
EUROGRAPHICS 2000 / A. de Sousa, J.C. Torres Short Presentations

Combining finite element deformation with cutting for
surgery simulations

Han-Wen Nienhuys and A. Frank van der Stappen,

Department of Computer Science, Utrecht University, PO Box 80089, 3508 TB Utrecht, The Netherlands
{hanwen,frankst}@cs.uu.nl

Abstract
Interactive surgery simulations have conflicting requirements of speed and accuracy. In this paper we show how
to combine a relatively accurate deformation model—the Finite Element (FE) method—and interactive cutting
without requiring expensive matrix updates or precomputation. Our approach uses an iterative algorithm for
an interactive linear FE deformation simulation. The iterative process requires no global precomputation, so
runtime changes of the mesh, i.e. cuts, can be simulated efficiently. Cuts are performed along faces of the mesh;
this prevents growth of the mesh. We present a provably correct method for changing the mesh topology, and a
satisfactory heuristic for determining along which faces to perform cuts. The incision surface will be jagged; this
problem is a subject of current research.

Keywords: finite elements, tissue deformation, simplicial complex, virtual surgery, tetrahedral mesh, cutting

1. Introduction

Interactive surgery simulations aim to provide a learning
tool for surgeons in training. The core of such a system is
a simulation of deformation of human tissue. A realistic tis-
sue simulation should include both elastic deformations, like
stretching and shearing, and plastic deformations, like tear-
ing and cutting.

Elastic deformation of soft material, such as tissue, is gov-
erned by complicated partial differential equations (PDEs).
Exact solutions are generally impossible to derive; hence,
we must either turn to approximative methods or alterna-
tive models. The most popular approximative methods are
Finite Element (FE) methods. Alternative models are mod-
els inspired by physical concepts, but they lack a rigorous
mathematical and physical justification. They are also called
physics based.

Plastic deformations include tearing, fracturing, plastic
stretching, and cutting. However, a full interactive simula-
tion of these phenomena is currently far beyond reach, so in
the context of interactive surgery simulation, plastic defor-
mations are limited to changing the mesh that represents the
tissue.

Before we present our solution, we will look at previous

work in interactive surgery simulation and establish how the
conflicting requirements of interactive speed, realistic defor-
mations and cutting are balanced. We will focus solely on
these subjects and ignore related topics such as haptic feed-
back, non-interactive simulation, display hardware, and ef-
fectivity assessment. We conclude with an overview of our
approach.

ChainMail11; 18; 19 was one of the first deformation tech-
niques to simulate cutting in actual surgical simulations.
ChainMail relies on a very simple model of deformation,
which is not realistic but has low computational costs.
ChainMail puts severe constraints on what mesh topology
may be used.

Mass-spring models2; 3; 6; 8; 9; 13; 15; 16 attach springs to the
mesh that represents the tissue geometry. The elastic behav-
ior of the springs can be changed to match physical proper-
ties of the material. The springs can have linear behavior, but
non-linear or volumetric material properties7; 13 may also be
used.

A collection of springs strives to be in a state of lo-
cally minimal potential energy. An implementation is evi-
dent: one can use numerical methods to minimize the en-
ergy function of the system. However, a dynamic formu-

c
 The Eurographics Association 2000.



Nienhuys and Van der Stappen / Finite Elements and Cutting for Surgery Simulation

lation (points represent masses, forces cause acceleration,
springs are damped) has always been more popular, presum-
ably due to its simple numerical solution method.

Cutting in spring meshes can be implemented in two
ways: in both approaches the scalpel is tracked and when-
ever it intersects with a spring, the mesh is modified. In
the first approach, the spring is simply removed3; 6; 9; 15; 16. In
the second approach, a colliding spring is split. For two-
dimensional meshes, this technique has been used in a
simulation16 of a surgical procedure.

A research prototype by Bielser et al.2 used a splitting
technique for three dimensional volumetric meshes. They
subdivided any tetrahedron intersected by the scalpel. Cuts
add lots of small volume elements, and cause the mesh size
to explode. Not only is this an evident disadvantage for in-
teractive simulations, it also causes a deterioration of the
numerical stability of the spring relaxation scheme. Addi-
tionally, rounding errors can cause artefacts such as dangling
nodes.

In contrast to the preceding models, FE methods have a
physical and mathetical foundation. FE methods discretize
the body and then the discretization is deformed. The de-
formation of the discretization is an approximation of the
exact solution of the PDEs. In its simplest form (static linear
elasticity and linear geometry), the computational process of
determining an FE solution amounts to solving a linear sys-
tem Ku = f, where K has size 3n� 3n and n is the number
of nodes in the mesh.

Bro-Nielsen et al.4; 5 used a variety of precomputation
techiques—that essentially reduce to precomputing the in-
verse of the matrix K—to achieve interactive performance
with the FE method. Cutting was implemented by remov-
ing volume elements that collide with a virtual scalpel, and
updating K�1 to reflect this change. However, the removal
violates the physical principle of mass preservation, and up-
dating K�1 to reflect a change in the mesh typically costs
O(n2

) operations, which makes cutting prohibitively expen-
sive in large meshes.

To our best knowledge previous work in interactive
surgery simulation either uses a non-realistic deformation
model, or does not include interactive cutting. Our approach
combines an FE model with interactive cutting in large
meshes.

Deformation is simulated using an FE method. Contrary
to tradition, we use an iterative algorithm to solve the equa-
tions. The deformation model and its solution process are
detailed in Section 2.

This iterative method does not require global precompu-
tation, so local changes to the mesh require only local up-
dates. Therefore cuts can be simulated efficiently. The finite
element method is intrinsically volumetric, so we must deal
with cuts in a volumetric mesh. We propose a method that
does not inflate the mesh size: we simulate cuts by applying

cuts only to faces, as is demonstrated in Figure 1, rightmost
picture. This bounds the size of the mesh, and helps keep-
ing the geometry of the mesh uniform. We divide the cutting
problem into three subproblems:

1. Given the path of a scalpel, how does one find faces near
the path? In Section 3 we introduce a heuristic that has
turned out to be satisfactory.

2. Given these faces of the mesh, how does one perform the
cut? In Section 4 we give an algorithm for performing the
cut. This algorithm can proved to be correct; a sketch of
the reasoning behind the proof is presented.

3. How do we prevent the cut surface (faces from the mesh
to be cut) from having a jagged look? We hope to remedy
this by changing the positions of vertices in the mesh; this
will be fully addressed in future work.

Results of a prototype are given in Section 5. Section 6
discusses the results and topics for further research.

Figure 1: Three approaches to cutting in volumetric meshes
demonstrated in 2D. Current approaches: remove volume
elements (left) and subdivide volume elements (center). We
propose to cut along faces, which are edges in 2D. (right-
most)

2. Deformation

A body made of elastic material subject to external forces
will deform until its internal elastic forces counterbalance
the external forces. The deformations and external forces
satisfy a set of PDEs defined on the body.

The finite element method20 is a process that approxi-
mates the continuous problem defined by the PDEs: the body
under consideration is subdivided into a finite set of non-
overlapping elements. If a solution of the PDE is assumed
to have a simple form on every element, then the problem
is changed to a finite-dimensional one, whose solution is an
approximation of the original problem.

The most versatile and simple 3-dimensional mesh type
is the tetrahedral mesh. We assume that the displacement
function is piecewise linear on every tetrahedron. Hence,
the function is uniquely characterized by the values that it
assumes on the vertices of the tetrahedra (the nodes of the
mesh). The forces can also be thought to be applied to the
vertices.

The simplest model of material elasticity yields the fol-
lowing set of equations for a single tetrahedron. These equa-
tions link the elastic force F j 2 R3 in node j for j = 0; : : : ;3

c
 The Eurographics Association 2000.



Nienhuys and Van der Stappen / Finite Elements and Cutting for Surgery Simulation

and displacements ui 2 R3 of node i for i = 0; : : : ;3:

X = (X1�X0jX2 �X0jX3�X0) ;

U = (u1�u0ju2�u0ju3�u0) ;

E = UX�1

(F1jF2jF3) = volume �X�T
(2µE +λ trace(E)I)

F0 =�∑
j

F j;

(1)

Here, vectors Xj 2 R3 represent the undeformed location of
node j for j = 0; : : : ;3. The numbers µ and λ are positive
constants, called Lamé parameters. They represent elasticity
properties of the material and are equivalent to the Young
modulus and Poisson’s ratio. The trace of a matrix is the
sum of its diagonal elements. Strain, a matrix denoted by E ,
is a quantity that measures local relative deformation. The
unit matrix is denoted by I.

The body under scrutiny is composed of tetrahedral ele-
ments, and the forces within each element are described by
Equations (1). By summing the equations over all elements,
we obtain a linear relationship between all displacements
and all elastic forces: the elastic forces are described by Ku,
where K is a matrix of size 3n�3n, u a vector of size 3n and
n is the number of nodes in the mesh. The matrix K describes
the elastic reaction of the complete body to a displacement
and is called the stiffness matrix. The vector u represents the
collective displacements of all nodes. In a body in equilib-
rium, elastic forces Ku balance external forces f, so we have
Ku = f.

A complete deformation problem is obtained by imposing
boundary conditions. For example we may constrain the co-
ordinates from a set B to be fixed on a certain position. This
results in the following linear system:

Ku = f

u(i) = p(i) i 2 B � f1; : : : ;3ng
B, n, K, f, and p given.

(2)

Entries (3i+ p;3 j+q) for p;q= 0;1;2 of K represent the
elastic force of node i as a result of the displacement of node
j. Hence, it is non-zero only if node i and j are in some tetra-
hedron together. Since most combinations of nodes do not
share tetrahedra, K is sparse, i.e., mostly filled with zeros.

By substituting the boundary conditions into K, we ob-
tain a smaller, strictly positive definite matrix K̃. We want to
solve the equation K̃ũ = f̃, where ũ and f̃ are the displace-
ments and forces of unconstrained nodes.

2.1. Solution by matrix decomposition

Traditionally, the matrix K̃, is first calculated from the geom-
etry of the discretized body and its material properties. The
solution to Equation (2) is then calculated using techniques
from numerical linear algebra: an inverse or a decomposition

of K̃ is determined, and then multiple solutions can com-
puted efficiently, so the response to force of the material can
be calculated at a interactive rate.

In surgery simulations cuts have to be performed inter-
actively. This implies that the mesh changes in real-time. A
matrix K̃ (or worse, K̃�1) that containing information about
the mesh, will be invalidated by these changes. Reassem-
bling, recomputing or updating the matrix not only adds sig-
nificantly to the complexity of the simulation, it can also be
very costly: updating the inverse to reflect removal of a node
can cost O(n2

) operations12.

2.2. Solution by iterative processes

Our approach is to solve the system iteratively, i.e., to find
a sequence of displacement vectors u1

;u2
; : : : , that gradu-

ally moves to a configuration with minimal elastic energy.
For positive definite systems (like the elasticity equations),
the conjugate gradient (CG) algorithm is a popular iterative
algorithm12.

CG determines a new iterand by first finding a search di-
rection p, then finding an optimal step length α and finally
setting uk+1

= αp+ uk. One matrix-vector multiplication
K̃p is needed for finding α. The vector K̃p represents the
elastic forces on every node (assuming displacements p) so
for every iteration we have to calculate K̃u once. From Equa-
tions (1) it follows that we can calculate the entries of K̃p
(elastic forces), using local information: for every node we
only need to consider information from neighboring nodes.
In other words, K̃p can be calculated without calculating K̃
itself.

This scheme has been used for parallel implementations
of FE analyses1; 10: the locality of computing K̃p is attrac-
tive property for a parallel machine with distributed mem-
ory. For surgery simulation, the lack of precomputed struc-
tures implies that it is possible to change meshes at run-time
—i.e., simulate cuts and stitches—without significant com-
putational penalties.

2.3. Performance

The performance of the simulation is determined by two fac-
tors:

� the cost of one iteration,
� the number of iterations needed to reach a satisfactory ap-

proximation of the solution of Equations (2).

The cost of a single iteration of the conjugate gradient
method is directly proportional to the size of the mesh. A 1
Gflop/second computer would have a theoretical peak per-
formance of approximately 1500 iterations per second for a
1000 node cube.

More interesting is the number of iterations needed. The-
oretically speaking, the performance of conjugate gradients

c
 The Eurographics Association 2000.



Nienhuys and Van der Stappen / Finite Elements and Cutting for Surgery Simulation

is linear12: the error diminishes by a constant factor for every
iteration. This factor can be bounded by

p
κ�1p
κ+1

; κ = kK̃k2kK̃�1k2:

The quantity κ is the condition number of K̃ in the Euclidean
norm. This implies that it is advantageous to keep the con-
dition number as low as possible: a lower condition num-
ber means a faster decrease in error. It is known that vary-
ing element sizes and mesh refinement adversely affect the
condition number (see Strang and Fix20, Chapter 5). Smaller
elements increase the bound on the condition number. This
motivates the following extra requirement on mesh modifi-
cations:

Mesh modifications should avoid creating more el-
ements, and should specifically avoid creating el-
ements with varying sizes.

In an interactive simulation, the next solution will often
be close to solution last computed. So we can expect that
only few iterations will be needed. Moreover, in practice CG
tends to perform much better than its theoretical bound.

2.4. Results

The simulation has been tested with a procedural model: a
cube uniformly subdivided into tetrahedra. The number of
tetrahedra was varied while the Lamé parameters were kept
at λ = µ = 1. To keep the simulation running, a random
force was applied to a random node whenever a solution was
found.

The speed in terms of floating point operations cost was
comparable with the peak performance of the CPU, with a
slight drop for larger meshes. Presumably, this drop is due to
the larger models not fitting in the CPU cache.

The number of iterations has also been studied, but
showed no evident correlation with mesh size. The algorithm
generally reached the solution criterion in 5 to 80 iterations
on our test set. However, our mesh had a uniform element
size, and as we explained, this is the optimal choice for the
CG algorithm.

A cited problem with iterative methods is their lack of
reliable convergence4: it is not possible to exactly predict
how many iterations are needed before reaching a solution.
We did not experience this problem in most of the cases we
tried.

3. Surface selection

Surgery involves cutting, so we have to modify the mesh
that represents the tissue at run-time. Incising a tetrahedron
yields shapes that are no longer tetrahedra (demonstrated in
2D in Figure 2). This leads to a dilemma: either we must
subdivide an incised tetrahedron, or we must restrict cuts to
be along faces only.

The former solution has the disadvantage of increasing
complexity of the mesh, so we opt for the latter. A cut along
faces does not change the number of tetrahedra, so the size
of the mesh remains bounded. This scheme does lead to new
questions. First, along which faces should the cut be per-
formed? Second, how do we perform the cut? Third, how do
we prevent a jagged incision surface? (The incision surface
is a set of triangles in the mesh; hence the incision follows
the jagged contours of the mesh).

We shall deal with the first question in this section. The
second question is the subject of Section 4. The third ques-
tion is a topic for further research, and will not be answered
here.

Figure 2: Cutting in a triangular mesh generally does not
result in a triangular mesh

In order to pose the question (“Where to cut?”) more pre-
cisely, we define some terms. The scalpel is the cutting in-
strument. It is thought to be line-segment-shaped. The entire
line segment will act as a blade.

The scalpel sweep (or sweep for short) is the surface swept
by the line segment shaped scalpel. Without loss of general-
ity we may assume that the scalpel sweep has been triangu-
lated.

The cut surface is a set of faces where the cut takes place.
The mesh is a volumetric mesh composed of tetrahedra.

With these terms we can state the question to be answered
in this section precisely:

How do we find an appropriate cut surface in the
mesh given a scalpel sweep?

Not every set of faces is acceptable as a cut surface: the sur-
face must be close to the sweep, and its topology must re-
semble that of the sweep. Typically the scalpel sweep is a
connected, non-branching surface, so the cut surface should
also be connected and non-branching. Some cut surfaces in
2D that fail to meet these requirements are shown in Fig-
ure 3.

We obtained satisfying results with the following method.
Consider one edge from the mesh and one face of the scalpel
sweep. When we intersect the face with that edge, the ver-
tices closest to the intersection point are put into a closest-
vertex set. If the sweep and edge do not intersect, then this
set is empty. If they do, the set normally contains one vertex.
In the degenerate case that both vertices are equally close,
the set contains both.

Every tetrahedron in the mesh has six edges, and we can
form the union of the closest-vertex sets of those edges. This
set determines a feature to select for the cut surface: if it has

c
 The Eurographics Association 2000.



Nienhuys and Van der Stappen / Finite Elements and Cutting for Surgery Simulation

zero elements (the sweep does not intersect the tetrahedron
at all), then no feature is selected; If it has one, then a node
is selected; if it has two, an edge is selected; if it has three, a
triangle is selected. The process is demonstrated in Figure 4.
The set may also contain four nodes, but this occurs only in
a degenerate case: when all intersections are equally close.
This is proved in Lemma 1.

In this manner we can select triangles from the tetrahe-
dra that intersect a face of the sweep. These triangles form
a cut surface. When we want to process multiple consecu-
tive triangles of the sweep, we add the closest-vertex sets of
edge-sweep pairs consecutively.

Lemma 1 The closest-point set of tetrahedron t and plane V
contains no more than three points, except if all points have
the same distance to V .

Proof (Sketch) A plane separates space into two half-spaces.
There are three possible configurations: all points of t lie in
the same half-space. Then no edge will intersect the plane,
and the closest-point set is empty. If the plane separates a
single point from the rest of t, then the plane will intersect
only three edges, and the closest-point set contains at most
three points. So assume that the plane separates two pairs of
points, and intersects four edges. Then from each edge a dif-
ferent point is selected. This gives us four inequalities for the
distance between intersection points and nodes. When com-
bining these, we can conclude that all distances are equal.

incorrect incorrect incorrectpreferred
not close to sweep not connected branched

Figure 3: Selecting a cut surface in 2D. Given the sweep
(dotted line) of a point shaped scalpel through a triangular
mesh, which edges should be selected to cut open the mesh?
Shown is a correct solution (left) and cut surfaces that are
too far from the sweep, unconnected or branched.

sweep 1

sweep 2

Figure 4: Selecting features to be cut from a single tetrahe-
dron. The scalpel sweep is colored grey, the selected features
are marked by bold lines. From left to right: selecting a node,
an edge and a triangle, selecting with multiple sweep planes.

We do not have proof that this approach satisfies all crite-
ria we set up. In fact, in cases like the situation depicted in
Figure 5, it fails. However, the following observations make
it likely that the approach is satisfying in most cases.

� The cut surface is close the scalpel sweep, since features
are only selected from tetrahedra where the sweep passes
through.

� The cut surface is unlikely to branch, because at most one
triangle is selected from each tetrahedron; this limits the
amount of triangles in a cut surface.

� The cut surface is unlikely to be disconnected: if the
sweep passes through two adjacent tetrahedra, these tetra-
hedra will also share the sweep/edge intersections of their
shared face, so they will share parts of the cut-surface;

Figure 5: Varying element sizes result in branched cut sur-
faces in 2D. The scalpel path is dotted. Selected edges are
boxed.

Besides the failure in Figure 5, this technique has a cou-
ple more disadvantages: the surface of the incision will be
rough, as it coincides with the contours of the mesh. An in-
cision is only made after the scalpel has left the tetrahedron,
so the incision that is visible always lags behind the position
of the scalpel. We hope to remedy these disadvantages by
combining surface selection with a snap operation: this op-
eration will move nodes of the cut surface onto the scalpel
sweep. Then the shape of cut surface will match the shape of
the scalpel sweep, and a node will be moved to the scalpel
before the scalpel completely traverses a tetrahedron, hope-
fully eliminating the lag between the scalpel and cut real-
ized.

There is a final, different problem: the algorithm assumes
that the mesh remains still, and this assumption is question-
able for a deformable object. This problem manifests itself
in two ways: first, the deformation process has to be halted,
so the mesh will be frozen while faces are selected. Sec-
ondly, moving the mesh while the scalpel remains steady
does not cause a cut surface to be selected. The real impact
of these problems depends on the size of the deformations
and scalpel movements compared to the size of the mesh,
and these should be measured in real applications.

4. Topology of cutting

In the previous section, we contemplated where to perform
cuts. This leads us to the question of this section:

How to perform cuts?

The surface selection process does not give us a cut sur-
face with guaranteed geometrical or topological properties;

c
 The Eurographics Association 2000.



Nienhuys and Van der Stappen / Finite Elements and Cutting for Surgery Simulation

as seen in Figure 5 we must be prepared for branching sur-
faces. The geometry of the surface is undetermined: cut sur-
faces coincide with the mesh, and approximate the scalpel
sweep, both of which do not have a predetermined shape.
Therefore we cannot rely on the geometry of the mesh and
cut surface. All we have left is their topology: the abstract
structure of nodes, edges, faces, and tetrahedra. In this sec-
tion, we will explain how the topology of the mesh is used to
determine which parts of the mesh will be separated by the
cut surface, and which will not.

We start with a slightly more formal definition of the mesh
operation that is needed.

Definition 2 Given a tetrahedral mesh and a set of trian-
gles in that mesh, the unglue operation modifies the mesh
such that these and only these triangles will be added to the
boundary of the mesh.

This definition uses the concepts ‘tetrahedral mesh’ and
‘boundary’, so for a full definition of the operation we have
to decide how to represent the mesh. We shall do this after
informally specifying the algorithm.

v v v

Figure 6: A cut surface can partition the set of triangles
containing vertex v into one, two or more parts. The number
of components (triangles connected by faces not in the cut
surface) equals the number of nodes corresponding to v after
the cut.

As shown in Figure 6, neighboring tetrahedra play an im-
portant role in determining how a cut is performed. From
left to right we see how a cut-surface divides the tetrahedra
containing node v into one, two, and three face-connected
components. After the cut, the node v is correspondingly re-
placed by one, two and three copies. This suggests the fol-
lowing algorithm for performing cuts.

Algorithm 3 Given a tetrahedral mesh and a cut surface C,
then the following algorithm modifies the mesh to put trian-
gles in C on the exterior of the mesh.

1 for each node N within the mesh
2 T := the set tetrahedra incident to N
3 K := the set of components T is divided into by C
4 for each component c in K
5 Nc := a copy of N
6 substitute N with Nc in all tetrahedra of c.

The actual implementation of this algorithm hinges on
what data structure is used to represent the mesh. Variants of

popular solid modeling data structures, such as radial edge,
winged edge, etc.14; 21, have been tried but turned out to be un-
wieldy for reliable use: we found that maintaining, let alone
proving, topological consistency of such structures is diffi-
cult.

Basing the data structure on abstract simplicial com-
plexes, a well-known theory from algebraic topology, made
the implementation of unglue very straightforward. The rest
of this section is devoted to an informal overview of simpli-
cial complexes as far as relevant, and a sketch of the imple-
mentation. Correctness proofs can be found in a forthcoming
note17.

In a simplicial complex, a mesh is constructed from nodes
(or vertices). Features like edges, triangles, and tetrahedra
are represented as sets of vertices. These sets are called sim-
plexes, and the defining qualities of a simplex are the follow-
ing.

� Any set of one vertex is a simplex.
� Any non-empty subset of a simplex is also a simplex.

In other words, if a simplicial complex contains a set of
four nodes (a 3-simplex or tetrahedron), its subsets of size
three (2-simplexes or triangles), size two (1-simplexes or
edges) are also in the complex.

A tetrahedral mesh is a simplicial complex that consists
entirely of of 3-simplexes and their subsets. Furthermore, 2-
simplex (a triangle) in such a complex can be in at most two
3-simplexes (tetrahedra, one on each side). A 2-simplex that
is in only one 3-simplexes is an exterior face, i.e., part of the
boundary. We call such a complex a 3-dimensional pseudo-
manifold.

With these definitions we can prove that Algorithm 3 has
the following properties.

� It is well defined on tetrahedral meshes.
� It maps a 3-dimensional pseudo-manifold (a tetrahedral

mesh) into a new 3-dimensional pseudo-manifold.
� It puts most faces of the cut surface on the boundary. As

shown in Figure 7, some faces cannot be put on the bound-
ary.

There is one caveat. The algorithm as listed above may
still change the mesh, even if there is no cut surface, i.e., if
C = ;. Figure 8 shows such a situation in 2D. To remedy
this, we require our complexes to be cut-regular:

Definition 4 A tetrahedral mesh is cut-regular if for every
node the tetrahedra incident to v form one face-connected
component.

If this holds, then the set K in Step 3 of Algorithm 3 has
only one member (assuming C = ;). The new mesh will be
isomorphic to the old one.

In the implementation, we chose to represent triangles and
tetrahedrons not only as sets, but also as instances of ‘topo-
logical objects’: each 3-simplex or 2-simplex in the complex

c
 The Eurographics Association 2000.



Nienhuys and Van der Stappen / Finite Elements and Cutting for Surgery Simulation

Figure 7: Not all faces of a cut surface end up on the bound-
ary. The both nodes of the boxed edge have only one con-
nected component in their incident tetrahedra. An unglue
with this cut surface does not change the mesh.

unglue
C = ;

Figure 8: If the tetrahedra incident to one node form mul-
tiple components, the unglue algorithm will split the node,
even if is the cut-surface is empty.

corresponds to a unique object. Triangle objects contain a
reference to the tetrahedrons that they are part of. The mesh
is a data structure which contains a set of nodes, and a lookup
table that maps oriented simplexes to objects in memory. In-
stantiating objects for triangles and tetrahedrons allows the
program to refer to topological structures with pointers that
remain valid even after the node-substitution in Step 6 of Al-
gorithm 3.

We used oriented simplicial complexes. In an oriented
complex, each set is ordered, and the parity of the ordering
determines the orientation of the edge, triangle, or a tetrahe-
dron. In the oriented 3-dimensional pseudo-manifold, each
triangle is part of precisely one tetrahedron. An oriented
triangle is on the boundary if its mate (the corresponding
triangle with opposite orientation) is not in the simplicial
complex. Oriented pseudo-manifolds have an important ad-
vantage over an unoriented ones in the implementation: the
unglue operation does not create any new triangles, so no
objects need to be instantiated or destroyed. Moreover, an
oriented triangle has a unique surface normal; this makes vi-
sualization slightly easier.

With this data structure, neighbors of a given tetrahedron
can be found efficiently with Algorithm 5. This is sufficient
for finding all tetrahedra incident to a node v (Step 2 of Al-
gorithm 3). We start with a tetrahedron that contains node
N, and recursively find all its neighbors that contain N. If the
simplicial complex is cut-regular, then this proces reaches
all tetrahedra containing N.

Algorithm 5 Given a tetrahedron object t and an index j,
then the following algorithm finds the jth neighbor tetrahe-
dron of t.

1 s := the simplex corresponding with object t
2 s j := the simplex obtained by removing the jth node of s
3 s0j := the mate of s j (i.e., s j with its parity flipped)
4 u := the triangle object corresponding to s0j

5 return the backlink stored in u
(the tetrahedron u is part of)

Finally, we may speed up this process by caching the tri-
angles that are contained in a tetrahedron, thus eliminating
Steps 2 and 3 in Algorithm 5. If the triangle objects also
store references to their mates, we can eliminate the lookup
in Step 4, thus making the entire procedure a constant-time
operation.

5. Prototype

A simulator has been written that implements the techniques
we discussed. The design is multithreaded: one thread per-
forms the CG iteration, while another thread deals with
visualizing the results and tracking the scalpel. Figures 9
through 12 show the prototype in action.

6. Discussion

We have demonstrated how to create a linear static FE de-
formation simulation that does not require expensive global
precomputations, and how to separate topological and geo-
metric aspects when performing cuts in the meshes involved.
This research opens a new road to interactive surgery simu-
lations based on finite element analysis.

Theoretically speaking, an FE model is more realistic than
a physics based model, such as the mass-spring model. How-
ever, it does not follow that this also holds in practice. We
believe that an evaluation of FE simulations compared to
mass-spring-systems is needed. Furthermore, it should be
investigated whether viscosity, incompressibility, non-linear
materials, and non-linear deformation would add significant
realism to an FE simulation. An additional complication is
that it is not clear whether these simulations can at all be im-
plemented efficiently and without global precomputations.

A small test showed that the iterative solver can be fast
enough for interactive use. However, a much more thorough
theoretical and experimental analysis of the convergence be-
havior is needed to assess how material properties and size
and shape of the mesh may be chosen to guarantee interac-
tive speeds.

The cutting technique is novel, and its current implemen-
tation is a proof-of-concept. The cut surface coincides with
mesh features, and this causes the cut surface to be jagged,
which is probably not convincing enough for actual surgery
simulations. We hope to remedy this by using vertex snap-
ping: when a cut is executed, the vertices involved are moved
onto the scalpel path.

Finally, interactions between cutting and deformation
have not been researched at all: moving material while the
scalpel remains steady should also cause a cut, and the tis-
sue should exert a friction force on the scalpel.

c
 The Eurographics Association 2000.



Nienhuys and Van der Stappen / Finite Elements and Cutting for Surgery Simulation

References

1. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Do-
nato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. Van der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods,
2nd Edition. SIAM, Philadelphia, PA, 1994.

2. Daniel Bielser, Volker A. Maiwald, and Markus H.
Gross. Interactive cuts through 3-dimensional soft tis-
sue. In Eurographics ’99, 1999.

3. F. Boux de Casson and C. Laugier. Modelling the
dynamics of a human liver for a minimally invasive
surgery simulator. In Medical Image Computing and
Computer Assisted Intervention (MICCAI), 1999.

4. Morten Bro-Nielsen. Medical Image Registration and
Surgery Simulation. PhD thesis, Dept. Mathematical
Modelling, Technical University of Denmark, 1997.

5. Morten Bro-Nielsen and Stephane Cotin. Real-time
volumetric deformable models for surgery simulation
using finite elements and condensation. Computer
Graphics Forum, 3(15):57–66, 1996.

6. Morten Bro-Nielsen, David Helfrick, Bill Glass, Xi-
aolan Zeng, and Hugh Connacher. Vr simulation of
abdominal trauma surgery. In Medicine Meets Virtual
Reality 6, pages 117–123, San Diego, California, 1998.
IOS Press.

7. Stéphane Cotin, Hervé Delingette, and Nicholas Ay-
ache. Efficient linear elastic models of soft tissues for
real-time surgery simulation. Technical report, INRIA,
October 1998.

8. Stéphane Cotin, Hervé Delingette, and Nicholas Ay-
ache. Real-time elastic deformations of soft tissues for
surgery simulation. Technical report, INRIA, October
1998.

9. Steven A. Cover, Norberto F. Ezquerra, James
F.O’Brien, Richard Rowe, Thomas Gadacz, and Ellen
Palm. Interactively deformable models for surgery sim-
ulation. IEEE Computer Graphics and Applications,
pages 68–75, November 1993.

10. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,
and D. Walker. Solving problems on concurrent pro-
cessors. Prentice Hall Inc., 1988.

11. Sarah F.F. Gibson. 3d chainmail: a fast algorithm for
deforming volumetric objects. In 1997 Symposium on
Interactive 3D Graphics, pages 149–154. ACM, 1997.

12. Gene H. Golub and Charles F. Van Loan. Matrix Com-
putations. John Hopkins University Press, Baltimore,
Maryland, 1983.

13. Yuencheng Lee, Demetri Terzopoulos, and Keith Wa-
ters. Realistic modeling for facial animation. In SIG-
GRAPH’95, 1995.

14. Martti Mäntylä. An introduction to solid modeling.
Computer Science Press, 1988.

15. K. Mori, Y. Seki, J.-I. Hasegawa, J.-I. Toriwaki,
H. Anno, and K. Katada. A method for shape defor-
mation of organ and its application to virtualized en-
doscope system. In H.U.Lemke, M.W. Vannier, and
K. Inamura, editors, Computer Assisted Radiology and
Surgery, pages 189–194. Elsevier Science B.V., 1997.

16. Paul F. Neumann, Lewis L. Sadler, and Jon Gieser M.D.
Virtual reality vitrectomy simulator. In MICCAI98,
pages 910–917, 1998.

17. Han-Wen Nienhuys. A topological foundation for cut-
ting in tetrahedral meshes. Unpublished.

18. Markus A. Schill, Sarah F. F. Gibson, H.-J. Bender, and
R. Männer. Biomechanical simulation of the vitreous
humor in the eye using an enhanced chainmail algo-
rithm. In Medical Image Computing and Computer As-
sisted Intervention (MICCAI), pages 679–687, 1998.

19. Markus A. Schill, Clemens Wagner, Marc Hennen,
Hans-Joachim Bender, and Reinhard Männer. Eyesi —
a simulator for intra-ocular surgery. In Medical Image
Computing and Computer Assisted Intervention (MIC-
CAI), 1999.

20. Gilbert Strang and George J. Fix. An analysis of the
Finite Element Method. Prentice-Hall, 1973.

21. K. J. Weiler. Topological Structures for Geometrical
Modeling. PhD thesis, Rensselaer Polytechnic Institute,
Troy, NY, 1986.

c
 The Eurographics Association 2000.



Nienhuys and Van der Stappen / Finite Elements and Cutting for Surgery Simulation

Figure 9: Dilating force applied to the left and right parts of the
boundary of a cube of 1000 nodes.

Figure 10: A previously planned incision has already been per-
formed. The cut surface for the next cut is shown in
red. Because of the dilating force, the incision is folded
open. All front faces have been culled.

Figure 11: The cut is finished. A view from the outside.

Figure 12: The same block of material fully torn apart and
butchered by multiple incisions. The line protuding
from the model at the top left visualizes an instrument
for applying force.

c
 The Eurographics Association 2000.


