these observations and
support further analysis of computer games.

An important property for the new structure of functional-
ity is the functionality nesting, and its corresponding repre-
sentation of nested user interfaces. This allows the changing
of user interfaces when the level of functionality changes,
because all control elements representing the functions of
the application remain the same in place, function and de-
sign throughout all levels in which they occur. Therefore, the
controls can be identified in every functionality level with-
out difficulty. The graph representation of the partial order of
functionality makes it easy to visualize different possibilities
of user interface hierarchies and delivers a basis for a visual
authoring tool for restructuring applications.

We have discussed two approaches for a technical realiza-
tion of the game based interface: the building block principle
und the filter method. Each of them can manage the defined

c© The Eurographics Association 2001.



Diener and Schumacher / Game Based Interfaces

structure of user interface hierarchies. Thereby the building
block principle is more suitable to develop new applications
from small software modules and the filter method can re-
structure an existing application without changing the appli-
cation itself.

Overall the concept of game based interfaces is a very
promising approach to improve the usability of applications
and much more concepts can be found in computer games
for further improvements.

Acknowledgements

The approaches described in this paper are current research
work within the projectPlay the Application. The project is
sponsored by the INI-GraphicsNet Foundation.

References

1. Oertel, K., Hein, O., Elsner, A., "The RealEYES
Project -Usability Evaluation with Eye Tracking Data",
Interact 2001 Eighth IFIP TC.13 Conference on
Human-Computer Interaction Tokyo, Japan July 9-13,
2001 Waseda University Conference Centre, Shinjuku
4

2. Kurtenbach, G., Fitzmaurice G.W., Owen, R.N.,
Baudel, T., "The Hotbox: Efficient Access to a Large
Number of Menu-items",CHI’99 Proceedings, pp.
231-237 (1999).4

3. Holland, S., Oppenheim, D., "Direct Combination",
CHI’99 Proceedings, pp. 262-269 (1999).4

4. Maury, S., Athènes, S., Chatty, S., "Rhythmic menus:
toward interaction based on rhythm",CHI’99 Extended
Abstracts, pp. 254-255 (1999).4

5. Björk, S., Redström, J., "An Alternative to Scrollbars
on Small Screens",CHI’99 Extended Abstracts, pp.
316-317 (1999).4

c© The Eurographics Association 2001.


