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Abstract
This paper presents a new fast and smooth antialiasing technique. Drawing straight line is the graphic tool’s main
primitive. Previous antialiasing techniques improve smoothness but slow down computation.

1. Introduction

As mentioned in Foley1, one of the drawback of raster sys-
tems arises from the discrete nature of the pixel representa-
tion. For example, the drawing of straight line presents dis-
continuities because of pixels approximation.
This effect is a manifestation of a sampling error called alias-
ing in signal-processing theory2. Both theory and practice in
modern computer graphics are concerned with antialiasing
techniques. These techniques specify gradations in intensity
of neighboring pixels, rather than setting pixels to maximum
or zero intensity only.
There are two main approaches to solve the problem: to
apply a filter on an existing image (postprocessing)3; 4 and
to use a modified (antialiased) scan-conversion algorithm
(preprocessing)1. Preprocessing techniques produce directly
antialiased curves. The main idea is to create a “thick” curve.
Each pixel intersected by the thick curve is displayed with a
non zero intensity. The surface of the intersection between
a given pixel and the thick curve will be denoted “covered
area”.
Unweighted and weighted area sampling are the main pre-
processing techniques. Unweighted area sampling set inten-
sity proportional to the amount of covered area. Weighted
area sampling adds a function of distance between the cen-
ter of the pixel and the curve.
Gupta-Sproull scan conversion algorithm for straight lines5

precomputes a table of intensities.

In this paper, we describe the continuous, discrete and thick
lines. Based on these descriptions, we present a new tech-
nique using the Gupta-Sproull and unweighted area sam-
pling methods. The deduced algorithm is twice as quick as
the previous ones.

2. Line description

In this part, we describe all the necessary elements to un-
derstand the new algorithm. Definitions and notations of the
continuous, discrete and thick lines are presented. Finally we
present new properties in order to compute quickly the con-
tinuous thick line.
In the following, the notation r will denote a real value or an
object in the continuous plane.
A point of a plane is defined by two coordinates. Let
P(xp;yp) and Q(xq;yq) be two points of the discrete plane
NI � NI representing the raster device.
In a continuous plane RI � RI the continuous line between P
and Q will refer to the line segment from P to Q.
In a discrete plane, the discrete line from P to Q corresponds
to a “linear” path from P to Q. The discrete line is a set of
discrete plane’s points closest to the continuous line.
Let u and v be respectively the difference of abscissae and
ordinates between P and Q.
As noted by Bresenham6 the discrete line from P to Q is
an exact transposition of the line (0;0)(u;v). The slope of
the line is given by the pair (u;v). For a given slope (u;v),
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L(u;v) will denote the discrete line and Lr(u;v) the continu-
ous line.
Moreover each continuous and discrete line can be computed
in the first octant and, by symmetries, drawn6. Therefore
u > v � 0. Each continuous line Lr(u;v) and discrete line
L(u;v) in the first octant satisfy:

8 xr 2 [0; u]; 9! yr 2 [0; v] = (xr ; yr) 2 Lr(u; v)

8 x 2 [0; u]; 9! y 2 [0; v] = (x; y) 2 L(u; v)

In the first octant :

yr =
vxr

u

and

y =
h vx

u

i

[z] means the best integer approximation of the real value z.
A thick line T r(Lr; t) is a set of points (xr ; yr) of the con-
tinuous plane that respect:

d ((xr ; yr); Lr)<
t
2

where d ((xr ; yr); Lr) is the distance between the point
(xr; yr) and the continuous line Lr. t is therefore the thick-
ness of the thick line.
Let γ be the maximum ordinate’s difference between two
points of T r(Lr; t). If θ is the angle between the line (u; v)
and the horizontal line (see figure 1); γ is defined by:

γ = t
cosθ

=
t
p

u2 + v2

u

In a discrete plane NI � NI a thick discrete line T (Lr; t) is
the set of all points (x;y) 2 NI � NI that are at least partially
covered by Tr(Lr; t). For each point (x; y)2 NI 2, let A(x; y)
be the surface of a point (x; y) covered by Tr(Lr; t). If the
A(x;y) 6= 0 then (x;y) 2 T (Lr; t). Remark:

8x 2 [0;u]; ∑
y2 NI

A(x;y) = γ

The sum of the covered surfaces of points belonging T (Lr; t)
with the same ordinate is equal to γ.

In the following, we concentrate on the case t = 1, so in the
first octant γ 2 [1;

p
2].

For x in [0; u], there are one, two or three points belonging
to T (Lr; t). The next paragraph presents these different
cases.

Case 1 (one point per column): this case appears only
when v = 0. Therefore

8 (x; y) 2 T; A(x; y) = 1

Case 2 (two points per column):

T(L ,t)

rrT (L , t)
F

t

u
v (x , y )rr

Lr
θ

r

Figure 1: Visualization of a thick line

Let (x;y?) and (x;y>)2 T (Lr; t). As one of them is directly
above the other one, let write y> = y?+1:

A(x;y?) =
γ
2
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1
2
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2
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Case 3 (three points per column):
Let (x; y?), (x; y?>) and (x; y>) be three points of T (Lr; t).
As mentioned above we can write y?> = y?+1, y> = y?>+1.
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A(x;y?>) = γ�A(x;y?>)�A(x;y>)

As the line is composed by an inner symmetry7; 8, our
purpose is to apply this symmetry to covered areas.

Case 1: the symmetry is obvious
Case 2: Let (x;y>) and (x;y?) be points of T (Lr; t) and
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y> = y?+1 then:

A(x; y?) = A(u� x; v� y>)

A(x; y>) = A(u� x; v� y?)

Case 3: Let (x;y>), (x;y?>) and (x;y?) be points of T (Lr; t)
and y?> = y?+1, y> = y?>+1 then:

A(x; y>) = A(u� x; v� y?)

A(x; y?>) = A(u� x; v� y?>)

A(x; y?) = A(u� x; v� y>)

It is easy to prove that for a value u�x the case 2 (respec-
tively 3) occurs if and only if for x the case 2 (respectively 3)
occurs. Therefore the inner symmetry of the thick discrete
line is proved.

3. New algorithm

The coordinate of the lowest pixel is computed using Bresen-
ham’s algorithm. When a diagonal move is computed, three
pixels will be drawn. When an axial move occurs, two pix-
els will be drawn. Before drawing the adequate pixels, the
amount of their area covered by the thick continuous line
is computed and used as an entry in the color LUT (this is
an adaptation of the Gupta-Sproull’s algorithm). Using the
symmetry mentioned above, the new algorithm computes
only the first half of the line. The other half is automati-
cally drawn in the same loop. Previous algorithms iterated
u times the loop, and ours iterates it u=2 times. The Color
Look-Up-Table (Color LUT) is used to produce a perfect vi-
sual effect. Two examples are given in figures 2 and 3. Each
figure presents two lines of same slope: the upper one is not
antialiased while the lower one is drawn using our algorithm.

Figure 2: Results for a line of slope (200, 1)

Figure 3: Results for a line of slope (200, 31)

4. Conclusion

Based on a Gupta-Sproull’s and unweighted area sampling,
we have realized an antialiased algorithm for straight lines.
Due to the inner symmetry, the new algorithm is proved to
be twice as fast as previous ones. In the near future, the new
symmetry property will be applied to an efficient algorithm
like Boyer et al.8 and a discrete analysis will be implemented
to compute the areas so we can expect a significant speed
improvement.
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