
EUROGRAPHICS 2000 / A. de Sousa, J.C. Torres Short Presentations

Interactive Vegetation Rendering with Slicing and Blending

Aleks Jakulin

Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia

Abstract
Detailed and interactive 3D rendering of vegetation is one of the challenges of traditional polygon-oriented com-
puter graphics, due to large geometric complexity even of simple plants. In this paper we introduce a simplified
image-based rendering approach based solely on alpha-blended textured polygons. The simplification is based
on the limitations of human perception of complex geometry. Our approach renders dozens of detailed trees in
real-time with off-the-shelf hardware, while providing significantly improved image quality over existing real-time
techniques. The method is based on using ordinary mesh-based rendering for the solid parts of a tree, its trunk
and limbs. The sparse parts of a tree, its twigs and leaves, are instead represented with a set of slices, an image-
based representation.A slice is a planar layer, represented with an ordinary alpha or color-keyed texture; a set
of parallel slices isa slicing. Rendering from an arbitrary viewpoint in a 360 degree circle around the center of a
tree is achieved by blending between the nearest two slicings. In our implementation, only 6 slicings with 5 slices
each are sufficient to visualize a tree for a moving or stationary observer with the perceptually similar quality as
the original model.

1. Introduction

It is important to draw a distinction between vegetation mod-
eling and rendering. Vegetation modeling is successfully
done with various flavors of L-systems6. There is abundant
literature in this field, for example11; 1, along with several
commercial modeling tools. However, the generated polyg-
onal models have extremely high complexity, making them
unsuitable for real-time rendering. The current line of re-
search seems to lie in improving and animating the models,
while real-time rendering of vegetation has not yet been ex-
plored extensively.

Due to variety of vegetation, it is necessary to focus on
particular types. The three possible benchmarks are grass,
small plants and trees. Grass resembles hair and fur, which
are already an active field of research, with some interac-
tive approaches, such as4; 5. Most small plants are not ge-
ometrically complex, and their leaves are relatively large in
comparison with the size of the whole plant, which opens
few possibilities for shortcuts. Therefore, our focus will be
on trees, although the main ideas of our technique fully ap-
ply to bushes, and all those plants whose leaves are small in
comparison with their size.

Our objective was to develop a practical method that
would run interactively for several dozen or even hundreds

of trees with perceptually full detail using off-the-shelf hard-
ware, priced at 200 EUR or less. The method must allow un-
restricted movement on a horizontal plane around the trees at
distances of up to 10 to 15 meters between the tree and the
observer. At this distance, the projection of the tree crown
is small enough that the projection covers only a part of
the viewport, and that individual leaves can no longer be
discerned. This restriction is not stringent and the method
would be directly useful in important applications in driving
simulations and architectural visualizations. It was not our
objective to allow viewing the tree from viewpoints above
and below the tree.

Our method fulfills and exceeds these requirements, tak-
ing advantage of the following empiric properties of human
visual system:

� Stereo vision based on binocular disparity has limited pre-
cision: a distant tree appears to be a 3D object primarily
due to motion parallax.

� The perception of parallax has limited precision; veloc-
ities are clustered, and zones which move with approx-
imately the same velocity are recognized as individual
solid objects. A branch is an example of such an object, if
the tree is viewed from a distance.

c
 The Eurographics Association 2000.



Aleks Jakulin / Interactive Vegetation Rendering with Slicing and Blending

� Full geometric complexity of a tree is neither recognized
nor remembered.

� Humans can only focus on individual segments of the im-
age at once.

We have combined the traditional mesh-based geometry
rendering for the trunk and limbs of the tree with image-
based rendering for the crown of a tree. The boundaries be-
tween the two different geometry representations are nor-
mally obscured by the foliage, facilitating this simple ap-
proach. The meshes of the tree trunk and limbs can be sim-
plified with a large variety of mesh simplification algorithms
7.

For the tree crown we use an image-based multi-layered
representation. Our layers are individually textured oriented
quadrilaterals, we name themslices, using the same termi-
nology as4. A set of parallel slices isa slicing.Rendering a
slicing is an approximation to precise pixel warping. For a
single crown, we use several slicings to facilitate rendering
from arbitrary directions.

The second contribution of this paper is our approach to
rendering, targeted at the existing hardware graphics accel-
erators. We interleave the rendering of two most appropriate
slicings, and adjust the opacity of each slicing depending on
its orientation towards the observer. Thus the transitions be-
tween slicings are kept smooth. Another benefit of this is a
significantly reduced number of slicings required.

After a brief review of related work, we present our
methodology, first revising the slicing representation and the
procedure for texture generation. We then proceed to intro-
duce the blending approach for slicing rendering. Our expe-
rience with the implementation and the performance mea-
surements can be found in section3. A discussion of the
method and ideas for further work are presented in section
4. We conclude with a short summary of our work.

1.1. Related work

The currently predominant approach to vegetation rendering
seems to be billboarding3, where the trees are reduced to
planar quadrilaterals that maintain their relative orientation
towards the observer. With improvement of terrain and ob-
ject rendering, the quality offered by billboards is no longer
acceptable due to their planarity, invariance to rotation, and
lack of parallax.

Another frequent approach is manual design of simplified
geometry models. For example, a tree can be represented
with a green lollipop or can be formed from two intersect-
ing quadrilaterals textured with the same billboard texture.
In recent years the tree models have become significantly
more intricate, for example, individual branches are repre-
sented with foliage-textured curved sheets. However, we are
not aware of any automatic tools for generation of such mod-
els, and manual modeling and segmentation are long and

laborious processes. Automatic mesh simplification is cur-
rently not applicable to sparse tree models.

Geometric complexity, measured by e.g. the number of
leaves, is a parameter to most automatic model generation
tools. This way, it is possible to generate simple but unre-
alistic 500-leaf models of trees, often used in architectural
visualization and high-end simulations. Similar low-detail
models are sold by several vendors.

Recently, a number of more advanced image-based ren-
dering methods have been proposed. Layered depth im-
ages10 are one of the dominant approaches. Instead of speci-
fying color and optionally transparency for each 2D location
in an image, a layered depth image (LDI) contains an arbi-
trary number of depth pixels, where each depth pixel is de-
scribed by color, 20-bit depth, and a splat index. Most of the
examples presented by the researchers were LDI’s of very
detailed vegetation. The authors provide an implementation
based on software rasterization which only runs on Intel Pen-
tium III computers, but the frame rates in a small window
remain relatively low (8-10 frames per second for 300 by
300 resolution on 300 MHz PC, as reported in10). The data
files are very large, an LDI of a detailed model of a sin-
gle chestnut tree is over 17 MB. A similar approach to LDI
has been investigated by2, specifically for tree rendering. Fi-
nally, it must be noted that texture mapping and billboarding
are older forms of image-based rendering.

Another paradigm in image-based rendering is image
caching. A layered impostor8 is conceptually similar to a
single slicing, but the impostor layers are generated dynam-
ically. The implementations of layered impostors seem to be
focused on representing solid objects, resulting in signifi-
cantly larger numbers of layers. Graphics acceleration hard-
ware is supported by the implementations. A single RGBA
texture is used for each impostor, where the alpha channel of
the texture is used to represent depth. Consequently, a single
impostor can only be viewed from a relatively narrow region
of space. Using a number of layered impostors to represent
an object from arbitrary directions has been studied in9. The
described method maps layered impostors evenly to the sides
of a platonic solid encapsulating the object. It is noted that
the number of impostors can be reduced by exploiting the
object symmetry. However, trees are not very appropriate for
image caching due to their prohibitive geometric complexity.

Perhaps the most promising real-time approach is based
on volumetric textures, which are represented quite similarly
as layered impostors, usually with 64 layers. In4, the need
for multiple slicings with different orientations is noted and
the formulae for determining the closest slicing are provided.

2. Our approach

2.1. Slicings

Most trees can be decomposed into two structurally differ-
ent entities: the trunk and limbs as “solid” entities on one

c
 The Eurographics Association 2000.



Aleks Jakulin / Interactive Vegetation Rendering with Slicing and Blending

hand, and the foliage and twigs in the crown of the tree as
“sparse” entities on the other. The solid entities are perceived
similarly as other solid objects, are of sufficiently low geo-
metric complexity to be rendered quickly. In addition to that,
generic mesh simplification methods7 can be used to auto-
matically reduce the complexity depending on the required
level of detail.

Sparse entities contain the majority of the geometric com-
plexity of a model. For the model in Figure1, the trunk
and large branches can be represented with 200 triangles,
whereas the twigs and leaves are formed from 8093 and
11564 triangles, respectively. The nature of twigs and fo-
liage offers few possibilities for mesh simplification. A leaf
or a twig cannot be geometrically simplified to less than a tri-
angle or a quadrilateral with the existing methods. Although
the exact shape of leaves is usually not perceived, usage of
round points for leaves or lines for twigs would be immedi-
ately noticed as an artifact.

Figure 1: The primitives of a tree model can be segmented
into the solid set (200 triangles) and into the sparse set,
where 8093 triangles are used for branches and 11564 for
foliage.

Fortunately, the geometric complexity of sparse entities is
excessive also for accurate perception, and this offers possi-
bilities for appropriate simplification. The effect of parallax
is the necessary means for the illusion of depth, but as ve-
locities in complex sparse objects are perceptually clustered,
only a discrete numbers of parallax layers are sufficient to
provide full sensation of depth, if viewing the tree from the
approximately same direction. The sufficient number of lay-
ers is significantly lower than for solid objects.

Each depth layer lies on a fixed plane in the object space.
In this paper it will be assumed that all layers, orslices, are
parallel and equidistant. To distinguish a set of such slices
from 3D textures, layered depth images, and layered impos-
tors, we will refer to it asa slicing.

A slicing is displayed by simply rendering all the slices it
is composed of. All the slices are located at fixed positions
in the world space. The orientation of a slicing is fixed and is
invariant to the observer location and orientation. Appropri-

ate perspective warping uses the same pipeline as ordinary
texture mapping.

Due to the assumptions of slice plane equidistance and
parallelism, all the slices in a slicing have the same normal
vector, which will be referred to as the slicing orientation
vectorvs, wherejvsj is the distance between slices. A slic-
ing is bounded by a slicing box, two sides of which are the
closest and the furthest slice. The slicing box is defined with
the centroidcs, the heighths and the widthws. To be able to
render each slice as a textured quadrilateral, its four vertices
must be unambiguously determined. They lie at the intersec-
tions of the slice plane and the edges of the corresponding
slicing box. It will be assumed that all slicings of an ob-
ject share the same value ofcs. By definition, each slice has
only one side, but two slices with collinear orientation vec-
tors may (and usually do) share the same slicing plane.

A slicing is displayed by back-to-front rendering of the
textured quadrilaterals for each slice. As every texel in the
textures is either full opaque or fully transparent, the render-
ing order does not matter. The use of MIP-mapped textures3

improves the performance significantly.

2.2. Slice textures

Each small primitivep in the sparse part of the tree model is
assigned to a single sliceSs for every slicingson the basis of
Euclidean distance of the centroid of the primitivecp to the
slice plane,d(Ss;cp). The assignment occurs if 2d(Ss;cp)�
jvsj. A top-down view of the process is shown in Figure2.

Figure 2: Each primitive is assigned to the closest slice in
the direction of the arrows. The slicing box encapsulates all
the slices. The bull’s-eye marks the slicing center.

Although this simple mapping works well for small prim-
itives, a slightly different procedure should be used for larger
primitives, to avoid cracking and ordering artifacts. In such

c
 The Eurographics Association 2000.



Aleks Jakulin / Interactive Vegetation Rendering with Slicing and Blending

cases, the primitive should either be assigned either to sev-
eral slices, or to the polygonal mesh.

The texture rendering pipeline performs the warping, so
parallel projection is used for texture creation. The left, right,
top and bottom sides of the slicing box are also the frustum
planes. These sides of the box have to enclose all the primi-
tives. The front and back slices do not have to enclose all the
primitives, because the primitives are mapped inwards onto
them.

The choice of the renderer is arbitrary, as long as the im-
age can be exported as an RGBA image. However, the col-
ors and lighting should match at the visible points of contact
between the sliced representation of the tree crown and the
mesh-based representation of tree trunk and limbs. If the tex-
tures are prerendered in a different environment, the colors
must be aligned. This is often not trivial, as interactive ren-
dering frameworks, such as OpenGL, cannot properly ap-
proximate the complex lighting model used by ray tracing
software. The best method for computing the textures would
probably be achieved by precomputing the vertex lighting in
a radiosity package for the whole tree. Afterwards, this pre-
computed vertex lighting data is used to render the textures
with the same rasterizer used for the interactive implemen-
tation. This approach ensures both quality and color align-
ment.

The required number of slices depends on the required
interactive rendering quality, but 3 to 7 slices are usually op-
timal for a tree. Note that this is significantly lower than the
theoretical estimates in4, which do not consider the percep-
tual velocity clustering and sparseness. Also, multiple levels
of detail could be created by using more slices if the tree is
close, and perhaps a single slice if the tree is far and the par-
allax is no longer discernable. If a large number of slices is
required for a very high level of detail, a different rendering
method such as LDI’s or completely polygonal representa-
tion should be considered. Slicing works best when the tex-
ture sizes are 256� 256 or less. These are merely rules of
thumb, dependent on the architecture of the graphics hard-
ware and the nature of a specific application.

2.3. View Blending

A single slicing is sufficient for rendering a tree if the line
connecting the slicing centercs and the observero is well-
aligned with the slicing orientationvs. If this is not the case,
for example, if the observer is facing the slicing in a direction
perpendicular to the slicing orientation, the slices will appear
as thin and glaring artifacts.

A single slicing does not contain enough information to
facilitate 360 degree viewing around the vertical axis. For
this aim, multiple slicings have to be computed, each with
a different slicing orientation. For robust performance, it is
desired that the orientations are evenly distributed, to allow

displaying the tree from all applicable orientations. In major-
ity of applications, such as road vehicle simulations and ar-
chitectural visualization, most trees are always viewed from
the approximately same relative height, while the movement
on the horizontal plane is less obstructed. In such cases, the
slicing orientations need to be evenly distributed points on a
unit circle around the model, whereas in a general case, the
orientations should be distributed on a unit sphere.

In certain applications, a particular tree is only viewed
from a limited set of viewpoints, and the slicing orientation
distribution can take advantage of this. However, it is impor-
tant to note that the same slicing model can be instantiated
in the world with different scale and orientation. Trees with
evenly distributed slicing orientations are more appropriate
for instantiation.

It is important to resolve which slicing is the most appro-
priate for a given observer locationo. For this, the relevant
information is thediscrepancy angleγs between the slicing
orientation vectorvs and the direction vector from the slicing
box centroid to the observer which iso� cs. It is important
to distinguish the camera orientation vector from theo� cs

vector. Angle comparisons can be clearly done using the dot
product.

An obvious approach might be rendering the single most
appropriate slicing on the basis of the lowest angle of dis-
crepancy, but this would result in abrupt switches between
slicings. The obvious way of remedying this is creating a
larger number of slicings, but this unacceptably increases the
required amount of memory and reduces the performance.
A more efficient approach is to again take advantage of the
characteristics of the human visual perception, and find a
way of smoothly blending between slicings.

Each slicing is positioned at a different place in the en-
vironment because of perspective warping of the slice tex-
tures, as Figure3 shows. Two slicings thus cannot be su-
perimposed on a single plane. We simply display the clos-
est, primary, slicing and the second closest, secondary, slic-
ing simultaneously, varying their individual levels of trans-
parency. Two slicings are sufficient to provide smooth fad-
ing.

The transparency of the slicings is proportional to the
difference between the discrepancy angles of the primary
and the secondary slicing. As it was mentioned earlier, when
the discrepancy angle of the primary slicing is 0, the sec-
ondary slicing should be fully transparent. When the dis-
crepancy angles of the primary and the secondary slicing are
the same, the blending coefficients should be equal for both
slicings in order to smoothly perform the transition.

Of the commonly available blending functions, the most
appropriate isctα+cf (1�α), wherect is the superimposed
texture color vector,cf is the background color vector, and
α is the opacity of the superimposed texture. This function
is supported by the majority of 3D acceleration hardware

c
 The Eurographics Association 2000.



Aleks Jakulin / Interactive Vegetation Rendering with Slicing and Blending

Figure 3: Primary and secondary slicings are blended to-
gether to create a solid-looking rendering of a tree. The
screenshot was taken after rectangular frames were added
to the slice textures. This is a worst-case example, with both
discrepancy angles close approximately 30 degrees.

and recommended for similar purposes by3. A simple lin-
ear interpolation depending on the discrepancy angle works
very well. As the discrepancy angle varies from 0 to being
equal to the secondary discrepancy angle, the primary slic-
ing opacity,αp, varies from 1 to 0:5.

The equality of distortion angles occurs when both angles
are equal to one half the angle between the primary and sec-
ondary slicing orientations, but if this assumption is used,
the direction vectoro� cs should be projected to the plane
that both slicing orientation vectors are perpendicular to be-
fore computing the angle. The secondary slicing opacityαs

is then 1�αp.

After determining the transparency levels for both slic-
ings, they can be rendered. Most rendering pipelines require
correct back-to-front ordering of the alpha blended primi-
tives in the view. After rendering all the opaque primitives,
all the semi-transparent primitives have to be rendered in the
correct back to front order, but only if they overlap. In the
case of trees, the mesh is opaque and the slicings are trans-
parent. Note that although individual color-keyed textures
of the slices themselves are opaque, the blending between
two slicings results in semi-transparency. If we assume that
trees do not intersect one another, the following rendering
sequence is used: after all the trunks are rendered in an ar-
bitrary order, the tree crowns are individually rendered from
the furthest to the closest.

For each crown, the slicings should be also rendered in the
correct order. The primary and secondary slicings usually
intersect each other, but it is not necessary to add complex-

ity by splitting them so that they could be correctly sorted.
In fact, no sorting is necessary if the trees do not intersect:
the rendering order should start with the furthest secondary
slice, continued with the furthest primary slice, second fur-
thest secondary slice, and so on, until the closest primary
slice enters the rendering pipeline. However, when the pri-
mary and secondary slicings are swapped at the point of
equal distortion angle, there is a very slight visible switch.
It was observed that this artifact is not striking enough to
justify additional computational cost of rendering a signifi-
cantly larger number of primitives.

The blended slicings are slightly blurred, while individual
slicings, rendered when the discrepancy angle is 0, are not.
This may cause problems if the textures are sparse, and tree
crown slicings are indeed sparse. An example of a conse-
quence is that instead of displaying one opaque leaf in one
slicing, it might happen that two half-transparent leaves are
displayed next to each other. In addition to that, with the
blending function used, the background behind the tree is
still slightly visible, depending on the number of slices. This
is not particularly problematic as in reality the tree crowns
are naturally semi-transparent. The rotation of the tree is
usually slow enough that blurring and sharpening are not
bothersome.

The blurring and semi-transparency are thus not important
artifacts. But the variation of perceived brightness, which is
a consequence of the tree appearing semi-transparent as a
whole in front of the background of a different color, needs
to be corrected. To balance the brightness, the blending ratio
was multiplied by an empirically determined linear correc-
tion factor fc = 1+msαs, wherems is a correction multiplier
which primarily depends on the sparseness of the tree crown
and on the number of slices, and to a lower extent on the
display gamma exponent and the background color. A good
starting approximation forms is 0:5. Consequently the cor-
rected slicing transparencies areᾱp = fcαp andᾱs = fcαs.
Of course, more complex correction factor formulae could
yield better results.

Sometimes the slices in the back are almost completely
occluded by the slices in front. If performance is at stake,
and a small decrease in quality is acceptable, the last few
slices do not have to be rendered.

3. Implementation

The method described above was implemented using the
OpenGL API. We used an automatically generated tree
model. The model was manually segmented into the solid
and sparse parts. The mesh of the solid part was manually
simplified to reduce the number of polygons, whereas the
primitives in the sparse part were used to create the textures.
Automatic segmentation would be relatively simple to im-
plement within a software package for tree modeling.

Each slicing contained 5 slices. The 6 slicings were

c
 The Eurographics Association 2000.



Aleks Jakulin / Interactive Vegetation Rendering with Slicing and Blending

spaced 60 degrees apart. Symmetry was not exploited. Thus,
the tree was rendered using only 40 vertices and 10 quadri-
laterals. No lighting or shading was required. The trunk and
the limbs were rendered as a triangular mesh with approx-
imately 200 primitives. We have tried the method with 12
slicing orientations evenly distributed around the unit circle,
but the expected quality improvement did not, while the ex-
pected performance drop did occur.

We used the unmodified POVRay ray tracing software and
orthogonal projection to render the textures. The camera was
oriented directly towards the slicing box centroid. The frus-
tum was composed of the top, bottom, left and right sides of
the slicing box. This guaranteed that the images exactly cor-
respond to slice textures. The advantage of using ray tracing
for texture creation was that detailed shading significantly
improved the realism of the textures, which could not be
as easily achieved by creating the textures using, e.g., the
OpenGL renderer. However, the lighting parameters had to
be adjusted to correspond to those used for rendering the
textures with POVRay.

We have used MIP-mapping to optimize the performance.
The color depth of the textures was reduced to 15 RGB bits
and 1 transparency bit provide sufficient quality for half the
memory requirements of 32 bit RGBA textures. Additional
diversity of the landscape was achieved by instantiating the
same tree model with different scale and orientation.

3.1. Performance

The implementation of our rendering method has been timed
in comparison with the original polygonal model on a 350
MHz Pentium II computer with a NVIDIA GeForce 256
DDR graphics accelerator in 640� 480 resolution. The
crown of the polygonal model was rendered flat-shaded
without lighting, whereas the trunks and limbs of both the
polygonal and the hybrid model were rendered smooth-
shaded with one positional light.

Meshes were represented with compiled display lists con-
taining triangle vertex data. Triangles and not triangle stripes
or fans were used in the display list, but the benefit would be
limited with leaves. On the other hand, the crown mesh was
plain and unshaded, which would not be acceptable in most
applications. Only a single level of detail was used for both
techniques.

The frame rendering time was sampled for a pre-recorded
camera path consisting of 2600 frames through a grove with
a specific number of trees. Not all trees were visible in each
frame. After averaging the rendering time for subsequences
of 20 frames, the rendering times for sequences were sorted
in descending order. The first 5% of the largest rendering
times after averaging were excluded, to ignore the artifi-
cial delays caused by the multitasking operating system. The
largest remaining frame rendering time was taken as a real-
istic measure of the worst case performance.

The results in Figure4 show that even with transform and
lighting hardware, the hybrid representation with slicings is
approximately 20 times faster than the mesh representation
considering the worst-case performance. Average-case per-
formance is not valid for comparison in interactive applica-
tions, but even with this measure, the mesh-based represen-
tation is consistenly and significantly worse than the hybrid
representation as illustrated in Figure4. The rendering qual-
ity can be compared in Figure5, where the first tree is ren-
dered as a shaded mesh with a point light source, the second
and third trees as the slicing-mesh hybrid when the discrep-
ancy angle is low or maximal (30 degrees), respectively.

Figure 4: Comparison of the average (empty shapes) and
the worst case (filled shapes) frame rendering time for mesh
(diamonds) and slicing (squares) representation of a given
number of trees. The number of trees is displayed on a loga-
rithmic scale.

4. Further work

Computing a single discrepancy angle per slicing using its
the slicing box centroid as the reference point is an approxi-
mation. In fact, the discrepancy angle could be computed for
each individual point of a slicing, but the errors remain low
if the slicing does not cover a large portion of the viewport.
It is possible to imagine a variety of subdivision techniques
to remedy this problem by bounding the error. A possible
example might be subdivision of each slice into several sub-
slices when close. All the subslices lie on the same plane
and use the same texture, but the primary and secondary
subslices are determined independently, as are their trans-
parencies. It must be noted that zooming on slicings intro-
duces other problems, mostly due to significantly larger tex-
ture memory requirements.

In our implementation, we focused on rendering trees
for an observer located approximately on the ground plane.
Even if the angle between the ground plane (where the tree
is positioned) ando� cs was less than 45 degrees, the tree
was rendered with good quality, as slicings similarly repro-
duce the effect of parallax for vertical movement. But blend-

c
 The Eurographics Association 2000.



Aleks Jakulin / Interactive Vegetation Rendering with Slicing and Blending

Figure 5: Comparison of rendering quality for slicing-based
representation with discrepancy angle of 0 degrees (top) and
two blended slicings with discrepancy angle of 30 degrees
(bottom). The pictures were taken at a very short distance,
and the tree was filling the viewport completely.

ing between two closest slicings might no longer be suffi-
cient for an observer allowed to fly freely around the tree.
When viewing the trees from the top, blending is not re-
quired, and a single vertically oriented slicing works well,
as 4 has shown. A possible solution, other than distribuit-
ing the slicing orientation vectors on a unit sphere, might be
blending three slicings, two of them being horizontally and
one of them vertically oriented.

An important parameter influencing the choice of the
method is the distance from the observer to the tree and
the time the observer spends focusing on a tree. From suf-
ficiently far away or if moving very quickly, billboards are
still the optimal choice. If very close up or if focusing on
the geometric details of the branches, slicings may not of-
fer sufficient quality, and one should resort to polygonal or
LDI representations. An interesting challenge are methods
for smooth blending between these diverse representations.

The most important computational bottleneck of our
method is the consumption of texture memory, which limits
the resolution of slice textures and the variety of models. For
satisfactory performance, it is important to keep most of the

Figure 6: The images of the mesh-based representation from
the viewpoints corresponding to ones in the Figure5.

textures in the texture memory of graphics board. If this con-
dition is not fulfilled, the performance falls rapidly. For our
model with 256�256 textures, approximately 4 megabytes
of texture memory are required if no compression is used.
Better memory bus architectures as well as better MIP-map
memory management should lessen the problem.

Memory consumption could be reduced by using tex-
ture compression, supported by modern graphics hardware.
Slice textures are also relatively sparse, with large transpar-
ent regions. Several software-based compression algorithms
could be applied, for example quad-tree image compres-
sion algorithms. The fully transparent leaves of the quad-tree
have to be neither rendered, nor stored as textures. Lower fill
rate requirements and lower consumption of texture memory
are gained by increasing the number of primitives, so the
optimal balance depends on the hardware platform and the
texture size.

It is possible to exploit symmetry to further reduce the
amount of texturing memory required. A model can contain
a number of planes of symmetry, and textures are symmetric
across them. In addition to this, two slicings could be made
from one by creating a mirrored instance of each slice. This
is relevant if lighting is even from all the sides and if the
depth order of primitives for each slice is not significantly

c
 The Eurographics Association 2000.



Aleks Jakulin / Interactive Vegetation Rendering with Slicing and Blending

influencing the look of the texture, for example, if there is
little occlusion between primitives.

Plant model generation tools that support slicings would
be useful. These tools have complete information about the
segmentation of the model, and a single branch could be rep-
resented with a single appropriately oriented slicing, which
would yield better quality than creating a slicing from the
whole tree, where a single branch might appear in multiple
slicings.

Our implementation does not yet support lighting and
shadows. Precomputed shadow maps and bump mapping
would be relatively simple and effective solutions, without
causing a significant slow-down. An interesting direction for
further work is also animation of the effect of wind on vege-
tation, for example by moving or warping individual slices.

Slicing representations offer a new perspective for auto-
matic acquisition of natural environments for specific appli-
cations. Namely, it is sufficient to assign a pixel to the nearest
slice in each slicing to achieve realistic interactive rendering,
rather than determining the depth exactly.

5. Conclusion

Vegetation has often been pinpointed as something that can-
not be properly rendered in interactive 3D applications. Al-
though there have been solutions for interactive vegetation
rendering when the landscape is viewed from bird’s-eye
view, there have been no solutions for applications that re-
quire greater freedom of movement.

In this paper we presented an approach based on segment-
ing a complex model of the tree into two heterogeneous rep-
resentations. The tree trunk and limbs are represented as an
usual triangular mesh, whereas an image-based representa-
tion based on slicings is used for amorphous and sparse fo-
liage and twigs. A slicing is a set of equidistant, parallel and
individually textured quadrilaterals, placed into the scene as
fixed geometry. A slicing can be efficiently rendered with
graphics hardware.

Multiple slicings can be used for complete depiction of
objects. We described a method for smooth blending be-
tween two closest slicings, which allows the sliced object to
be interactively rendered from a variety of viewpoints. This
operation is also fully supported by graphics hardware.

Slicings were designed to work optimally for trees at dis-
tances from 10 to 50 meters away, when the tree is suffi-
ciently far away that its projection covers only a part of the
viewport, which ensures low discrepancy angle error, low
texture memory, and low fill rate requirements. Closer, other
representations may offer better quality, and further away the
quality of billboards might be satisfactory.

This range of distance is most frequent in applications in-
volving roadside trees and urban parks. It is also appropriate
for smaller plants in indoors architectural visualizations. The

method is sufficiently quick to allow groves of 100 trees to
be rendered at 20 frames per second with current off-the-
shelf hardware. The rendering quality is subjectively better
than that with the original mesh. Rendering 100 mesh-based
trees would take 1 second with the same hardware.

Acknowledgements

The author would first of all like to thank Aleš Leonardis for
many valuable conversations, much support and advice. Iz-
tok Bajec has provided access to hardware and offered much
help with the performance measurements. The tree model
was created with Tree Druid from Zenstar Software.

References

1. B. Lintermann and O. Deussen. Interactive modeling
of plants. IEEE Computer Graphics and Applications,
19(1), January/February 1999.1

2. N. Max and K. Ohsaki. Rendering trees from precom-
puted Z-buffer views.Eurographics Workshop on Ren-
dering 1996, 165–174, June 1996.2

3. T. McReynolds and D. Blythe. Advanced Graphics Pro-
gramming Techniques Using OpenGL.SIGGRAPH 99
Course, August 1999.2, 3, 5

4. A. Meyer and F. Neyret. Interactive volumetric tex-
tures. Eurographics Rendering Workshop 1998, 157–
168, June 1998.1, 2, 4, 7

5. F. Neyret. Synthesizing verdant landscapes using volu-
metric textures.Eurographics Workshop on Rendering
1996, 215–224, June 1996.1

6. P. Prusinkiewicz and A. Lindenmayer. The Algorithmic
Beauty of Plants. Springer-Verlag, New York, 1990.1

7. E. Puppo and R. Scopigno. Simplification, LOD, and
Multiresolution - Principles and Applications.Euro-
graphics’97 Tutorial Notes, 1997. 2, 3

8. G. Schaufler. Per-object image warping with layered
impostors. Eurographics Rendering Workshop 1998,
145–156, June 1998.2

9. G. Schaufler. Image-based object representation by lay-
ered impostors. ACM Symposium on Virtual Reality
Software and Technology ’98, 99–104, November 1998.
2

10. J.W. Shade, S.J. Gortler, L. He and R. Szeliski. Lay-
ered depth images.Computer Graphics (SIGGRAPH
98 Conference Proceedings), 231–242, July 1998.2

11. J. Weber and J. Penn. Creation and rendering of realis-
tic trees.Computer Graphics (SIGGRAPH 95 Confer-
ence Proceedings), 119–128, August 1995.

1

c
 The Eurographics Association 2000.



Aleks Jakulin / Interactive Vegetation Rendering with Slicing and Blending

c
 The Eurographics Association 2000.


