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Abstract
We extended Gross’s3 method of volume wavelet rendering by computing splats via an orthogonal projection
operator. The method decomposes the volume data into a wavelet pyramid representation in the spline domain.
The splats of the basis functions are approximated on a multiresolution grid. Using least-squares approximation
ensures the smallest possible error for a given sampling step size. The approximation error on the grid is derived
as a function of the sampling step h. The choice of the appropriate wavelet space and spatial resolution at each
step produces the smallest possible filters. Our approach reduces the number of computations and allows full
control of the image quality.
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1. Introduction

Volume rendering5 is a useful technique in biomedical visu-
alisation, material testing, physics or atmospherical forecast.
It is computationally expensive and consumes a lot of mem-
ory and bandwidth. Fast implementations rely on hardware
rendering and coarse approximations. A user would like to
browse interactively around and through a volume to get a
better sensation of its three-dimensionality. One might ac-
cept the compromise of lower image resolution or quality
for the sake of fast feedback. Then, once a viewpoint of the
volume has been chosen, the resolution increases again3; 4; 6.

We are interested in interactive volume rendering with
multiresolution, similarly to Gross3; 6 but with two impor-
tant differences. First, instead of interpolation-basedwavelet
splatting, we usewavelet splats that are optimal in the least-
square sense, hence better quality. Second, the computation
of the projection is done on a grid whose sampling step size
adapts to the size of the basis function. This gives an addi-
tional speed-up at coarse resolutions.

2. Rendering in wavelet space

In the following, we consider a volume of sizeM3 which is
projected on a rendering screen of sizeN2 for the purpose of
visualization. This operation is called the X-ray transform or
volume rendering. The volume data is represented in a L2-
optimal multiresolution pyramid2; 7.

2.1. The volume rendering integral

In its simplest form, the volume rendering integral is equal
to the parallel projectionpθ in the direction~θ defined by

gθ(u;v) = pθ f (~y) =
Z

f (t �~θ+u �~eu+v �~ev)dt; (1)

where f (~x); ~x 2 R3 is the volume, and wheregθ(~y); ~y =
(u;v) 2 R2 is the projection of the volume on a plane per-
pendicular to~θ and spanned by the vectors~eu and~ev.

Equation (1) needs three coordinate systems (see Figure
1): Cartesian coordinates~x = (x;y;z), spherical coordinates
(α;β; r) and projection plane coordinates~u = (t;u;v). The
origins of the three coordinate systems are identical. The
projection direction~θ is aligned with the normal~et of the
projection plane. This plane is spanned by~eu and~ev, which
can be expressed in Cartesian coordinates as a function of
the two Euler anglesα andβ (see Figure 1).

The coordinate change between Cartesian coordinates and
projection plan coordinates is a simple rotation:~x = R�~u
where the rotation matrix isR= [~et ~eu ~ev], or, written ex-
plicitly,

R=

2
4 �cosα �cosβ cosα �sinβ �sinα

�sinα �cosβ sinα �sinβ cosβ
�sinβ �cosα 0

3
5 : (2)

The volume data is represented in thewavelet domain by

c
 Stefan Horbelt, Michael Unser, Martin Vetterli, 1999.
Published by the Eurographics Association, ISSN 1017-4656.



S.Horbelt, M.Unser, M.Vetterli / Wavelet Projections for Volume Rendering

e

e

e

e e

e

θ

e
α

β
.

0

z

x

y

u

v

t

= =-

.
.

h

z

y

x

u

v

rt

Figure 1: Coordinate systems used for parallel projection
and Fourier slice theorem: Cartesian coordinates (x, y, z),
spherical coordinates (α, β, r) and intersection plane coor-
dinates (t, u, v).

linear combination of a set of basis functionsψk(~x):

f (~x) = ∑
k

c(k)ψk(~x): (3)

Using this decomposition, the volume rendering integral
from (1) becomes

pθ f (~y) = ∑
k

c(k)
Z

ψk(t �~θ+u �~eu+v �~ev)dt =

= ∑
k

c(k) � pθψk(~y)| {z }
wavelet splatχθ;k(~y)

; (4)

which is a linear combination ofwavelet splatsχθ;k(~y) =

pθψk(~y), where~y= (u;v) 2 R2. Note thatk may code for a
combination of shifts and scaling (wavelet decomposition).

2.2. The B-spline splat

We use the B-spline as underlying separable basis function.
It has numerous advantages, like compact support and ex-
plicit formulas, for details see1. The Fourier transform of a
B-spline of degreen is given by

β̂n(ω) = (sin(ω=2)=(ω=2))n+1 : (5)

In order to get thewavelet splat, the three-dimensional B-
spline functionβn(x;y;z) = βn(x)βn(y)βn(z) has to be pro-
jected along the direction~θ. The Fourier slice theorem states
that the intersection of a volume by the plane spanned by~eu
and~ev in the Fourier domain, is equivalent to the 2D Fourier
transform

ĝ(ωu;ωv) = β̂n(ωx)β̂n(ωy)β̂n(ωz) (6)

of the wavelet splatχθ(u;v), with the substitution
�

ωx ωy ωz
�>

= R
�

ωu ωv ωt
�>
jωt=0 : (7)

We use the Fourier transform of the B-spline splats to evalu-
ate the approximation error.

2.3. Approximation on an adaptive grid

In Gross’ approach6, the wavelet splats are always calculated
at the full resolutionh = 1. Here, we investigate an alter-
native approach where the resolution of the gridh may be
adapted to the size of the basis functions and where, in or-
der to get high quality, we use least-squares approximation
rather than the usual interpolation method.

The wavelet splatχθ; j (~y) is approximated onto a recon-
struction grid with the sampling stephj using basis functions

ϕ( ~y
hj
� l), wherehj = 2 jh adapts to the scalej. We also use

the fact thatϕ(~y) satisfies a two-scale relation to get a fast
full-screen interpolation using digital filters.

With the approximation operatorPhj , the approximation
of the wavelet splat is

Phj χθ; j (~y�~z) = ∑
~l2Z2

chj (
~l)ϕ( ~y

hj
�~l) (8)

with

chj (
~l) = hχθ; j(~y�~z); ϕ̃( ~y

hj
�~l)i

1
hj

; (9)

whereϕ̃(~y) is the dual function ofϕ(~y) 1.

Here, χθ; j (~y�~z) denotes the continuously-defined B-

spline splat at direction~θ, scalej and shift~z. The coefficients
chj (

~l) yield its discrete representation on the visualization
grid with the sampling stephj .

As the sum (4) is performed over the whole, huge volume,
it is wise to select a function ofshort supportfor the dual ba-
sis functionϕ̃(~x) in (9). This gives short and efficient filters.
The cubic B-splineβ3(~x) is a good candidate. Ordinary sam-
pling, as used in6, is equivalent to the choicẽϕ(~x) = δ(~x),
but the quality is not as good as with the least-squares ap-
proximation.

The error one does when approximating a functionf on a
grid with the sampling steph is given in2 by

ε(h) = k f �Ph fk2 =
1

2π

Z 1

�1
E(hω)j f̂ (ω)j2dω (10)

where f̂ (ω) is the Fourier Transform of the functionf . The
error kernelE(ω) is defined by

E(ω) = 1�
jϕ̂(ω)j2

∑n jϕ̂(ω+2nπ)j2
: (11)

We evaluate the relative approximation errorεr(h) = k f �
Ph fk=k fk for wavelet splats of cubic B-splines,̂f (ω) =
β̂3(ω), using grid basis functions that are B-splines of de-
green= 0;1;3. Cubic B-splines perform significantly better
than linear or piecewise constants (see Table 1 and Figure
2).
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h Haar Linear Cubic Quintic
n= 0 n= 1 n= 3 n= 5

1 32:6% 15:6% 11:0% 10:1%
0.75 25:2% 7:8% 3:4% 2:6%
0.5 17:2% 2:8% 0:34% 0:1%
0.25 8:7% 0:62% 0:010% 0:001%

Table 1: Relative approximation error of cubic B-spline
splat projected on grid with B-splines of degrees n and sam-
pling steps h. We can choose an appropriate h to keep the
approximation error below some threshold.
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Figure 2: Relative approximation error of cubic B-spline
splat projected on grid with B-splines of various degrees n
and sampling steps h. For each degree, the plot shows the
error for the shortest cut in light blue (gray) and the slightly
bigger error for the longest cut in black.

2.4. Fast splatting with table lookup

The wavelet splatχ j;θ(~y) in (8) depends on the projection di-

rection~θ and the scalej. The approximation of thiswavelet
splat on the grid depends on the grid sampling step sizeh
and the relative positionz at which it hits the grid.

The coefficientschj (
~l) of the projection of thewavelet

splat on the grid are given by the scalar product (9) between
the wavelet splatχ j;θ(~y) and the dual functioñϕ(~y). For a
fixed view, we can express (9) by a kernel functionξh;θ(~s)
as

chj (
~l) = ξh;θ(~s) = h

1
h

ϕ̃(
~y
h
);χθ(~y+~s)i (12)

with a single shift parameter~s = h~l � 2� j~z. The kernel
ξh;θ(~s) is calculated once for the current viewing direction
at fine resolution in~s and stored in a table. Finally a single
table look-up is necessary to get one grid coefficients.

3. Computational complexity

In this section we compare our L2-optimalwavelet splatting
method with the one proposed by Gross and Lippert3; 6, see
Figure 3.
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Figure 3: Volume rendering using wavelet splats. Method
1 splats at full resolution. The proposed method 2 approx-
imates on a low resolution grid in dual space, then inter-
polates in spline space and visualizes at full resolution in
cardinal space.

Method 1: Full resolution splat

Let us consider the 3D multiresolutionwavelet decomposi-
tion of a volume. It is straightforward to splat each 3D coef-
ficient to the rendering screen at full resolution as described
in 6. The splat is calculated once for the current viewing di-
rection at full resolution. Then, for each coefficient, the splat
is multiplied with the value of the coefficient and accumu-
lated in the rendering buffer. The number of operations Op1
depends on the size of the splats2 and on the number of
wavelet coefficientsM3. We refer to this as Method 1.

It needs Op1 operations

Op1 = k1 �

�
M
2 j

�3

| {z }
voxels at scalej

�

�
2 j s+1

h

�2

| {z }
size of spalt

� 2� j
�M3

; (13)

where the support of thewavelet splat iss(Ψn) = 2n�1.

Method 2: Least-squares optimal splat

The volume is expanded in multiple resolutions in the spline
space. Here, thewavelet splats are approximated in dual
space on a grid with a sampling stepadaptedto the size of
the basis function.

Splatting needs Op2:1 operations

Op2:1 = k3 �

�
M
2 j

�3

�

�
s+1

h

�2

� 2�3 j
�M3; (14)

where the splat support for the B-spline scaling function
s(ϕn) = (nv+1)+(ng+1), or, if using the B-splinewavelet
s(ψn) = (2nv�1)+ (ng +1). Note that the factor 2j at the
supportshas disappeared. This is because the sampling step
h of the grid adapts to the scalej, with hj = 2 j

�h.
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Once the volume has been projected on the grid, the pro-
jected data needs to be interpolated to the full-screen resolu-
tion N2 and visualized in cardinal space. This is achieved in
three steps: The first step changes from dual space to spline
space, which is fast as the low-resolution data is smaller in
size. The spline space has the shortest upsampling interpola-
tion filters. In the second step, these filters are used to reach
the final full resolution. The last step changes from spline to
the cardinal space for the purpose of visualization.

Finally the total number of operations of Method 2 is:

Op2 = k3

�
2� jM

�3
� (3n+1)2h�2+ (15)

+ k7N2
�

2�2 j h�2+2�1
�
� (2n+1)2 �

� 2�3 j
�M3+k7N2

Comparison of methods

The complexity of both methods are compared in Figure
4 for h=1 (no oversampling) and M=N, which means that
the rendering screen has the same resolution per dimension
as the volume data. The complexity of Method 2, Op2, is
significantly lower than the complexity of Method 1, Op1,
for scale j > 1. Method 2 is up to two order of magni-
tude faster at scale aroundj 2 f4;5g and for large volume
M 2 f512;1024;2048g. The complexity Op2 decays with a
factor 8� j per scalej at small scales, until it reaches a con-
stant that depends only on the rendering screen sizeN2. The
factor 8� j per scalej is already the theoretical limit, as the
complexity cannot decrease faster than the number of voxels
decrease per scalej. The complexity Op1 falls slower with
a decay of only 2� j . A clever algorithm can adaptN or j
to the user behavior, reduce the resolution or zoom into ar-
eas of interest and take advantage of the high quality of the
interpolation.

4. Conclusion

We have purposed a volume rendering method based on
wavelet splat and multiresolution approximation grids. It al-
lows full control over the approximation error and achieves
the smallest error for a given sampling step size. To speed up
computation, one may sacrifice some quality (see Figure 2)
and adapt the rendering step to the size of the basis function.
With this strategy, the proposed method can be up to two or-
der of magnitude faster than standard ones3. The speed-up
breaks down only at full resolution, where the complexity of
the proposed algorithm is 50% higher than the directwavelet
splatting method, but we end up with a higher quality result,
especially when the data has a significant high frequency
content. To conclude,wavelet splatting with approximation
grids may speeds up interactive or progressive volume ren-
dering; it yields higher quality for a given resolution.
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Figure 4: Comparison of number of operations (1 Opera-
tion = 1 addition + 1 multiplication) of wavelet splatting
methods 1 and 2. Top: Ratio Op1/Op2. Bottom: Number of
operations. Op1 is drawn as dashed line and Op2 as solid
line. We assume N= M and h= 1. Op2 decays with up to
2�3 j per scale j, whereas Op1 decays with only2� j .
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