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__________________________________________________________________________________________ 

Abstract 
An important problem in 3D reconstruction from multiple perspective views is the accurate recovery of surfaces 
near the discontinuities (object boundaries and creases). A common limitation of many techniques based on 
regularization methods is the poor quality of the results near the surface discontinuities. In this paper, we 
present a reconstruction method that is able to perform the surface recovery with an accurate preservation and 
localization of the discontinuities. The method is based on an iterative optimization algorithm. Experimental 
results using both synthetic and real data are presented for proving the effectiveness of the proposed approach. 
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1. Introduction 

An important class of techniques for the automatic 3D 
reconstruction of scenes is that based on 
regularization. Such methods are based on the 
minimization of a functional that imposes a 
smoothness constraint on the reconstructed visible 
surface. In the recovery of surfaces from stereo 
images the regularization method may be applied both 
to the interpolation of sparse 3D data obtained from 
feature matching, and to the recovery of dense depth 
maps by area matching. Surfaces and depth maps 
generally exhibit discontinuities at occlusions between 
different objects and at surface creases. The 
regularization method yields a smooth surface and 
then performs poorly in the proximity of the 
discontinuities, where the accuracy is most important. 
In fact the importance of boundaries and creases is 
crucial since they carry the most significant 
information on the object’s shape. 
Blake and Zisserman [1] and Terzopoulos [2] 
proposed a method for surface recovery, which 
consists in a modification of the thin-plate spline 
method. This method allows the localization and 
insertion of surface discontinuities not known in 
advance. The method is able to preserve both jumps 
and creases during the reconstruction process. 
However, in the presence of strongly converging 
perspective views, the quality of the information 
available near the object’s boundaries is quite poor, so 
that this method does not have enough information to 
reconstruct the object’s silhouette with sufficient 
accuracy. In this paper, we present a method for 
surface recovery which is able to perform an accurate 
localization of the boundaries and creases. The 
method is based on an iterative optimization algorithm 
that minimizes a functional similar to that of 

Terzopoulos [2] and provides a set of surfaces that 
describe the objects and their boundaries. A 
segmentation algorithm is then applied to the 
perspective projection of the resulting surfaces. This 
algorithm partitions such surfaces and, for each object, 
it determines a close curve that encircles it. The last 
step of the procedure uses the luminance edges for 
refining the position of the boundaries. In order to do 
so, it applies a deformation force to such curves in 
order to ’’pull’’ them toward the projection of the 
object’s silhouettes. Experimental results on the 
application of the proposed algorithm on both 
synthetic and real images are presented. The algorithm 
has, in fact, been tested on sequences acquired with a 
trinocular camera system. 

2. The Algorithm 

The surface to be reconstructed is thought of as a 
function (depth map) of two coordinates. The method 
here proposed determines both the best surface fitting 
the data and the jumps and creases along the surface. 
We denote by K1 the set of jumps and by K2 the set of 
creases. The method starts with the minimization of 
the functional: 
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where Ω is the image domain, x=(x1, x2), and 
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as for the thin plate spline. By minimizing the first 
term of the functional we tend to preserve surface 
continuity and rigidity (absence of folding) except at 
the set of discontinuities. Through the second term of 
the above expression we try to keep the surface as 
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close as possible to the given data. For surface 
interpolation from sparse depth data we have 
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where di denote the surface points obtained from 
feature matching. For the recovery of a dense depth 
map by area-matching we have: 
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where Pl and Pr denote the projection of space points 
on a pair of images L, R. The last term is given by: 
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where   ⋅  denotes the length of the line. This term 

penalizes the length of the discontinuity curves, 
therefore it is aimed at preventing the minimization 
process from producing a set of degenerate (small) 
surfaces in the neighborhood of each 3D point. 
Following Terzopoulos [2] we represent the 
discontinuity curves by means of continuity control 

functions ρ and τ such that ρ(x)=0 if 1Kx ∈ , ρ(x)=1 

if 1\ Kx Ω∈ , and τ(x)=0 if 2Kx ∈ , τ(x)=1 if 

2\ Kx Ω∈ . 

The minimization process of the functional ε consists 
of a multistage algorithm. During each stage of the 
algorithm, the control functions ρ(x) and τ(x) are 
treated as fixed functions. Hence, at each stage, the 
functional becomes convex and therefore it is 
optimized by a relaxation method. At the start of each 
stage, an improved estimate of the discontinuities is 
computed from the solution obtained in the previous 
stage. The discontinuities should be placed along the 
most significant changes of depth. This problem is 
therefore equivalent to an edge detection problem, so 
that discontinuity curves are detected at each stage by 
using a modified version of the Canny [3] edge 
detection algorithm, applied to the last estimated 
depth function u. Finally, the shape of the 
discontinuity curves is refined by means of a joint 
analysis of the depth map and color edges. The curves 
are “pulled” toward the closest color edge that lies in 
the proximity of a region with high depth gradient and 
that exhibits the same local orientation as the surface 
jump, if present. This deformation is moreover 
performed in such a way as to increase the local 
smoothness of the curve by using an active contour 
model. 
We also experiment an approximation of the length of 
the discontinuity curves by means of a differentiable 
functional [4]: we consider a smooth function ρ and 

we replace   1K  in ε by the functional: 
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then the term   2K  is replaced by an analogous 

functional. It can be shown that the resulting 
functional converges as 0→ε  to the original 

functional ε in a variational sense: the minimizers 

( )εεε τρ ,,u  of the approximating functionals 

converge as 0→ε , in an appropriate metric, to the 

minimizers ( )τρ ,,u  of ε. The approximating 

functionals are attractive from a numerical point of 
view because they can be discretized by standard 
finite elements/differences and then minimized by a 
descent method. 

Experimental Results 

Experiments with the proposed algorithm have been 
carried out with both synthetic and real images. While 
the experiments with synthetic data had the aim of 
proofing the correct behavior of the proposed method 
in each situation, the experiments with real data were 
aimed to show the actual performance in the case of 
complex 3D scenes and noisy data. 
Figures 1 and 2 show the results obtained from the 
reconstruction of a clipped pyramid, where the cloud 
of 3D points are obtained through an area-matching 
technique from a synthesized stereo pair. Figure 1 
shows the reconstructed surface, whose shape results 
to exactly coincide with the synthesized one. Figure 
2a) and 2b) show, respectively, the maps of the jumps 
and the creases, ρ and τ. 
The test with real data has been carried out with a 
3D point cloud provided by an optimized area-
matching technique [5], using three views from a 
video-conferencing sequence acquired with a 
trinocular system. Figure 3 shows one of the three 
views, from which the 3D point cloud shown in 
fig. 4 has been obtained. Due to the nature of the 
observed scene and the poorness of the 3D 
informaiton in the vicinity of object boundaries [5], 
it makes no practical sense to search for creases in 
such a data-set. For this reason, only the map of the 
depth jumps ρ(x) is determined in this case. Figure 
5 shows the map of depth jumps superimposed to 
the original view. The algorithm is able to 
automatically segment the given point cloud into 
the sub-surfaces, each representing the one of the 
different objects present in the scene. 
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Figure 1. The reconstructed surface  

of the synthetic clipped pyramid. 
 

 

 
 

 
 

Figure 2. The obtained discontinuity maps: 
a) the depth jumps ρ(x); b) the creases τ(x). 

 

 
 

     
 

 
 

Figure 3. The three views of the scene, acquired by 
the trinocular system. 
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Figure 4. The 3D point cloud, used as input for the 
proposed algorithm, obtained by the area-matching 
algorithm [5] from the images of fig. 3. 

 
 
 

 
Figure 5. The final segmentation of the given point 
cloud into sub-surfaces. The borders of the surfaces 
determined by the algorithm match exactly to the 
actual objects’ boundaries. 
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