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Abstract
This paper presents an interpolating subdivision scheme based on an N-adic decomposition of the parameter
space. This approach enables us to locally deform the surface according to a modification of the normals at the
vertices of the control mesh.
Experiments show that the N-adic decomposition provides a better control over the deformations, whereas a dyadic
decomposition method often produces smoother surfaces.
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1. Introduction

Manipulating efficiently and intuitively triangles meshes is a
challenging problem for special effects and animation. Mesh
models may be either created from scratch in an interactive
modeling environment or obtained from digitized models.
In general, those models are further edited. For instance, the
surface may be smoothed, deformed, and details or extra fea-
tures may be added. Subdivision surfaces have proved to be
an attractive model for creating complex meshes.

Subdivision surfaces have been in the highlights of the
computer graphics community for the past few years. One
of the greatest advantage of subdivision algorithms is that
they produce smooth surfaces from an arbitrary initial con-
trol mesh. Moreover, subdivision surfaces may be structured
into a hierarchy, enabling the management of level of detail.

A number of subdivision schemes have been proposed so
far and may be sorted into two categories. Approximation
techniques move all the vertices of the mesh, whereas in-
terpolation techniques keep the vertices of the control mesh
unchanged. Approximation techniques have been most ex-
tensively studied as they tend to produce better shapes and
are more flexible. Those methods do not provide a tight
control of the surface, which is often crucial in surface de-
sign and character animation. In contrast, interpolation tech-
niques preserve the vertices of the control mesh, but the
smoothness of the surface is more difficult to control.

In general, deformations are performed by moving
control points. Local multiresolution deformations are
achieved by editing the control mesh at different resolution
levels9� 17� 23� 15.

A very attractive modeling feature is the ability to pre-
scribe the normals of a mesh at given vertices. Performing
normal control for subdivision surfaces remains an interest-
ing challenge. Several deformations methods using normal
control have been proposed, however most rely on approxi-
mation schemes10� 2 or on corner cutting schemes16.

In this paper, we present a new local deformation method
for interpolating subdivision surface schemes. Control is
performed by moving the normals of the vertices of the con-
trol mesh. In contrast with dyadic schemes, we use a N-adic
decomposition of the parameter space to control the defor-
mation of the subdivision. Our work implements a triadic
interpolating scheme with normal control. We compare our
method with the dyadic decomposition.

2. Previous work

Several authors have proposed techniques for editing and
rendering subdivision surfaces efficiently.

Most editing tools focus on the displacement of the ver-
tices of the control mesh and try to optimize the internal rep-
resentation of the surface with level of details.

Pulli17 has presented an editing system where the surface
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is controlled by interactively moving the vertices of the con-
trol meshes, whatever the level of subdivision. The algorithm
uses the Loop scheme14 and deals with sharp edges, such as
proposed by Hoppe11.

Zorin et al.23 have proposed a similar approach based on
signal processing techniques. The surface is split into a set
of hierarchical meshes that represent the increasing level of
detail added by each finer mesh. The process is scalable, it
may be performed automatically and enables local modifi-
cations on the surface. Although the Loop scheme has been
tested, it can be adapted to other schemes.

Mandal et al.15 have proposed a scheme for dynamic ma-
nipulation of the limit surface created with the modified But-
terfly scheme8� 21 using physically based force controls. The
control is provided by tracking vertices at various levels of
the subdivision. Although accurate, the surface deformation
remains global and computationally expensive. Therefore, it
is dedicated to simulation rather than interactive animation.

Several other methods deal with the deformation of the
surface by modifying the normals at the vertices of the con-
trol mesh. Those methods are restricted to non-interpolating
approximation schemes however.

Nasri16 has proposed a simple yet efficient technique for
the Doo-Sabin6 scheme. The first subdivision step aims at
creating new vertices that are relocated to adapt to a given
normal. Further subdivision steps simply smooth the mesh.

Halstead et al.10 has improved the Catmull-Clark3 scheme
in order to directly generate the limit surface. Conditions for
interpolating normals are given. Unfortunately, using nor-
mals to control the limit surface dramatically increases the
resolution cost.

Biermann2 has proposed another method for approximat-
ing various schemes such as Loop or Catmull-Clark. This is
achieved by adding a correction step after each classical sub-
division step. Resulting points from this correction step are
oriented relatively to the normal.

Some authors propose other iterative and easily de-
formable reconstruction methods. Volino19 uses blended
spheres to perform a N-adic tessellation of triangles. Points
and normals from the initial mesh are directly involved in its
construction.

Vlachos20 uses a N-adic tessellation to perform his PN
Triangles (or N-patches). Primitives used here for recon-
struction are polynomials, based on a more current Bézier
patch model. Its construction uses points and normals as
well. This method has been proposed with a view to being
implemented in the graphics hardware.

3. Background

In this section, we present the notations and some results that
are useful in the remainder of the paper.

Subdivision schemes are addressed from both a topologi-
cal and geometrical point of view. The topological aspect is
needed to parametrize the mesh, whereas the geometrical as-
pect purposes the geometric representation in �3 . The sub-
division mesh is obtained by elevating vertices in the para-
metric domain (Figure 1).

Figure 1: Elevating vertices of the mesh from parametric
domain into space �3

The elevation may be split into several transformations
associated to the vertices of the mesh. Each transformation
itself may be characterized by a mask defining a barycentric
combination of neighboring points.

Most subdivision schemes make use of a dyadic decom-
position of the parameter space. Edges are split in two by
inserting a new vertex in the middle of the edge, hence, tri-
angles are subdivided in four.
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Figure 2: Modified Butterfly mask for an extraordinary ver-
tex. Vertices involved in the computations belong to the 1-
neighborhood of the central vertex with valence K.

Figure 2 illustrates the modified Butterfly22 mask applied
to an extraordinary vertex of the mesh. Coefficients used are
as follows, if K � 5 then :

si �
1
K

�
1
4
� cos

2iπ
K

�
1
2

cos
4iπ
K

�
(1)

If K � 4 we have :
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Eventually, K � 3 yields :
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(3)
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Let q1 and q2 denote the end vertices of an edge. For
the modified Butterfly scheme the elevation of the mid-point
will be a combination of the two elevations linked to vertices
q1 and q2 (see Figure 3).

1
2 B1�m��

1
2 B2�m�

B1�m� B2�m�

q1q2

m

Figure 3: Inserting a new vertex between two vertices with
the modified Butterfly scheme. The final elevation of vertex
m is a combination of the elevations at vertices q1 and q2.

The coefficients are chosen so that the new vertices in-
serted in the subdivision should approximate biquadratic
splines6, bicubic splines18, or quartic14. In this paper, we will
regard a subdivision surface as the image of a parametriza-
tion function. This parametrization function, denoted as B,
is defined on a triangle ∆q1q2q3 to be split as follows :

�m � ∆q1q2q3

��
�

B�m� � ∑
i�1�2�3

αi Bqi
�m�

∑
i�1�2�3

αi � 1
(4)

Bqi
represent the contribution of the vertex qi to the ele-

vation of point m. In this paper, we restrict the support of Bqi

to the 1-neighborhood of the vertices qi. Therefore, only the
three functions Bq1

, Bq2
and Bq3

participate to the computa-
tion of the elevation of a new vertex m inserted in a triangle
∆q1q2q3 as shown in equation 4. In the next section, we
address the insertion of new vertices at any location on the
triangle ∆q1q2q3.

4. N-adic subdivision scheme

In this section, we describe the subdivision scheme we de-
signed to deform the mesh with normal control. The algo-
rithm relies on the computation of the elevation described in
the previous section. Let us recall that the elevation at a given
point m is obtained by combining the functions Bq1

, Bq2
and

Bq3
centered at the 1-neighborhood of the vertices of the tri-

angle ∆q1q2q3. First, we will focus on the computation of
the functions Bqi

. So as to simplify the presentation, we de-
tail the algorithm that provides a global N-adic scheme for
the case N � 3. Obviously, the generalization for N � 3 is
straightforward.

4.1. Computation of a single elevation function

Let q a vertex of the mesh. We operate on the 1-
neighborhood of q, which is defined by a K-sided polygon
with vertices

�
q0� � � � �qK�1

�
. We aim at inserting a new ver-

tex m in the 1-neighborhood of q and computing its corre-
sponding elevation Bq�m� as a function of existing vertices
q0� � � � �qK�1.

To perform this step, we rely on the eigenanalysis devel-
oped by Zorin22 which was first proposed in 1 and 7. This
scheme aims at reproducing polynomials that characterize
the local geometry for specific vertices. It may be general-
ized to any new vertex m � ρeiθ over the first triangle. For-
mulas may be derived for other neighboring triangles by cir-
cular permutations. The elevation function Bq�m� may be
written as a barycentric combination of the elevations com-
puted at the vertices of the 1-neighborhood of q.

Bq�m� � sq Bq�q��
k�1

∑
i�0

s�ρ�θ�
i Bq�qi� (5)

The coefficients s�ρ�θ�
i are functions of ρ and θ, and depend

on the connectivity value K. If K � 5, we have :
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If K � 4, then :
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Eventually, if K � 3, then :
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The coefficient sq is equal to 1� ρ2 whatever K may be.
Those coefficients may be compacted into a specific mask
parametrized by ρ et θ (see Figure 4).
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Figure 4: Subdivision mask for a vertex ρeiθ

It is worth noticing that when θ � 0, the new vertex is lo-
cated on the edge. Therefore, if ρ � 1�2, we obtain the mod-
ified Butterfly mask for extraordinary vertices22 when the
new vertex is inserted at the middle of the edge. If ρ � 1�3,
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we obtain the coefficient computed by Labsik13 that char-
acterizes the elevation for the

�
3-subdivision interpolation

scheme.

4.2. Triadic subdivision scheme

Creating a N-adic scheme requires that each triangle
∆q1q2q3 should be split into N2 triangles. Thus, we need
to define the elevation for each new vertex mi as a function
of Bq1

, Bq2
and Bq3

. The final elevation will be defined us-
ing the barycentric combination (see equation 4). It is worth
noticing that the dyadic case results in a simplified version
of the Butterfly scheme.

For each triangle, we need to compute the elevation for
two vertices m1 and m2 inserted on the radial edge, and for
one vertex m3 at the center of the triangle (see Figure 5).
Vertices m1 et m2 are given with parameters θ � 0 and
ρ � 1�3 and ρ � 2�3, whereas m3 is obtained with parame-
ters θ� 2π�K et ρ� 2�3cosπ�K. Substituting those param-
eters into equations (6), (7) and (8) give the corresponding
elevation.

m3

m2m1

q

q1

qK�1

q0

Figure 5: Creation of a triadic mesh

In contrast to the well known dyadic schemes, the triadic
scheme enables us to add extra constrains in the creation of
the vertices of the new mesh at each subdivision step. Those
extra constrains will be defined so as to control the defor-
mations in the neighborhood of a vertex of the control mesh
(see Figure 6).

q m q m

Figure 6: Comparison of the dyadic (left) and triadic (right)
schemes with one subdivision step.

Figure 7 shows both dyadic and triadic subdivisions on a

Figure 7: Structure of a dyadic (middle) and a triadic de-
composition (right), the original object is displayed on the
left.

tetrahedron. Figure 8 illustrates the smoothing of a werewolf
like character after several triadic subdivision steps.

Figure 8: Recursive subdivision for a triadic scheme. From
left to right : original mesh, after one triadic step, after 3
triadic steps.

Using a triadic subdivision process allows a more accurate
rendering of the global shape. This comes from the extra in-
formation provided by the extra points added at each triadic
step. In general, the triadic scheme provides better control
with slightly less smoothing, since it amplifies defaults of
reconstruction.

5. Surface deformation

In this section, we present the algorithm used to control the
orientation of the subdivision surface in the neighborhood of
the vertices of the control mesh. We shall demonstrate the
usefulness of the triadic scheme.

The algorithm described in the previous section does not
take into account the normal at the vertices of the mesh. We
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assume that a normal denoted as N0
q is attached at each ver-

tex q. This normal is often provided with the mesh for ren-
dering purposes. The way this normal has been generated
may affect the local deformation of the subdivision surface
however. In our implementation, we use the Gauss normals
at the vertices of the control mesh.

We deform the surface in the neighborhood of a vertex
q by modifying the orientation of the elevation function Bq
associated to this vertex. This is obtained by re-orienting the
new normals that result from the subdivision process. The
resulting configuration must be aligned with the normal Nq
specified by the user. This orientation is characterized by a
unique rotation Rq centered at q transforming N0

q into Nq.
Rq is then applied to the points computed by the function
Bq (see Figure 9).

N0
q

Rq Nq

Figure 9: Local rotation at a vertex q of the control
mesh : after computing Bq, each vertex inserted in the 1-

neighborhood of q is rotated using Rq that transforms N0
q

into Nq

The rotation is performed before combining elevations.
The modification of the algorithm shows two drawbacks.
First, the resulting subdivision surface is only C0. Extra
points inserted can alterate the quality of the final shape at
limit of deformed aeras and create creases or cusps (plate
15). This is a slight drawback for us however, as it is still
possible to apply extra standard subdivision steps to smooth
the surface.

Figure 10: Perturbing one normal on a torus.

A more difficult problem is to handle the orientation of
the final surface. The algorithm transforms but one elevation
function Bq associated with vertex q. Therefore, the com-
puted normal does not match the user-specified normal ex-
actly.

Figure 11: Deforming one face of a cube.

This control of the normals allows us to achieve and sim-
ple and intuitive control of the shape deformation at the ver-
tices of the control mesh. Deformations are performed after
the first subdivision step. The next steps are applied without
any deformation, and are used for smoothing only.

Figure 11 shows a cube deformed by perturbing the nor-
mals at the four upper corners. Figure 10 illustrates one local
deformation on a torus.

Figure 12: Several deformations applied on the previous
torus.

Figure 12 shows two examples of deformations. Left im-
age represents a local deformation. Right image shows a
model where all normals have been perturbed. The process
allows us to complete the design of local curvatures of ob-
jects only by moving the normals of its mesh.

Figure 13: Redesigning a werewolf character.

Figure 13 shows the enhanced features on the head of a
werewolf character. Left image is obtained without normal
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Figure 14: Deformation of a cube’s face for the dyadic and
the triadic case.

deformation, whereas right image has been created by per-
turbing the control normals. The curved ear has been mod-
eled by turning down the normal at the extremity of the ear.
Modifying the normals of the neck gives us a new curvature
below the chin and on it’s nape. The mouth and the face were
modified as well.

Using a triadic subdivision process allows a more accurate
rendering of global shape’s deformations. This fact comes
from the extra points informations introduced at each triadic
step.

Figure 14 illustrates the deformations of a cube’s face ob-
tained with the dyadic (left) and the triadic (right) scheme.
The uppper row shows the structure of the mesh after one
deformation step. Bottom row shows the final shaded shape
after some smoothing steps. The triadic scheme produces
a smoother surface, and creates a deeper carving than the
dyadic scheme.

6. Conclusion and future work

We have presented an interpolating subdivision scheme
based on an N-adic decomposition of the parameter space.
This approach enables us to create an iterative subdivision
algorithm.

We have implemented the triadic case so as to locally de-
form the surface according a modification of the normals at
the vertices of the control mesh.

We have compared both dyadic and triadic schemes. The
triadic decomposition provides a better control over the de-

Figure 15: Deformation of one torus section for dyadic (left)
and triadic (right) case. The deformation is quite important
here. The local shape obtained by triadic subdivision accu-
rately follows the orientation of normals, but creates creases
and cusps. These creases and cusps are not so visible for the
dyadic subdivision.

formations, whereas the dyadic decomposition method often
produces smoother surfaces.

Several topics need further reasearch. A major drawback
of most subdivision methods lies in the recursive form of
the algorithms as all subdivision levels need to be computed,
even for triangles that will be discarded in the rendering
pipeline. The iterative aspect of our method should enable
us to avoid subdivision wherever unnecessary. For instance,
it could be applied to perform view dependent subdivision.

In our current implementation, the elevation functions Bq
are based on a mask operating on the 1-neighborhood of
vertex q. Studying elevation functions operating on a 2-
neighborhood would be interesting as the subdivision sur-
face would probably get smoother.

In the future, we also plan to extend the rotation of the
normal at the vertices of the control mesh by using quater-
nions in order to add some twisting effets.

Our method currently deforms the surface by modifying
the position of the vertices of the first level subdivision step.
The extra steps are used for smoothing purposes. We plan
to extend the deformation to other levels so as to emphasize
deformations.
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