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Abstract
One of the most important problems to solve in Solids Modelling is computing the boolean operations for solids
(union, intersection and difference). In order to implement these three operations an algorithm to compute the
intersection between faces is needed (polygons clipping). In the case of solids with planar faces there are many
solutions, although most of them are valid only when the faces are convex. In this paper we present an algorithm
to determine the intersection between polygons of any nature (concave or convex, manifol or non-manifold, with
or without holes, etc.) based on the idea of simplicial coverings proposed by Feito11. One of the advantages of
this approach is the robustness of algorithms, since decompositions or complex operations that may alter the
results obtained are not avoided. A very interesting application of this algorithm is the modelling of complex
solids with this type of polygons as faces.

Keywords:Solid Modelling, Geometric Modelling, Intersection, Clipping, Simplicial Coverings.

1. Introduction.

Nowadays, the obtaining of robust and efficient algorithms
to solve the problems of Geometric Modelling is one of the
main fields of investigation in Computer Graphics. In this
sense, at present there are many papers in journals and con-
gresses on which new algorithms or representation methods
to reach this objective appear. However, most of the pro-
posed solutions limit the problem to some type of solids
(convex1, 2, 3, triangulated4, ...). Skala4 proposes an algorithm
for polygon clipping in 3D, concave or convex ones, but it
requires the faces to be triangulated, excluding in the cost of
the algorithm the cost of this triangulation. Other solutions
are only theorical, and some authors consider that the aim of
Computational Geometry (and others fields) must be to find
useful algorithms that can be implemented in practice5, 6.

Using the initial idea proposed by Torres7, and followed
by Feito10, we have developed a system for Solid Modelling,
valid for any type of solids with planar faces (concave or
convex, with or without holes, manifold or non-manifold).
We have developing in a satisfactory way robust and efficient
algorithms to solve the inclusion of points in a solid8, and to
study the intersection of a segment (or ray) and a polygon9.

As result of these investigations, we have designed an al-
gorithm to compute the intersection between polygons of
any nature in 3D. This algorithm is the basis of the problem

of computing the intersection between solids, which makes
possible to compute the boolean operations between solids
(union, intersection and difference). The basis of the algo-
rithm is the simplicial covering of the polygons10, 11, that will
be presented later. The main advantage of this approach, op-
posite to others that use triangles to process the polygons, is
that our approach computes the representation of the poly-
gon in linear time (trivially), and it is not necessary to do
any -complex- preprocessing; however, computing the tri-
angulation of a polygon can be carried out in linear time
theoretically12, but there is not a practical algorithm to im-
plement it.

Computing the boolean operations between solids is a
very studied formal problem, specially for solids represented
using a B-rep scheme. For other representation schemes, in
practice the problem is finally reduced to the B-rep prob-
lem. However, due to the complexity of computing, most
of the approaches tend to do some simplification, for exam-
ple, they reduce the problem to 2D13. Other authors pro-
pose algorithms that work only with convex faces2, 1. But
usually most of the solids used in practice, such as mechan-
ical pieces, have not simple faces, but complex ones, with
holes or other kind of faces. In this paper we face the prob-
lem of any polygon in 3D, and not in 2D, which is solved
by Rivero14 using a similar approach to ours. So, when we
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need to solve the 2D problems, we will use the algorithms
proposed by Rivero and Feito14. We will begin presenting a
sumary of the theorical basis of the Solid Modelling by Sim-
plicial Coverings11. Then, we will present an algorithm9 to
determine the intersection between segments and triangles
(and, by extension, polygons), that is the base to compute
the intersection between two polygons. in order to carry out
it, we will use the idea proposed by Karasick15. Finally, we
will present some results, and we will leave some problems
opened.

2. Solid Modelling by Simplicial Coverings11.

Definition 1. Let x∈ R. The functionsign(x)is defined as:

sign(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(1)

Definition 2. Let A,B,C and D four points inR3. The
signed volume16 of the tetrahedron of vertices D,A,B,C, de-
noted as [DABC], is defined as follows:

[DABC] =
1
6
∗

∣∣∣∣∣∣
xa−xd ya−yd za−zd
xb−xd yb−yd zb−zd
xc−xd yc−yd zc−zd

∣∣∣∣∣∣ =

1
6
∗

∣∣∣∣∣∣∣∣
xa ya za 1
xb yb zb 1
xb yc zc 1
xd yd zd 1

∣∣∣∣∣∣∣∣ (2)

where D=(xd,yd,zd), A=(xa,ya,za), B=(xb,yb,zb) and
C=(xc,yc,zc). We can prove easily that the tetrahedron has
a positive orientation (that is, the rest of vertices are seen
anti-counterclockwise from the opposite side of the point) if
the signed volume is positive (fig.1).

Definition 3. A pyramid, with extreme Q, and base
E1E2...En is said to be anoriginal pyramidif Q is the origin
of co-ordinates. The pyramid will be denoted as OE1E2...En.

Definition 4. Let an original pyramid P=OE1E2...En,
which base is on the planeΠ ≡Ax + By + Cz + D = 0. The
signof the pyramid, denoted assign(P), is computed as it is
shown in equation 3.

sign(P) =


1 if D > 0
0 if D = 0
−1 if D < 0

(3)

Theorem 1. 10 Let a solid S with facesF1F2F3..Fm,
Fi=Ei

1Ei
2...Ei

n, oriented positively. Then

S=
∗⋃

i∈I+

(Pi −∗ (
∗⋃

j∈Ii

Pj )) (4)

Q

Q’

B

C

A

Figure 1: Study of point Q respect to the the tetrahedron
QABC.

where Pi represents the original pyramid OFi determi-
nated by the origin of co-ordinates and the faceFi , and the
union and difference operations are regularized.

Instead of using pyramids, we can use tetrahedra; this will
allow us a simplification in the computing10. As it can be
seen, the pyramids do not have to be disjoint. This will al-
low us to work with coverings of the solids, instead of dis-
joint partitions of them. The main advantage of this approach
is that the covering can be obtained in a very simple way
with an O(n) algorithm, keeping the initial representation of
the solid (a vertex.edge-face graph). Logically, we could do
a preprocessing to accelerate the computing, precomputing
the simplices (triangles in 2D, tetrahedra in 3D) when we
define the solids. Another advantage of this representation
of the solids is that most of the algorithms presented are eas-
ily converted into parallel algorithms, since we are studying
non disjoint triangles, and the results, as we will see later,
are obtained by adding integer values.

Theorem 2. 8. Let a point Q, and a solid S. Then Q is
inside the solid S if

∑
i

sign(Q,Ti)× [Ti ] = 1 (5)

whereTi is, in any case, one of the simplices in which the
solid has been covered, [Ti ] is the signed volume (or signed
area in 2D) of the simplex, and the functionsign(Q,Ti)
returns the signed volume of the simplex formed by the
point Q and the triangleTi (an edge in 2D or a face in 3D).

Corollary . Let a point Q inside the solid S. Then there is
at least oneTi of the covering of S, [Ti ]≥ 0, with Q included
in Ti .
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Figure 2: Covering a polygon with triangles.

PROOF. Trivially, it can be seen that, when the inclu-
sion of a point in a solid is computed, we use only algebraic
adding operations. So, at any moment it must be come true
that the sign ofTi is positive to obtain a positive result. Also,
it is trivial to prove that the points of the solids included in
negativeTi are also included in, at least, two positiveTj , be-
cause the result must be positive.

The importance of this corollary is that it can be used to
solve the problem of intersecting polygons in 3D using op-
erations betweensigned segments.

3. Arithmetic of Segments.

Next, we are going to introduce the concept ofsigned seg-
ment. A signed segment is caracterizied by having associated
a function, (thepresence function, taking an integer value
along all the points of the segment.

Definition 6. We define asigned segmentas a pair (S,µ),
with

(S,µ) = {x ∈ R | x ∈ [P,Q]} (6)

beingµ:R −→ Z thepresence function10.

Definition 7. Let two signed segments (S1,µ1), (S2,µ2)
aligned in the same line, withS1=PP′, and S2=QQ′. It is
defined the adding of the signed segment (S,µ), as follows
(see fig.3):

S1 +S2 = {x ∈ R | x ∈ [min{P,P′}, max{Q,Q′},
µ(x) = µ1(x) + µ2(x)} (7)

In figure 3 some cases of adding signed segments are
shown. The resultant signed segment appears in the figure
below the two segments to be added; it only appears the part
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Figure 3: Different cases of segments adding, with a)
µ([PQ]) = µ([P′Q′]) = 1; b)µ([PQ]) = 1; µ([P′Q′]) =−1.

of the resultant segment with value of presence function dif-
ferent from zero. We have used dotted lines to indicate that
the value of the functionµ in the signed segment is -1. It can
be noted that a signed segment can have one or more com-
ponents, depending on the value of the presence function.
In figure 3, in case a), the result of the adding the segments
PQ and P′Q′ is a new signed segment in which presence
function in the interval [QP’] is zero. The rest of values of
the presence function in each interval of the examples is ex-
plained in table 1. Of course, we suppose that the operations
are regularized.

4. Intersecting two triangles in 3D.

Lemma 1.9.

Let a triangle T=ABC inR3, and a segment S=QQ′ in
R3, with Q and Q’ placed at opposite sides of the planeΠ
defined by T, and ordered in such a way that the tetrahedron
[QABC] has a positive orientation (fig.1). Then the segment
S cuts the triangle T if

sign(Q′AQB)≥ 0 ∧ sign(Q′CBQ)≥ 0∧
sign(Q′ACQ)≥ 0 (8)
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result

a.1 µ([P′′Q′′]) = µ([P′′′Q′′′]) = 1
a.2 µ([PP′]) = 1; µ([P′Q]) = 2; µ([QQ′]) = 1
a.3 µ([PP′]) = 1; µ([P′Q′]) = 2; µ([Q′Q]) = 1
a.4 µ([P′P]) = 1; µ([PQ′]) = 2; µ([Q′Q]) = 1

b.1 µ([PQ]) = 1; µ([P′Q′]) = −1
b.2 µ([PP′]) = 1; µ([P′Q]) = 0; µ([QQ′]) = −1
b.3 µ([PP′]) = 1; µ([P′Q′]) = 0; µ([Q′Q]) = 1
b.4 µ([P′P]) = −1; µ([PQ′]) = 0; µ([Q′Q]) = 1

Table 1: Value of the presence funtion in the inter-
vals appearing in figure 3. In cases a.1), a.2), a.3) and
a.4): µ([PQ]) = µ([P′Q′]) = 1; in cases b.1), b.2), b.3)
and b.4): µ([PQ]) = 1; µ([P′Q′]) = −1.

As a previous step of the proposed test, it is necessary to
prove that points Q and Q’ present different signs with re-
gard to planeΠ, because if it does not occur, there is not
intersection between the segment and the triangle. In order
to carry out, that it is only necessary to substitute the points
in the equation of planeΠ and to study the sign (see defini-
tion 2). In the case that the two signs are zero, a 2D prob-
lem is found, and then we can use the solution proposed by
Rivero14.

To determine the intersection between two triangles, we
will use the just above lemma as a previous step to compute
the intersection between the two triangles edges: only when
an edge of a triangle intersects the another triangle, the
intersection point is computed. With this result, a simple
algorithm to compute the intersection between two triangles
in 3D can be formulated (fig.4). This algorithm is based on
the computing of the intersection between all the edges of
a triangle with the another one, and the process repetition
interchanging the triangles. We suppose that the orientation
of the triangles is positive.

The algorithm is valid for all the degenerated cases ap-
peared when the intersection between an edge and a triangle
is not an only point (see fig.5). In casea), the intersection re-
turns two points, and the result is a segment; in caseb) there
is only one point in the intersection, although this point is
obtained twice; in casesc) andd) it could be necessary to
eliminate those points appearing more than once in the list
of points. These points appear duplicated because the inter-
section occurs in edges, and so they will appear once per
edge.

When the triangles do not lay in the same plane, the result
of the algorithm will be a segment (that can be degenerated
in the same point). The sign of this segment (+ or -) will be
calculated as it appears in table 2.

int triangle::intersection (*triangleT2, *listPunt3D result) {
// The orientation of the triangles is possitive.
// Returns the number of intersection between T1 and T2
// result contains the intersection points.

result =new listPunt3D;
p1=T1.plane();
p2=T2.plane();
For any edgeof T1 A=Vi , Vj

if (sign(Vi , p2)!=sign(Vj , p2))
if (T1.testIntersectSegment(A) )

result.insert (intersection (A,T1));
For any edgeof T2 A=Wi , Wj

if (sign(Wi , p1)!=sign(Wj , p1))
if (T2.testIntersectSegment(A)

result.insert (intersection (A,T2));
return (result.size);

}

Figure 4: Algorithm for determining intersection trian-
gle/triangle in 3D.

a) b)

c) d)

Figure 5: Some cases of triangles intersection: a) general
case; b) intersection in a vertex; c) part of an edge is shared
by the triangles; and d) intersection in two edges.

5. Clipping polygons in 3D.

Once we have solved the intersection between two triangles,
we will extend such solution to another kind of polygons. In
the case of convex polygons, the problem can be reduced to
determining the intersection between two planes. It is triv-
ial to demonstrate that the intersection between two convex
polygons can be one point (when the intersection happens
in a vertex or an edge) or a segment totally included in both
polygons. For other type of polygons, computing the inter-
section is not so easy, although we can say that the intersec-
tion will be a set of segments.

We will use the idea proposed by Karasick15 in order to
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compute the intersection between two polygons P and Q.
So, firstly we will compute the intersection of P with Q,
obtaining the part of P included in Q. Then, we will repeat
the process interchanging the polygons, that is, determining
the intersection of Q with P, and combining the results.

Figure 6: Intersecting triangle/polygon.

5.1. The algorithm.

First of all, we are going to reduce the problem to computing
the intersection of a polygon P and a triangle T. For this, it
is enough to cover the polygon P withn-2 triangles (being
n the number of vertices of P), and compute the intersection
of any triangle of the covering with T. The result will be
a set of segments aligned in the same line; the sign of the
segments will be calculated as it appears in table 2. We
will use the arithmetic of segments proposed in section 3
to obtain the final set of segments. As it can be seen, it is
not necessary to order the segments because they will be
added in such way that the final segments will be those with
a presence function strictly higher than zero, that is, the
segments are included in positives triangles of the polygons.
Once the final signed segment has been obtained, it will
be simplified, deleting all the segments withµ(x) < 1. A
summarized version of the algorithm is shown in figure 7.

Some special cases appear when the intersection happens
between two edges, as shown in figure 6. But in this case,
and making use of the covering of the polygon, each edge
of the polygon will be treated twice, and so the intersection
point appears twice in the list. Thus, the only problem will be
that in the final result we will obtain a degenerated segment
being the origin and the final the same point.

5.2. Results of the algorithm.

One of the advantages of the algorithm we have just pre-
sented is that it is easy to do a parallel version. To do it,

listSegment *polygon::intersection (polygon *p2) {
listSegment SegmAux,SegmExit;
If the polygons are not coplanary{

Create the coverings ofP1 andP2

ForeachtriangleT1
i andT2

j

SegmAux← SegmAux
⋃

(T1
i

⋂
T2

j )
SegmExit← ∑ SegmAuxi
return (SegmExit)

}
else return (p1.intersection2D (p2))

}

Figure 7: Algorithm for computing intersection Polygon-
Polygon.

Sign(T1) Sign(T2) Sign(S)

+ + +

+ - -

- + -

- - -

Table 2: Sign of the segment S=T1
⋂

T2 depending on the
sign of the triangles.

you have only to compute the intersection of a polygon with
another one separately. In order to determine it, the intersec-
tion of any simplices of the polygons can be used separately.
The only shared variables in this case is the counter of in-
tersections, and the list of segments. In figure 8 the result
of intersecting two complex polygons is showed. The result
obtained in the first processing is a set of ten segments, that
is reduced to only two segments.

The cost of the algorithm is difficult to be established. It
depends on the complexity of the polygons and the size of
the list of segments. The first part of the algorithm is O(n2),
being n the number of vertices of the polygon. The second
part of the algorithm is more difficult to estimate, and could
be reduced using another more efficient data structure, as for
example a tree. Anyway, the problem is similar to the one of
ordering a list, so the cost could be O(m lg m), being m the
size of the list of segments.

6. Conclussions and future work.

We have just presented a robust algorithm for determining
the intersection between two polygons of any nature in 3D.
The algorithm is based on the study of signs (integer arith-
metic), and it only uses floating numbers to compute the in-
tersection point, if it exists. When the algorithm is imple-
mented, the problem appears when determining the sign of a
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a) b)

c) d)

e)

Figure 8: Intersecting two faces of two complex solids: a) and b) are the original solids; c) and d) are two faces of the solids;
e) the intersection.

float number that can be done in several ways. The theoreti-
cal complexity of the algorithm is not higher than other algo-
rithms for non-convex polygons. Also, the algorithm can be
written using parallel sentences, computing the intersections
between differents simplices separately.

Nowadays, we are developing algorithms and data struc-
tures to compute the intersection between two solids with
planar faces of any nature. To do it, one of the main ob-
stacles we are dealing with is the way of representing the

degenerated solids. Another aspect to solve is to carry out a
study of the cost (in time) of the proposed algorithms. The
main problem is the impossibility of comparing the cost with
other algorithms, because most of them are dependent on a
concrete representation, so we would have to consider the
cost of converting one representation into another one, and
also the cost of storage.
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