
EUROGRAPHICS 2009 / P. Alliez and M. Magnor Short Paper

Tile-based Image Forces for Active Contours on GPU

Enrico Kienel and Guido Brunnett

Chemnitz University of Technology, Germany

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
Active contours have been proven to be powerful semiautomatic image segmentation tools. We present an adaptive
image force computation scheme in order to minimize both computational and memory requirements. Hence, we
are able to perform a fast semiautomatic contour detection in huge images. We present an efficient implementation
of this approach on the basis of general purpose GPU processing providing a visual continuous active contour
deformation.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Image
Processing and Computer Vision—Edge and Feature Detection

1. Introduction

Active contours are powerful semiautomatic image seg-
mentation tools that are especially useful in the extraction
of complex object boundaries [KWT87]. They have been
proven to cope with different image modalities, arising from
their superior characteristics, e.g. robustness against noise
and tolerance against incomplete object boundaries.

In this paper, we focus on the adaption of fast paramet-
ric active contours for huge images. The paper is organized
as follows. We give a brief overview of the active contour
model in Section 2. Our contributions comprise a tiling ap-
proach in combination with a spatially constrained image
force computation scheme on demand, that is explained in
Section 3, and its efficient GPU-based implementation, de-
scribed in Section 4. We demonstrate the efficiency of our
method by giving comparative results in Section 5 and fi-
nally conclude this paper in Section 6.

2. Active contours

Active contours are often referred to as snakes, because of
their typical behaviour to smoothly move across the spatial
domain of an input image, driven by an iterative energy min-
imization. In the original publication snakes are modelled as
parametric unit speed curves ~v(s) = (x(s),y(s)) that are de-
fined on the spatial domain of a given image I. A non-trivial
energy functional has to be minimized in order to drive the
snake towards salient features of interest, e.g. image edges.

The total energy term E(~v) = Eint(~v) + Eimg(~v) + Econ(~v),
that is assigned to a snake, consists of the internal energy
Eint, the image energy Eimg, and optionally a constraint en-
ergy Econ. Since an explanation of the partial energies as well
as of the minimization would go beyond the scope of this pa-
per, please refer to [KWT87, KVB06] for further details.

3. Tile-based image forces on demand

Basically, the image forces need to be computed only once
for the entire image as it does not change over time. Hence,
the image force ~Fimg(x,y) at the location of every control
point of the snake ~v(s) = (x,y) at any time of the deforma-
tion can be determined by a simple lookup. Moreover, sev-
eral contours within the same image can be extracted subse-
quently using the precomputed image forces. However, the
increasing level of detail needed in today’s applications leads
to image sizes that are difficult to handle by off-the-shelf
hardware.

Digitization of histological serial cross-sections in embry-
ological research may produce huge images involving sizes
of several hundred megapixels [SWKK02]. Therefore, the
image force computation might easily reach the limits of
available main memory of a standard desktop PC or at least,
would take an unreasonable amount of time. However, the
evaluation of image forces over the entire domain of an im-
age is generally not mandatory, since the moving snake usu-
ally encounters only a small subset of the image.

c© The Eurographics Association 2009.

http://www.eg.org
http://diglib.eg.org


E. Kienel & G. Brunnett / Tile-based Image Forces for Active Contours

Thus, we propose a simple tile-based strategy. According
to an overlaid uniform grid, we decompose the input image
into p× q tiles, each having n× n pixels. The key idea is to
dynamically compute the image forces of only those tiles,
that an active contour currently explores. To this end, we
modify the snake algorithm as follows:

• As soon as the snake enters a new grid cell, the im-
age forces for this cell are computed. For this purpose,
the continuous deformation, i.e. the iterative energy mini-
mization, is temporarily paused.

• When a snake leaves a grid cell completely, the memory
for the image forces will be released.

Considering almost convex contours, the memory as well
as the complexity of the image force computation could be
estimated with O(mn2) rather than O(m2n2) for the entire
image, with m = max{p,q}. Hence, the predominant mem-
ory requirements for the storage of image forces are consid-
erably reduced. Furthermore, we gain a significant speedup
for the precomputation, as the image forces need to be com-
puted at once only for the tiles that the snake initially covers.
Note, that an image force update during the algorithm nor-
mally requires the computation just for single tiles.

On the other hand, this approach requires quite a lot of
bookkeeping. The contour deformation has to be interrupted,
whenever image forces are missing. (We take advantage of
graphics hardware to compensate involved occasional de-
lay effects, which is later described in detail.) Moreover, we
have to keep track of the snake position relative to the ele-
ments of the grid. To efficiently manage the tile-based im-
age energy, each grid cell basically stores the pixel-based
distance dist to the closest snake point and a bit mask con-
taining the following status flags:

• one have-bit indicating whether image forces have been
already computed for the current cell

• one need-bit indicating whether image forces need to be
computed for the current cell

• one list-bit indicating the presence of the current cell
index in a sorted list L, that is maintained to provide quick
access to cells that either need or have image forces

At the very beginning of the energy minimization, the dis-
tances of the grid cells are initialized with∞ and L = ∅. The
state of the cells must be updated before every deformation
step as depicted in Algorithm 1.

Of course, one may argue that the algorithm seems to be
slowed down, because the image forces are computed on de-
mand during rather than before the energy minimization pro-
cedure. Nevertheless, the overall performance gets basically
improved as a result of only few grid cells that require an
image force computation.

4. GPU assistance

The tile size n×n as well as the kind of implementation have
a great impact on the performance of the image force com-

Algorithm 1: Pseudocode for efficient update of grid cell status
Input : Sorted list L of relevant grid cells

foreach grid cell C ∈ L do1:
C.need = false2:
C.dist =∞3:

end4:
foreach snake control point~vi do5:

Identify grid cell C containing~vi6:
C.dist = 07:
C.need = true8:
if not C.list then9:

Insert C into L using binary search10:
C.list = true11:

end12:
foreach C′ ∈ N8(C) do Update C′ .dist with respect to~vi13:

end14:
foreach grid cell C ∈ L do15:

if C.need then16:
if not C.have then17:

Compute ~Fimg in C18:
C.have = true19:

end20:
else21:

if C.have then22:
Delete ~Fimg in C and release memory23:
C.have = false24:

end25:
Remove C from L26:

end27:
end28:

putation. On the one hand, choosing n too big would lead to
memory wasting and an enormous effort for the initial com-
putation as well as for image force updates. On the other
hand, choosing n too small leads to permanent reallocation
and recomputation of image forces.

For a texture-based implementation on graphics hardware
for both visualization and image force computation we set
n = 256, which offers a reasonable trade-off between mem-
ory consumption and computation overhead as well as fast
power-of-two texture processing. All p×q tiles are indepen-
dently stored as mipmapped textures on graphics memory.
Hence, no main memory is used for visualization purposes.
Incomplete border tiles are padded with background pixels.

Huge images of histological cross-sections often suffer
from visual artifacts und thus are strongly recommended
to be preprocessed by different image filters to improve
semiautomatic contour detection [KVK∗07]. In our ap-
proach, both basic image processing and subsequent image
force related computations are efficiently realized using pro-
grammable shaders on the GPU. As a nice side effect, our
hardware-oriented implementation benefits from the tiling
approach as it is not exposed to texture size constraints of
underlying graphics hardware, and thus provides realtime
visual interaction as well as fast pinpoint navigation capa-
bilities. The image force field is finally read back into main
memory to serve as look-up table for continuing snake defor-
mation that is efficiently implemented in software [KVB06].

We propose Algorithm 2 to compute image forces from
original image tiles stored as grayscale textures on graphics
memory, which is illustrated in Figure 1. We perform these

c© The Eurographics Association 2009.

90



E. Kienel & G. Brunnett / Tile-based Image Forces for Active Contours

GPU computations offscreen as there is no need for visual-
ization. To this end, we simply render a required tile into a
frame buffer object (FBOa). We take advantage of SIMD ca-
pabilities of the GPU, i.e. to perform RGBA operations per
fragment simultaneously for each channel. Thus, we com-
bine four subsequent intensity values to one RGBA quadru-
ple. With the aid of a pixel buffer object (PBO) the internal-
format of the FBOa content can be reinterpreted without an
expensive bus transfer.

Another frame buffer object (FBOb) contains several ren-
der targets. These attached textures have the same size n

4 ×n
and internal float format, namely GL_RGBA32F_ARB, to
avoid clamping and rounding. The minification and mag-
nification filters are set to GL_NEAREST to prevent from
distortion due to interpolation. Rendering has to be set up
adequately to ensure pixel-to-texel mapping.

We need several render targets to store intermediate re-
sults and to adopt so-called ping pong rendering, i.e. alter-
nately use two buffers as source and destination and vice
versa. Note, that it is not possible to attach textures with dif-
ferent sizes or formats as render targets to one FBO. There-
fore, at least two different offscreen buffers are required,
one for the intensity content (FBOa) and one for the packed
RGBA content (FBOb).

We have applied the basic idea to the computation of the
Gradient Vector Flow (GVF) [XP97] as well, which repre-
sents an alternative, but more sophisticated image force field
for active contours. Due to the complexity of the method, a
more detailed explanation would go beyond the scope of this
paper and is given in [KB09]. He et al. [HK06] introduced a
similar approach. However, they did not consider any tiling
and thus, only studied images up to sizes of one megapixel.

Recently, Tatarchuk [Tat08] proposed a method for the
implementation of the overall snakes algorithm on the GPU
using a greedy algorithm for the purpose of energy mini-
mization. This approach does not account for a tiling of the
image as well. Furthermore, only simple gradient-based im-
age forces are computed, instead of the GVF.

Algorithm 2: Tile-based image forces on GPU
Input : Tile array T of p× q textures

Coordinates (i, j) of the current grid cell

Output: Image forces of the current grid cell ~Fimg(i, j) =
(

Fx
img(i, j),Fy

img(i, j)
)T

Render Ti j into offscreen buffer having the size n× n1:
Use pixel buffer object to reinterpret intensity frame buffer content as RGBA and2:
generate packed texture T ′

i j of size n
4 × n

Normalize tile intensities by histogram stretching based on global intensity3:
minimum and maximum
Enhance tile contrast4:
Filter tile with 5× 5 Gaussian using separated kernels5:
Compute potential field (according to image energy definition)6:
Compute gradient of the potential field using two separate destination frame buffers7:
Read back pixel content of frame buffers into allocated main memory for the8:
storage of Fx

img(i, j) and Fy
img(i, j)

5. Results

Our algorithm was successfully applied for the semiauto-
matic contour extraction in several real images of histo-
logical cross-sections of the University of Göttingen, Ger-
many, having sizes of up to 200 megapixels. All results were
achieved on an Intel Core2 Quadcore Q6600 2.4GHz proces-
sor with 3GB RAM and an NVIDIA GeForce 8800 GTX.

H
is

to
gr

am
 st

re
tc

hi
ng

(L
in

es
 1

 - 
3)

C
on

tra
st

 e
nh

an
cm

en
t &

 5
x5

 G
au

ss
ia

n
(L

in
es

 4
 - 

5)
Im

ag
e 

en
er

gy
 p

ot
en

tia
l

(L
in

e 
6)

Im
ag

e 
fo

rc
es

(L
in

e 
7)

Figure 1: Pipeline for image force computation on GPU (cf.
algorithm 2). The two bottom tiles show the x (left) and the
y component (right) of the final image force field.

c© The Eurographics Association 2009.

91



E. Kienel & G. Brunnett / Tile-based Image Forces for Active Contours

 10

 100

 1000

 10000

 100000

8
2

16
2

32
2

64
2

128
2

256
2

512
2

1024
2

m
ea

n
 t

im
e 

fo
r 

im
ag

e 
fo

rc
e 

co
m

p
u
ta

ti
o

n
 p

er
 p

ix
el

 [
µ

s]

tile size [pixels]

EMG on CPU without SSE
GVF on CPU without SSE

EMG on CPU with SSE
GVF on CPU with SSE

EMG on GPU
GVF on GPU

Figure 2: Mean time per single pixel for different image
force computations including image preprocessing for dif-
ferent tile sizes. Note, that the time scale is logarithmic.

We have implemented the proposed computation scheme
for traditional image forces (EMG) and the GVF on both
CPU and GPU. Figure 2 compares computation times for
different tile sizes n. Choosing n = 256 seems reasonable as
speedup factors of up to 6 (EMG) and 15 (GVF) could be
achieved with our new GPU-based approach.

Precomputing traditional image forces for the entire im-
age area of a real sample image of 7150×6438 pixels takes
about 6 seconds without GPU support. Instead, the initial
image force computation on demand for an active contour,
exploring 14% of the image tiles (n = 256), requires only
0.3 seconds with GPU support.

Tatarchuk’s full GPU implementation [Tat08] is reported
to run with at least 100 fps for image sizes of about 512×
512 and 60 to 80 control points using an ATI Radeon HD
2900 XT. Comparing the results, we could outperform the
method in spite of image force computations on demand and
a CPU-based energy minimization using the calculus of vari-
ations and considering optimizations explained in [KVB06].
In fact, we computed about 500 deformation steps per sec-
ond for the given sample image and approximately 1500
control points using our approach, emphasized in Figure 3.

6. Conclusion

In this paper, we presented a method to facilitate semiauto-
matic contour extraction on the basis of active contours in
particular for huge images. It was shown, how a tiling ap-
proach enhances the snakes algorithm in different ways.

Both memory and computational effort could be signif-
icantly reduced as a result of local image force computa-
tions on demand, instead of a global precomputation upon
the entire image domain. This approach made it possible to
efficiently use snakes for contour detection in particularly
big images. Moreover, we demonstrated how programmable

Figure 3: Image with 7150 × 6438 pixels of a histological
cross-section of "Tupaia belangeri" showing an intermediate
state of a deforming active contour (green) with 1535 control
points. Image forces are computed only for highlighted tiles.

graphics hardware can be leveraged to further speedup the
computation in order to compensate possible delay effects
during the snake deformation. Finally, the decomposition of
the input image into small tiles allows for a fast hardware
based visualization by avoiding problems associated with
texture size constraints.

References
[HK06] HE Z., KUESTER F.: GPU-Based Active Contour Seg-

mentation Using Gradient Vector Flow. Lecture Notes in Com-
puter Science 4291 (2006), 191–201.

[KB09] KIENEL E., BRUNNETT G.: GPU-Accelerated Contour
Extraction on Large Images Using Snakes. Tech. Rep. CSR-09-
02, Chemnitz University of Technology, 2009.

[KVB06] KIENEL E., VANČO M., BRUNNETT G.: Speeding Up
Snakes. INSTICC Press, pp. 323–330.

[KVK∗07] KIENEL E., VANČO M., KOWALSKI T., CLAUSSR.,
BRUNNETT G.: A Framework for the Visualization of Cross
Sectional Data in Biomedical Research. Springer, pp. 77–97.

[KWT87] KASS M., WITKIN A., TERZOPOULOS D.: Snakes:
Active contour models. International Journal of Computer Vision
1, 4 (1987), 321–331.

[SWKK02] SÜSS M., WASHAUSEN S., KUHN H.-J., KNABE
W.: High resolution scanning and three-dimensional reconstruc-
tion of cellular events in large objects during brain development.
Journal of Neuroscience Methods 113 (2002), 147–158.

[Tat08] TATARCHUK N.: GPU-Based Active Contours for Real-
Time Object Tracking. In Shader X6: Advanced Rendering
Techniques, Engel W., (Ed.), vol. 1. Charles River Media, 2008,
pp. 145–160.

[XP97] XU C., PRINCE J. L.: Gradient Vector Flow: A New Ex-
ternal Force for Snakes. In Proceedings of the 1997 Conference
on Computer Vision and Pattern Recognition (CVPR ’97) (1997),
IEEE Computer Society, pp. 66–71.

c© The Eurographics Association 2009.

92


