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Abstract

We present a novel method of reconstructing surfaces from 3D scattered points by combining Partition of Unity
(PU) and a Graph-cut approach. PU is a local approximation technique, meaning that the surfaces obtained have
high accuracy but are sensitive to noise. Graph-cut, on the other hand, is a global algorithm that is robust to
noise but produces low-accuracy results because it is a discrete binary operation. Our algorithm combines these
two methods to achieve robust, high accuracy surface reconstruction. First, a PU implicit function is constructed
by covering a space containing a point cloud with spherical supports of linear polynomials. Graph-cut is then
performed to separate the covered domain into inside and outside areas of the object to be reconstructed. Finally,
we extract the zero-level of PU using the marching tetrahedra approach.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry
and Object Modeling Curve, surface, solid, and object representations

1. Introduction

Surface reconstruction from sets of points obtained by scan-
ning devices is a very important subject in many areas in-
cluding computer graphics, CAD and CAE. Many algo-
rithms have been proposed to achieve such reconstruction,
and an implicit approach is a good solution. One of the ma-
jor advantages of such an approach is the ability to handle
low-quality data: data with noise, areas with few or no sam-
pling points and registration gaps. Algorithms in this cat-
egory can be classified as local or global. One of the for-
mer is [OBA*03, GGO7]; locally supported implicit func-
tions can precisely represent details and features on the sur-
faces of objects. As an example of the latter, we refer to
[KBHO06,HK06,SLS*07].The algorithms in this class are es-
sentially noise-robust, but are not good at dealing with pre-
cise features.

In this paper, we propose a new algorithm with the ability
to represent details and robustness even for low-quality data.
In Fig. 1, we show the results for the Stanford dragon raw
data that is very noisy and has areas of undersampling. This
is achieved by combining Partition of Unity (a local implicit
approach) and Graph-cut (a global method).

(© The Eurographics Association 2009.

Figure 1: A triangular mesh of the Stanford dragon recon-
structed from raw data (left and right). A lack of sampling
is seen on the left hind leg (middle). The reconstructed mesh
for this area is shown on the right.

2. Algorithm

Here we overview the whole algorithm, with 2D-version ex-
amples shown in Fig.2. As input, we take a set of points
equipped with oriented normals sampled from the surface
of an object and possibly including noise, outliers and areas
with a lack of sampling (Fig.2(a)). These input points are
referred to below as sampling points.
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Figure 2: (a) Sampling points. (b) Generated supports of approximation function f(x) (pink circles) and their centers (blue
points). (c) The results of Graph-cut; the red points are judged as being inside the object, while the green ones are deemed to
be outside. The edges of the graph are shown with white lines. (d) The finally obtained surface of the object (black line). The
contours of f(x) are drawn with pink and green lines according to their sign of f(x). The sampling points are indicated in blue.

1. Generate a cover for the bonding box with support
spheres of local approximation functions through Parti-
tion of Unity (Fig.2(b)).

2. Create a tetrahedral mesh whose vertices are a subset of
the support centers. Classify the mesh vertices into those
representing the object (red points) and others (green
points) by Graph-cut (Fig. 2(c)).

3. Extract a triangular mesh representing the object surface
using the marching tetrahedra approach (Fig. 2(d)).

2.1. Local Approximation by Sphere Covering

In this step, a scalar field whose zero-level set represents the
surface of an object is generated inside the bounding box of
the object. Such a scalar field is constructed by Partition of
Unity (PU) similar to the algorithm proposed in [OBA*03],
with locally and spherically supported functions in numbers
as few as possible. The set of all supports of these functions
becomes a cover of the bounding box.

The input is a set of points equipped with oriented nor-
mals: {(p;,n;)}. Below the coordinates of a point x are in-
dicated with a bold letter x. Using an adaptive octree as the
centers of supports is a good way of ensuring the accuracy
of reconstruction. We generate an octree whose maximum
depth is user-specified through division of the bounding box
so that all sampling points are in the maximum-level cell,
as in [KBHO6]. The difference of the division level with a
neighboring cell is one at most. The center candidates of sup-
ports are selected from among the cell centers of the octree.

The approximation function is described as a weighted av-
erage of local approximations {g;(x)} and weight functions
{oi(x)}:

_ Ligi(x)gi(x)
Y 9i(x)

©;(x) is a radially supported quadratic B-spline, b, (3]/x —

f(x)

¢il|/2r;), whose center ¢; and support size r; are equal to
the center and radius of the support of g;(x). As the local
approximation function g;(x), we adopt a linear function be-
cause the density of supports directly becomes the density of
the resulting surface mesh. g;(x) is determined by weighted
least squares fitting to the sampling points inside the support.

gi(x) =m;- (x—d;),
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Below, the support of g;(x) is denoted as s;. The surface of
the object is approximated by the zero-level set of f(x). The

value of f(x) approximates the signed distance from point x
to the surface.

The algorithm to construct f(x) is summarized below:

1. Initialize the set of support center candidates % as all the
cell centers in the octree.

2. Randomly select a point ¢; from among % as the center
of 5;. Decide the local approximation g;(x) and s;.

3. From ¥, remove c¢; and points where all eight corners of
the corresponding cells are inside s;.
If € is empty, the algorithm terminates. Otherwise go
back to the Step 2.

We define the local approximation error as the maximum
distance to the approximated plane from the sampling
points: max|p _¢|<r, lgi(p;)|- The support size r; is maxi-
mized without exceeding user-specified approximation error
tolerance €. As the experimental results show the approxima-
tion error increasing monotonically, we can find r; through a
simple binary search.

2.2. Global Inside/Outside Classification

Since PU is based on a local fitting, it enables high-accuracy
representation of objects but is very sensitive to noise, out-
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liers and lack of sampling. Therefore, we make our algo-
rithm more stable with a global algorithm such as Graph-
cut [BK04] or FEM approach [SLS*07]. We adopt Graph-
cut, the reason is that just a global in/out classification is
enough for outlier removal since local approximation has al-
ready generated. Moreover, Graph-cut is practically faster
and more memory efficient than FEM approach. By com-
bining PU and a Graph-cut approach, surface reconstruc-
tion can be conducted more stably than with the PU-only
approach (see Fig. 3 for the advantages of Graph-cut com-
bining for very noisy data). The PU-only method fails to de-
tect an appropriate surface because of many outliers, but this
algorithm generates surfaces robustly.

In this step, we classify the support centers into two
groups: points inside the object and points outside it. First, a
graph is constructed by the weighted Delaunay tetrahedriza-
tion for the support centers as vertices and their squared radii
as weights. Two terminal nodes are introduced as the source
node and the sink node; these are purely symbolic rather
than representing the vertices of the tetrahedral mesh. Each
of them has edges to all vertices.

In our algorithm, vertices labeled as source represent the
area inside the object, and other vertices (labeled as sink)
represent the outside. We set weak constraints so that ver-
tices with the values of f(v) > 0 are classified into the source
side and otherwise to the sink side.

We assign a cost to an edge incident to one terminal node
and vertex v of the tetrahedral mesh as follows: for an edge
where one end is a terminal node,

w(v,source) =0, w(v,sink) =k |f(v)| Iy
w(v,sink) = 0, w(v,source) =k | f(v)| I

(f(v) <0)

k is the ratio of cost for terminal-incident edges to that for
tetrahedral mesh edges. According to our experiments, we
recommend to set k to about 15. [, is the average length of
edges incident to v. The cost of a tetrahedral mesh edge with
end points v; and v; is

w(vi,vj) = [fvi) + F V)] b,

where 1y, ,; is the length of the edge. Since value f(x) repre-
sents an approximation of the signed distance of x from the
surface, these costs decrease for edges crossing the surface
of the object, but increase for edges far from the surface.
For the implementation of Graph-cut, we utilize codes dis-
tributed by Boykov and Kolmogorov based on [BK04].

The image on the left of Fig. 4 shows a cross section of a
resulting tetrahedral mesh of the Stanford dragon. The im-
age on the right of Fig. 4 is a 2D-version image of the results
of this operation. Blue round points indicate outside nodes,
while yellow squared ones are inside nodes. The signs in-
side the nodes are those of the approximation function f(x)
at the nodes. If approximation by f(x) is completely cor-
rect, the distribution of the sign of f(x) should coincide with
classification by Graph-cut. In fact, there are non-consistent
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(f(v)>0)"

Figure 3: Left: A set of sampling points including many
outliers. Middle: Reconstruction without Graph-cut has un-
desired extra surfaces. Right: Graph-cut helps to generate
stable results.

Figure 4: Left: A cross section of a tetrahedral mesh for
the head of the Stanford dragon. The coloring rules follow
Right: a 2D-version result. Triangular mesh vertices are de-
picted as green points, and black points are sampling points.

nodes; an example is indicated by the red-circled point in the
image on the right of Fig. 4. In these areas, approximations
have failed because of outliers. Graph-cut provides reliable
classification even for such areas.

2.3. Triangular Mesh Extraction

In this step, we extract a triangulated surface using the
marching tetrahedra approach. Tetrahedra that have object-
inside point(s) and object-outside point(s) intersect with the
surface. Intersections which become triangular mesh ver-
tices are calculated on each edge connecting inside and out-
side points v; and v;. In the right image of Fig. 4, vertices are
shown with green points. We determine a vertex as a point
satisfying f(x) = 0 on an edge. Such points are obtained by
regula falsi.

If the signs of f(v;) and f(v;) are the same, we tempo-
rally determine the coordinates of a vertex as one end point
whose absolute value of f(x) is less than the other. After tri-
angular mesh generation, such vertices are smoothed by bi-
Laplacian mesh smoothing. In addition, under-sampled ar-
eas are also smoothed. In our current implementation, such
areas are notified as vertices on edges; at least one of end
points is the center of a support including less than ten sam-
pling points.



76 Yukie Nagai, Yutaka Ohtake and Hiromasa Suzuki / Noise-robust Surface Reconstruction by Combining PU and Graph-cut

(@ (b)

(c) (@)

Figure S: Scanned data for Shiisa (a lion-shaped guardian dog deity) and close-up views of its mouth and right foot (a). Results
of MPU [OBA*03] (b), Poisson surface reconstruction [KBHO6] (c) and our algorithm (d). Fangs in the mouth and details of

the fingers are successfully reconstructed.

3. Results and Discussion

In Fig.5, we compared our re-
sults with Poisson surface recon-
struction proposed by Kazhdan
et al. [KBHO6] and with MPU
by Ohtake et al. [OBA*03] for
data including sparsely sampled ar-
eas (Fig.5(a)). The picture on the
left shows the original object. For
Poisson surface reconstruction we set the maximum octree
level as 10, for MPU error tolerance is set as 1.0x10_3, and
for ours, the octree level as 8 and the error tolerance € as
1.0x1073. As an assumption, the input data is scaled with
the length of the longest edge of its bounding box as one.

MPU generates very precise results because it adopts
quadratic equations, but the result meshes unfortunately con-
tain many tiny extra components (Fig. 5(b)). The accuracy
is high but fitting 2-nd order approximation is sensitive to
noise. Poisson surface reconstruction can generate water-
tight meshes, but the results are slightly shrunk (Fig. 5(c)).
Moreover, especially for sparse and noisy data, the results
tend to be too smooth and many important details are lost.
Our algorithm generates precise surface meshes even for
such poor scanned data (Fig. 5(d)). The reason is that Pois-
son surface reconstruction is a 0-th order approximation (a
scalar value is assigned to each octant), on the other hand,
ours is a 1-st order approximation. A drawback is a neces-
sity of normals. If many normals are reversed, our algorithm
cannot achieve a correct result.

RAM is required about 500Mbytes for processing one
million input points, and it increases linearly. One bottleneck
is time-consumption. For processing a few million points,

proposed algorithm takes a few tens of minutes, while Pois-
son surface reconstruction and MPU works on several min-
utes. The most expensive procedure is tetrahedrization. We
plan to improve this operation in our future work.

In this paper, we have proposed an accurate surface recon-
struction algorithm that is robust against noise and outliers.
These advantages are achieved by the combination of PU
and the Graph-cut techniques.
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