
EUROGRAPHICS '99 / M. A. Alberti, G. Gallo, I. Jelinek Short Papers and Demos

Accelerated Arti�cial Landscape Visualisation

A. James and A.M. Day

School of Information Systems, University of East Anglia,

University Plain, Norwich, Norfolk, NR4 7TJ. England.

aj@sys.uea.ac.uk, amd@sys.uea.ac.uk

Abstract

We describe the design and implementation of four stages in an arti�cial landscape visualisation

program. We begin by outlining a very simple but quick method of generating structurally realistic

landscapes. We describe how the terrain can be stored in a multiresolution Binary Space Partitioning

(MRBSP) tree such that each level holds a complete representation of the terrain at increasing reso-

lution. A level of detail (LOD) technique is then illustrated which preserves the visually apparent size

of triangles (after projection) so that the number rendered is reduced while preserving the aesthetic

quality. Finally, we show how visibility calculations can be preprocessed and used to achieve output

sensitivity by limiting the observer to ground based motion.

1. Landscape Generation

In this paper, we avoid `mathematical' terrain genera-
tion 1; 2. Instead, we use a very simple and controllable
technique to generate quickly, realistic arti�cial land-

scapes with a regular triangular mesh by allowing a
designer to `draw' a desired landscape.

The diÆculty associated with 3D interactive terrain

creation is avoided since we allow the designer to draw
the landscape using any standard two-dimensional art
program. The image is then interpreted by preserving

the x and y coordinates (representing longitude and
latitude) and converting the intensities of the image
pixels into z values (representing height) where black

is sub-marine and white is a mountainous peak.

Hills and inclines can be generated by a background
of subtle grey-scale shades such as those found with

cloud-like images. The user may then add rivers, lakes
and seas etc. by masking areas with black. Mountain
peaks and ridges can be created by the addition of

white lines or by lightening regions of the background
to raise them from the land.

Further terrain manipulation can be achieved by

tolerance inputs from the designer. Sea level adjust-
ment allows the user to `sink' or `
oat' the land rela-
tive to the sea and height adjustment to determine the

highest mountain peak. A seabed factor is used to in-

crease or decrease the size of the beaches. Smoothing,

to form rolling hills, is also controlled by the user but
mountain ranges are exempt from increased smooth-
ing so that jagged, natural peaks are preserved.

2. Multiresolution Binary Space Partitioning

Wiley et al. 3 describe their own modi�ed BSP tree
for multi-resolution models. We now present a simi-

lar technique which results in a two times increase in
polygons at each level (instead of four by Wiley). This
factor of two is required to preserve the visually ap-

parent size of triangles after projection (described in
section 3).

Each (non-root) node of our MRBSP tree contain-
s a triangle in 3-space (right-angled in the xy-plane),
and a vertical partitioning plane. The triangle repre-

sents a part of the surface which when combined with
all others at the node's height in the tree forms an
approximation of the terrain in equally sized triangles

(in the xy-plane). The vertical partitioning plane di-
vides the triangle into two halves by dividing it along
the line from the centre of the hypotenuse to the op-

posite vertex and the sub-triangles are stored as the
children.

The MRBSP tree creation follows the usual form

c
 A. James and A.M. Day, 1999.

Published by the Eurographics Association, ISSN 1017-4656.



A. James and A.M. Day / Accelerated Arti�cial Landscape Visualisation

of a recursive function. A subset of the height points
(obtained from the pixel intensities) is passed to the
function and used to calculate the height of the corners

of the triangle. We begin by passing all height points to
the function and create a root node which comprises a
square bounding the scene in x and y coordinates and

which is coplanar with the sea level in the z (height)
coordinate. The divider is aligned as described above.

Each child is passed one triangle after subdivision
by the divider, and the subset of height points which is

found on the relevant side of the divider. The coordi-
nates of the triangle belonging to the node are known
in the x and y coordinates since it is a regular sub-

division of the parent, however their z (height) values
are crucial to the surface de�nition. The height of each
corner of the triangle is calculated by �nding the three

closest height points to the corner's x; y coordinate
and then by interpolation to �nd the approximated
vertex height.

3. Level of detail calculations

We have adopted a level of detail technique for tree
traversal which preserves the visually apparent size of
triangles, such that those in the distance appear the

same size as those in the foreground.

Upon MRBSP tree traversal, we examine the tri-

angle at each node. We �nd the distance, D, of the
triangle's furthest vertex from the observer and then
calculate (M � log2

D

S
); where M is the (maximum)

depth of the tree, and S is the (short) side length of
the smallest triangle (i.e. the size of the triangle at
depthM). The resulting value (the LOD threshold) is

the depth in the tree at which the triangle should be
displayed to obtain its correct size.

An extra step is required to stop `holes' appearing
in the terrain. While continuity was explored in 4, our

approach allows us to treat triangles independently.
This is very advantageous since the BSP tree repre-
sentation loses spatial neighbour relationships!

The problem is apparent in Figure 1 where some

vertices are marked with their LOD thresholds. It has
occurred due to a change in level of detail between
two adjacent triangles { the culprit here is the triangle

T . The problem occurs with triangles whose vertices
fall within di�erent LOD thresholds (between 12 and
13 in the example). With such triangles, the `hole'

scenario is only problematic if an edge is joined by a
neighbouring vertex (of a higher resolution triangle)
as described in 4 and illustrated in Figure 1 { this is

identi�ed when just one vertex has a threshold lower
than the other two and that vertex is the right angle.
(This is because we only subdivide triangles from a

right angle vertex to the centre of the hypotenuse).

When a potential hole exists, we render the triangle
at the next level of detail to `split' the triangle into
two parts { this split connects the problematic `kink'

to its neighbour thus sealing the hole.

12

1313

12

12

T

p

1313

14 14

Figure 1: A perspective projection of an LOD terrain

with a continuity problem (vertices are numbered by

LOD threshold)

4. Visibility Calculations

Various techniques have been used to calculate terrain
visibility at run-time 5; 6; 7; 8; 9, but by exploiting the
progressive nature of the MRBSP tree, we can per-

form such calculations at the preprocessing stage. We
achieve this by dividing the height-surface (1.8 metres
above the landscape surface) into a set of rectangular

cells and perform area-to-area visibility calculations
for each cell. Thus at run-time, our current grid cell
location can be used to provide us with an overesti-

mated set of the (partially) visible triangles.

Using vertex-to-vertex sampling, visual anomalies
are rarely apparent due to the coherence of a ter-
rain surface (e.g. terrains do not exhibit characteris-

tics such as portals). The size of each grid cell a�ects
the preprocessing times and run-times { the smaller
the grid cell, the longer the preprocessing time due

visibility being calculated for more grid cells. How-
ever, the run-time is faster since the (overestimated)
set is a closer approximation to the visible set. Pre-

processing time has been accelerated since, for each
grid cell we use surface triangles of a coarseness sev-
eral times stronger than the �nest terrain to act as

`blockers' and `blockees'. Storage requirements are s-
mall and run-time overheads are insigni�cant since we
only store cell-to-cell changes in visibility for each grid

cell to it neighbours. At run-time, we make visibility
changes by toggling the visibility 
ag of each node.

Figure 2 shows an example of visibility change in a
two-dimensional scene (which can be seen as a cross

section of a 3D landscape in the xz-plane). The land-
scape is approximated by line segments shown in black
separated with ticks and numbered hierarchically ac-

cording to their position in the tree, a coarse landscape

c
 A. James and A.M. Day, 1999.



A. James and A.M. Day / Accelerated Arti�cial Landscape Visualisation

representation shown in light grey is used for visibil-
ity and is labelled likewise. Grid cells which permit
visibility changes are indicated in dark grey and are

labelled alphabetically.

Table 1 shows (part of) the �le that would be asso-
ciated with such a landscape (assuming that the ob-
server is at height zero above the landscape). The �rst
column represents the grid cell change and the second

column the change in coarse landscape visibility. The
third column (which would not be stored in the �le)
is the change in visibility of the �ne segments and is

calculated from the coarse representation at run-time.
Thus, for example, as we progress from d to e, the
segments 00 and 01 (and their subsegments) disap-

pear and segments 10 and 11 (and their subsegments)
appear.

Figure 2: A 2D terrain illustrating visibility calcula-

tions

Chng Coarse chng Fine chng

a-b 11 1100, 1101, 1110, 1111

d-e 00, 01, 10, 11 0000, 0001, 0010, 0011,...

g-h 00 0000, 0001, 0010, 0011

Table 1: Cell-to-cell changes in visibility

5. Results

Testing is performed with a 65,536 triangle landscape.

While visibility (VIS) calculations are performed in a
preprocessing stage, LOD calculations of 1/320s per
frame can be achieved. Table 2 illustrates run-time

performance for the methods used, the number of tri-
angles rendered, overall rendering time (PPC 117Mhz,
16bit colours at 800x600), and the percentage of time

compared to the brute force method.

Method Tris Time(s) Time(%)

Brute 7,238 0.68 100.0

LOD 3,008 0.35 51.5

VIS 2,755 0.28 41.2

Both 1,732 0.18 26.5

Table 2: Results using speed-up combinations

While both LOD and visibility calculations are ben-

e�cial, two factors need to be highlighted. Firstly, as

the landscape grows outwards, the LOD calculation-
s become more bene�cial since as distance increases,
the coarser the representation can become. Second-

ly, as the land becomes rougher and more hills and
mountains appear, the more bene�cial visibility cal-
culations become because the level of obscuration in-

creases. Thus the eÆciency of the techniques presented
in this paper increase as the landscape becomes more
complex.

References

1. A. R. Dixon and G. H. Kirby. A data structure for
arti�cial terrain generation. Computer Graphics

Forum, 13(1):37{48, 1994.

2. C. A. Pickover. Generating extraterrestrial ter-

rain. IEEE Computer Graphics and Applications,
15(2):18{21, 1995.

3. C. Wiley, A. T. Campbell, S. Szygenda, D. S.
Fussell, and F. W. Hudson. Multiresolution bsp

trees applied to terrain, transparency, and gener-
al objects. Graphics Interface, pages 88{96, May
1997.

4. P. Lindstrom, D. Koller, W. Ribarsky, L. F.

Hodges, N. Faust, and G. A. Turner. Real-time,
continuous level of detail rendering of height �eld-
s. Proceedings of SIGGRAPH, pages 109{118, Au-
gust 1996.

5. C. Sansoni. Visual analysis: a new probabilis-

tic technique to determine landscape visibility.
Computer-Aided Design, 28(4):289{299, 1996.

6. L. De Floriani and P. Magillo. Horizon computa-
tion on a hierarchical triangulated terrain mod-

el. The Visual Computer, 11(3):134{149, Febru-
ary 1995.

7. D. Cohen-Or and A. Shaked. Visibility and dead-
zones in digital terrain maps. Computer Graphics

Forum, 14(3):171{180, 1995.

8. L. C. C. Guedes, M. Gattass, and P. C. P. Carcal-
ho. Real-time rendering of photo-textured terrain
height �elds. Proceedings of SIBGRAPI, pages

18{25, October 1997.

9. G. Nagy. Terrain visibility. Computers & Graph-

ics, 18(6):763{773, January 1994.

c
 A. James and A.M. Day, 1999.


