
EUROGRAPHICS 2000 / A. de Sousa, J.C. Torres Short Presentations

Adding a scalar value to 2D vector field visualization: the
BLIC (Bumped LIC)

A. Sanna and B. Montrucchio

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
{sanna,montru}@polito.it

Abstract

Visualization of vector data produced from application areas such as computational fluid dynamics (CFD), envi-
ronmental sciences, and material engineering is a challenging task. Texture-based methods reveal to be effective,
versatile, and suitable for a large spectrum of applications since they allow to obtain high resolution output tex-
tures where direction, orientation, and magnitude of the flow can be displayed.
In this paper we present a new method called BLIC (Bumped LIC), which allows both to characterize and visu-
alize interesting structures in the flow and to map an additional scalar value in the output texture by bumps and
depressions, leaving colors for further information mapping. Some examples show how the proposed method can
enhance the quality of output textures with respect to the classical texture-based approaches.

1. Introduction

Vector field visualization is fundamental for a large spectrum
of disciplines where the data obtained by experimental ob-
servations and theoretical elaboration need to be graphically
displayed. A graphical representation method can be used
for two complementary purposes: to visualize carefully the
shape and the features of a pattern coherent with the theoret-
ical models, and to infer from a given pattern the types and
the distributions of objects actually present, and relevant for
the observer.
Actually, most of the graphics icons that can be used to rep-
resent a vector use too many pixels; in fact, while a scalar
can be visualized varying the color of a pixel, using a seg-
ment (or an arrow) to visualize a vector may need much more
pixels. In the past years some alternative methods have been
suggested, from streamlines (Helman and Hesselink1) to par-
ticle tracing techniques2; the choice of seed points is very
important in particle tracing methods to avoid of losing in-
teresting details of the field.
To solve this problem the texture-based methods were intro-
duced; in these techniques all parts of the vector field are
represented by using a 2D texture.
The elegance and the effectiveness of these methods were
the starting point for new and interesting research in this
field. Although several works have been published in the

literature3 4 5 6 7, some issues must be still tackled. In par-
ticular, research is involved in improving the quality of the
output textures, in order to allow a better understanding of
the vector field under analysis. Moreover, in a large spec-
trum of applications is required to map in the output texture
more information than direction, orientation and magnitude
of the flow; for instance, CFD applications may require to
map several scalar values like: temperature, pressure, vor-
ticity, and so on. This last problem can be partially tackled
using colors by dye advection8, but multivariate visualiza-
tion is still an open problem.
The proposed algorithm attempts to combine the texture-
based techniques with another well known graphics algo-
rithm called bump mapping9. The bump process allows to
improve the quality of the output texture providing a way to
map an additional scalar value according to a bump texture
related to the scalar itself. The scalar value can be mapped
leaving colors to map further information, and the bump pro-
cess can be carried out without delay with standard hardware
support. For this reason BLIC allows a real gain in multivari-
ate visualization.
The paper is organized as follows: Section 2 reviews the
main texture-based techniques and explains the bump map-
ping process; the algorithm is presented in Section 3, while

c
 The Eurographics Association 2000.



Sanna and Montrucchio / BLIC

application examples are shown in Section 4. Finally, re-
marks on the proposed algorithm can be found in Section 5.

2. Previous Work

2.1. Texture based visualization techniques

Texture-based methods attempt to reproduce techniques
known from experimental flow visualization such as the ob-
servation of randomly dispersed particles or dye injection
patterns. The common goal is to produce high resolution im-
ages revealing the flow field characteristics: direction, orien-
tation, magnitude, and so on.
Van Wijk3 proposed to convolve a random (white noise) tex-
ture along a straight segment whose orientation is parallel to
the direction of the flow. This method (called spot noise) was
then extended by bending spot noise, filtering the image to
cut low frequency components, and using graphics hardware
methods, also on grids with irregular cell sizes (De Leeuw
and Van Wijk10).
Cabral and Leedom4 introduced the Line Integral Convolu-
tion (LIC) algorithm, which locally filters a white noise input
texture along a path of vectors tangent to the field, denoted
as streamline.
Given a steady vector field defined by a map v : <2 !
<2

;x 7�! v(x), its directional structure can be shown by the
integral curves, or streamlines, where an integral curve is
a path σ(u) having tangent vectors coincident to the vector
field (that is d

du σ(u) = v(σ(u))).
Doing a re-parameterization of σ(u) by using arc-length s,
we can calculate the line integral convolution (LIC) for a
pixel located at x0 = σ(s0):

I(x0) =
Z s0+L

s0�L
k(s� s0)T (σ(s))ds: (1)

where T (x) is an input white noise texture, k(s) is the filter
kernel (normalized to unity), and the filter length is 2L.
Being the LIC computationally expensive, Stalling and
Hege5 improved the speed of LIC (fastLIC) more than ten
times, by observing that the LIC value computed for one
pixel can be re-used, with small modifications, from its
neighbor pixels; in this way, the computation is streamline
oriented and not pixel oriented as in the conventional LIC.
Zöckler et al.11 showed a parallel implementation of fastLIC
which is able to run in real-time on particular parallel archi-
tectures.
Wegenkittl et al.6 introduced OLIC (Oriented Line Inte-
gral Convolution) and then Wegenkittl and Gröller7 FROLIC
(Fast Rendering OLIC). OLIC simulates the use of drops of
ink smeared to the underlying vector field. The algorithm can
be made faster by positioning small and overlapping disks
(FROLIC) in order to simulate the convolution. Besides di-
rection, the length of the pixel traces shows vector orienta-
tion and local magnitude of the field. However, OLIC and
FROLIC employ sparse textures, therefore, small details of
the field may be lost in the visualization.

2.2. Bump mapping

The vector field visualization algorithm proposed in this pa-
per is related to a computer graphics technique called bump
mapping. In 1978, James Blinn9 presented a method simulat-
ing the bumps or wrinkles in a surface without the need for
geometric modifications to the model. The surface normal of
a given surface is perturbed according to a bump map, and
the perturbed normal is used instead of the original one when
shadows are computed using the Lambertian technique; this
approach provides the appearance of bumps and depressions
in the surface. Given a point on a surface parameterized by
the function O(u;v), the normal n at that point is computed
by:

n = Qu
Qv (2)

where Qu and Qv are the partial derivatives in the parameter
directions u, and v, and 
 denotes the outer product. A new
displaced point can be defined by adding some amount along
the normal at that point:

Q
0

(u;v) = Q(u;v)+P(u;v)
n
j n j

(3)

where P(u;v) is a perturbation function. The new perturbed
normal can be computed as:

n
0

= Q
0

u
Q
0

v (4)

Under the assumption of P small, n
0

can be reduced to:

n
0

= n+
Pu(n
Qv)

j n j
+

Pv(Qu
n)
j n j

(5)

The value of the new (perturbed) normal is based both on the
original normal and on the perturbation function, which can
be defined mathematically or by a two dimensional lookup
table.

3. The BLIC algorithm

The first and main goal of all visualization algorithms is to
enhance the understanding of the data to be displayed. In
particular, for the flow field visualization, it is worth to allow
the user to detect interesting structures such as vortices. The
best texture-based techniques can effectively show direction,
orientation and magnitude of the flow, and in some cases, us-
ing colors, can map one additional scalar value in the result-
ing texture; unfortunately, some applications require to map
and visualize more scalar values.
The proposed work aims to extend the ability of the texture-
based techniques known in the literature to map an addi-
tional scalar value on the output texture.
The basic idea of this work is to better characterize the flow
field structures and to map the information of another scalar
value on the texture by a post-processing phase where the
bump mapping algorithm is applied on a texture achieved by
a classical texture-based technique such as LIC (even if all
known non-sparse texture-based methods could be used). In

c
 The Eurographics Association 2000.



Sanna and Montrucchio / BLIC

order to do this, the scalar value to be mapped in the tex-
ture can be used to obtain a bump map (also called altitude
map). For instance, areas of the flow field characterized by
high values of vorticity will be displayed by a bump or a de-
pression according to the sign of the vorticity itself. In this
way, interesting areas are better visualized in the texture and
an additional scalar value can be mapped. Let us consider
as example the vector field visualized by the LIC texture of
Figure 1; that field presents six vortical structures with dif-
ferent trend (not visualizable by the LIC algorithm). A bump
texture for this example has been computed using Matlab in
order to show the different trend of vortices (see Figure 2).
The resulting BLIC texture can be found in Figure 3, where
it can be noticed as some vortices appear bumped and other
depressed in the surface according their trend; therefore, a
better characterization of the vortical structures has been ob-
tained and an addition scalar value (the trend of the vortices)
has been mapped.

Figure 1: LIC texture of the example 1.

Figure 2: Bump texture of the example 1.

Figure 3: Bumped (BLIC) texture of the example 1.

3.1. Schema of the algorithm

The schema of the proposed algorithm is shown in Figure 4
and it can be spit in two steps.

Vector
field

mapped

LIC

White
noise

texture

texture
LIC

Bump
texture

BLIC
texture

BUMP
mapping

BLIC Algorithm

Scalar
value
to be

Figure 4: BLIC schema.

In the first step, a visualization of the vector field is com-
puted by a texture-based algorithm such as LIC; the LIC al-
gorithm receives in input a white noise texture and the vector
field and gives in output the LIC texture.
The LIC texture is used in the second phase as input of the
bump mapping process which uses a bump texture in order
to produce the BLIC image. The bump map is a gray scale
image of the same resolution of the LIC texture and it is
computed according to the value of the scalar to be mapped
in the texture.

4. Examples

In this Section the application of the proposed algorithm is
shown on two examples. The first example shows the flow
field corresponding to the natural development of a spatially
evolving two-dimensional laminar mixing layer. A mixing
layer originates in the merge of two parallel streams, each

c
 The Eurographics Association 2000.



Sanna and Montrucchio / BLIC

with a uniform velocity U1 and U2 (U1 >U2), both assumed
in the same direction; the LIC texture for the example 1 is
shown in Figure 5. In this case the bump texture (see Fig-
ure 6) is represented by the vorticity distribution along the
vector field, and it allows to produce the BLIC texture of
Figure 7 where the vortical structures, and above all, the vor-
ticity present at the left part of the flow field are strongly
enhanced with respect to the LIC texture.

Figure 5: LIC texture of the example 2.

Figure 6: Bump texture of the example 2.

In the second example, the flow field past a backward fac-
ing step is visualized. The typical flow pattern displays the
formation of a separated flow past the step edge, as well as
the emergence of reattached flow downstream, on the lower
wall (see Figure 9). In the same way of the first example,
the bump texture represents the vorticity distribution along
the vector field (see Figure 10) and it allows to obtain the
bumped texture shown in Figure 11 that significantly en-
hances the details of the complex vortical structures.

5. Remarks

BLIC uses LIC as first step for the texture computation, but
any other texture-based method could be employed; better

Figure 7: Bumped (BLIC) texture of the example 2.

results are obtained using techniques computing dense tex-
tures since the use of sparse textures like in OLIC can lead
to a loss of detail (for instance, a small vorticity could not be
displayed).
The examples presented in Section 4 have proved how the
proposed method can enhance the understanding of a flow
field allowing to better characterization of vortical struc-
tures. Moreover, the proposed method allows to map in the
resulting texture the information concerning another scalar
value beyond the information achievable from the classical
texture synthesis techniques such as LIC; for instance, it is
possible to map the trend information (as shown in Figure 3)
by bumps or depressions or the vorticity information (see
Figure 7 and Figure 11).
Different bump textures could be used to map additional
scalar values; in this case, different output textures should
be computed for each bump map. A significant improve-
ment to the proposed algorithm could be the development
of a methodology able to combine different bump textures
in order to produce just one output texture where different
scalar values can be mapped.
Colors are not required in the proposed algorithm. For this
reason, it is always possible to map another scalar value; for
example, the HSV model can be used, mapping the scalar
value on the Hue component.
Finally, it is worth to stress the bump process can be car-
ried out with an unnoticeable delay since almost all graphics
workstations and several recent graphics cards for PCs per-
form the bump mapping in hardware.
On the other hand, a simple software implementation can be
achieved using a ray tracer; a plane has to be defined and a
material considering the LIC texture and the perturbed nor-
mal according to the bump texture must be assigned to the
plane. For instance, POV-Ray12 (the most popular freeware
ray-tracer) allows to define a material as shown in Figure 8.

c
 The Eurographics Association 2000.



Sanna and Montrucchio / BLIC

#declare Material1 =
material
{

texture
{

pigment
{

image_map
{

gif "lic.gif"
once

}
}
normal
{

bump_map
{

gif "bump.gif"
once
interpolate 2

}
bump_size 20.0

}
}

}

Figure 8: Definition of a material in POV-Ray language.

6. Conclusion

This paper presents a new texture-based technique to display
vector fields. The bump mapping process is combined with
classical texture-based synthesis algorithms in order both to
provide a better characterization of interesting structures in
the flow field and to map an additional scalar value in the
output texture.
Bump mapping can be performed in hardware without delay
by almost all graphics workstations and by the most part of
the recent graphics cards for PCs. On the other hand, the ex-
amples presented have shown how the proposed method can
significantly enhance the understanding of structures like
vortices, allowing to map additional information coded by
bump textures, with a real gain in multivariate visualization.

Acknowledgements

We thank Prof. Renzo Arina of the Department of Ingeg-
neria Aeronautica e Spaziale - Politecnico di Torino for the
examples 2 and 3 we have presented in Section 4.

References

1. J.L. Helman and L. Hesselink. Visualizing vector field
topology in fluid flows. IEEE Computer Graphics and
Applications, 11:3, pp. 36–46, 1991. 1

2. G.M. Nielson, M. Magen and H. Müller. Sci-

entific visualization overviews, methodologies, tech-
niques. IEEE Computer Society Los Alamitos, Cali-
fornia, 1997. 1

3. J.J. van Wijk. Spot noise-texture synthesis for data vi-
sualization. ACM Computer Graphics (Proc. of SIG-
GRAPH ’91), 25, pp. 309–318, 1991. 1, 2

4. B. Cabral and L. Leedom. Imaging vector fields us-
ing line integral convolution. ACM Computer Graphics
(Proc. of SIGGRAPH’93) 27, pp. 263–270, 1993. 1, 2

5. D. Stalling and H.C. Hege. Fast and resolution indepen-
dent line integral convolution. ACM Computer Graph-
ics (Proc. of SIGGRAPH’95) pp. 249–256, 1995. 1,
2

6. R. Wegenkittl, E. Gröller, and W. Purgathofer. Animat-
ing flowfields: rendering of oriented line integral con-
volution. Computer Animation’97, pp. 15–21, 1997. 1,
2

7. R. Wegenkittl and E. Gröller. Fast oriented line inte-
gral convolution for vector field visualization via the
internet. Proceedings of IEEE Visualization ’97, pp.
309–316, 1997. 1, 2

8. H.W. Shen, C.R. Johnson, and K.L. Ma. Visualizing
vector fields using line integral convolution and dye ad-
vection. Proceedings of the ACM Symposium on Vol-
ume Visualization’96, pp. 63–70, 102, 1996. 1

9. J. Blinn. Simulation of wrinkled surfaces. ACM Com-
puter Graphics (Proc. of SIGGRAPH ’78), 12, pp. 286–
292, 1978. 1, 2

10. W.C. De Leeuw and J.J. van Wijk. Enhanced spot noise
for vector field visualization. Proceedings of IEEE Vi-
sualization’95, pp. 233–239, 1995. 2

11. M. Zöckler, D. Stalling, and H.C. Hege. Parallel line
integral convolution. Parallel Computing, 23, pp. 975–
989, 1997. 2

12. POV-Ray. http://www.povray.org. 4

c
 The Eurographics Association 2000.



Sanna and Montrucchio / BLIC

Figure 9: LIC texture of the example 3.

Figure 10: Bump texture of the example 3.

Figure 11: Bumped (BLIC) texture of the example 3.

c
 The Eurographics Association 2000.


