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Abstract
This paper proposes a deterministic importance sampling algorithm for complex integrands. The idea is based
on the recognition that halftoning algorithms are equivalent to importance sampling if the gray-scale image and
a resulting white pixel are considered as the target importance function and the sampling position, respectively.
We adopt the Floyd-Steinberg halftoning algorithm, extend it to higher dimensions, and rephrase it as a sampling
method. As the Floyd-Steinberg halftoning places a sample also considering where other samples are located, our
sampling algorithm distributes samples in a stratified way. In order to demonstrate the power of the method, we
present an environment mapping application where the sampling mimics the product of the cosine weighted BRDF,
environment radiance, and the environment visibility.

1. Introduction

Monte-Carlo and quasi-Monte Carlo quadrature rules gener-
ate M samples z1, . . . ,zM with density p(z) and approximate
an integrand as follows:

Φ =
∫

P
F(z)dz≈ 1

M

M

∑
i=1

F(zi)
p(zi)

,

where P is the domain of the integration, and F(z) is the in-
tegrand at sample z. In order to generate samples, we should
take uniformly distributed deterministic or pseudo-random
numbers in the unit cube and transform them to the domain
of the integration. Let us call this cube U as the primary sam-
ple space [KSKAC02], and denote the transformation from
here to domain P by z = z(u). Our original integral can also
be obtained as an integral in the primary sample space:

Φ =
∫

U
F(z(u)) · J(u)du, J(u) =

∣∣∣∣
dz(u)

du

∣∣∣∣

where J(u) is the Jacobi determinant of the mapping. Intu-
itively, the Jacobi determinant expresses the local expansion
between two corresponding spaces U and P .

The error of the quadrature can be reduced if the samples
are generated with a density that is at least approximately
proportional to the integrand. This variance reduction tech-
nique is called importance sampling.

In order to specify what approximate proportionality
means and to extend importance sampling for vector valued
functions, we define a scalar importance function I(u) for
which exact proportionality is expected. For vector valued
functions, this scalar contribution function can represent the
average of the vector elements, which is denoted by L(F).
The goal is then to find I(u) that mimics the integrand, i.e.

I(u)≈ L(F(z(u))) · J(u)

as accurately as possible, and sample the primary sample
space U with a density p(u) that is proportional to the scalar
contribution function: p(u) = I(u)/b. Scalar b comes from
the requirement of normalization for the density, resulting in
b =

∫
U I(u)du.

The goals of making the scalar importance mimic the in-
tegrand and sampling proportionally with the scalar impor-
tance function are often contradicting. If the first objective is
met, then the scalar importance function is far too complex
to allow the transformation of uniformly distributed samples.
Note that this would require the integration of the required
density and the symbolic inverse of the integral.

When solving the rendering equation, the integrand is the
product of the emission radiance of the path at one end, the
cosine weighted BRDFs of the visited points, and the mea-
suring function of the eye at the other end. BRDF sampling
obtains a random direction that mimics the cosine weighted
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BRDF, light source sampling finds a point with a probability
that is proportional to the emission. Note the BRDF sam-
pling and light source sampling consider just a single factor
from the integrand and ignore the others.

Rejection sampling and their special versions as the
Metropolis method [VG97], Bi-directional importance sam-
pling [BGH05], Importance resampling [BGH04, TCE05]
or Hierarchical thresholding [ARBJ03, ODJ04, RCL+08]
generate samples with an easy density, e.g. with BRDF
sampling, then the samples are randomly rejected and re-
weighted to better mimic the target distribution.

The other problem of classical importance sampling is
that it distorts the original distribution, thus its appealing
properties like stratification are also corrupted, which is
made even worth by additional random rejections. To ad-
dress this, in the context of environment mapping Wan et al.
[WWL05] proposed sampling directly on the sphere. Agar-
wal et al. [ARBJ03] ensured stratification by an additional
clustering step.

1.1. Halftoning

Halftoning is a technique to render gray-scale images on a
black and white display. The idea is to put more white points
at brighter areas and less points at darker parts. The spatial
density of white points in a region around a pixel is expected
to be proportional to the gray level of that particular pixel. If
we consider the gray level of the original image to be a scalar
importance function and the white pixels of the resulting im-
age to be sample locations, then we can realize that halfton-
ing is equivalent to a deterministic importance sampling al-
gorithm. This holds for an arbitrary halftoning algorithm,
including the random and ordered halftoning methods that
add random noise or a periodic pattern to the original im-
age before quantization, or, for example, the Floyd-Steinberg
algorithm [FS75]. The Floyd-Steinberg halftoning provides
better results than random or ordered halftoning, because it
makes not only local decisions, but the gathered informa-
tion is also distributed in neighboring pixels. It means that it
takes other samples into account as well, so the sample po-
sitions are stratified, making the resulting image smoother
and reducing the noise compared to random or dithered ap-
proaches.

Due to its good properties and automatic stratification,
we developed our sampler based on the Floyd-Steinberg
method. Random dithering, which is similar to importance
resampling, was implemented for comparison. We expected
the same improvement in importance sampling as provided
by the Floyd-Steinberg halftoning over random dithering.

The paper is organized as follows. In Section 2 we re-
visit the Floyd-Steinberg algorithm, extend it to arbitrary di-
mensions, and reformulate it to a sampling approach. Then
a rendering application is presented in Section 3, which is
environment mapping with shadow computation.

2. The Floyd-Steinberg sampler

Let us take the D-dimensional cube of the primary sample
space and define an R1×R2× . . .×RD resolution grid in it.
The number of grid points is denoted by N. It is not neces-
sary to make the same number of subdivisions along each
axis. The grid is processed twice by iterating the subdivision
points along the coordinate axes one-by-one. In the first run,
scalar importance I(c1,c2, . . . ,cD) is evaluated and stored as
the initial importance of the grid point ui = (c1,c2, . . . ,cD).
From the sum of these values, the integral of the scalar im-
portance function is estimated:

b =
∫

U
I(u)du≈ 1

N
·

R1

∑
c1=1

. . .
RD

∑
cD=1

I(c1, . . . ,cD).

The samples are generated in the second run. At grid point
ui its scalar importance I is compared to a threshold value IT .

• If the scalar importance is greater than the threshold, then
the integrand is evaluated at sample ui and is included in
the quadrature:

Φ≈ 1
M

M

∑
i=1

F(z(ui)) · J(ui)
p(ui)

=
b
M

M

∑
i=1

F(z(ui)) · J(ui)
I(ui)

.

Simultaneously, the importance of the current grid point
is decreased with IT .

• If the scalar importance is not greater than the threshold,
then no sample is generated here and the scalar impor-
tance of the grid point is left unchanged.

In both cases, before stepping onto the next grid point, the
remaining importance of the current grid point is distributed
to its unvisited neighbors. When we are at a grid point ui =
(c1,c2, . . . ,cD), the unvisited neighboring grid points have
coordinates (c1 + δ1,c2 + δ2, . . . ,cD + δD), where δi may
have values 0 or 1, while they cannot be all zeros simulta-
neously. Unvisited grid point (c1 +δ1,c2 + δ2, . . . ,cD +δD)
receives Iw(δ1,δ2, . . . ,δD) importance where the total sum
of weights w is equal to 1. For example, in 2D the following
weighting scheme may be used, which makes the weights
roughly proportional to the associated points’ Euclidean dis-
tances.

w(0,1) = w(1,0) = 3/8, w(1,1) = 2/8.

The number of samples M can be controlled by the used
threshold IT . As the total sum of the scalar importance val-
ues is Nb, the following correspondence can be established
between them:

IT =
N ·b
M

.

The number of original samples (N) and final samples (M)
should be carefully selected since they affect both the com-
putational cost and the accuracy. The total cost of sampling
is proportional to N, which means that the method is prac-
tical only if the cost of importance function computation is
much less than the cost of the integrand computation.
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3. Application to environment mapping

In environment mapping [Deb98] we compute the direct
lighting of a distant hemispherical light source. The radi-
ance of point ~x of a virtual object is the reflection of the il-
lumination provided by the environment map, which can be
computed as

Lr(~x,~ω) =
∫

Ω

Lenv(~ω′) · fr(~ω′,~x,~ω) · cosθ′ · v(~x,~ω′)dω′,

where Ω is the set of all directions, Lenv(~ω′) is the radiance
of the environment map at direction ~ω′, fr is the BRDF, and
v(~x,~ω′) is the indicator function checking whether no virtual
object is seen from~x at direction~ω′ (that is, the environment
map can illuminate this point of the virtual object from the
given direction).

Note that the integral is the product of three factors, the
light intensity, the cosine weighted BRDF, and the visibility
indicator:

F(~ω) = Lenv(~ω′) · fr(~ω′,~x,~ω) · cosθ′ · v(~x,~ω′).
Unfortunately, it is not possible to directly find a probability
density that is proportional to this product, so classical tech-
niques consider only a single factor. Unlike classical tech-
niques, the proposed Floyd-Steinberg sampler can mimic
this complex product as well.

As we need to evaluate the scalar importance function for
every grid point, its computation must be much cheaper than
that of the original integrand F . In environment mapping,
the expensive part is visibility checking, that is the evalua-
tion of function v. So in the scalar importance function the
visibility is omitted. The illumination and the BRDF terms
are wavelength dependent, so the scalar contribution should
map these vectors to scalars. We may use the luminance of
the product. Thus, the scalar importance function is:

I(u) = L(Lenv(~ω′) · fr(~ω′,~x,~ω)) · cosθ′ · J(u),

where direction ~ω′ and angle θ′ are functions of u.

If we transform the unit rectangle onto the hemisphere
by BRDF sampling, then the Jacobi determinant will com-
pensate the angular variation of fr(~ω′,~x,~ω)cosθ′, making
their product equal to the albedo a(~x,~ω), thus the importance
function will be proportional only to the remaining factors:

I(u) = L(Lenv(~ω′(u)) ·a(~x,~ω)).

The final form of the integral quadrature is:

Φ≈ b
M

M

∑
i=1

Lenv(~ω′(ui)) ·a(~x,~ω) · v(~x,~ω′(ui))
L(Lenv(~ω′(ui)) ·a(~x,~ω))

.

3.1. Results

We have compared three sampling techniques: BRDF sam-
pling, importance resampling, and the Floyd-Steinberg sam-
pler. All three were implemented as GPU algorithms, which

run on nVidia GeForce 8800 GFX graphics hardware. The
test scenes consisted of diffuse objects illuminated by an en-
vironment map. All methods generated 32 directional sam-
ples per pixel. Both importance resampling and the Floyd-
Steinberg sampler used 16×64 sample grids.

The top row of Figure 1 compares the images rendered
with the three techniques when illuminated by a fairly
smooth environment map. We can see that importance re-
sampling does not improve image quality significantly, but
the Floyd-Steinberg sampler has practically eliminated the
noise which was not due to visibility. In the middle and bot-
tom rows of Figure 1 we can see the same experiment with
a high variation environment map. This scenario is particu-
larly challenging for the BRDF sampler, as the high intensity
range is sampled with a low probability. Importance resam-
pling is already useful in this case, choosing the meaning-
ful samples with a high probability, but some pepper-style
noise remains. The Floyd-Steinberg sampler is successful at
removing the noise, proving that it accomplishes practically
perfect importance sampling. The only area where noise re-
mains is where the bright part of the environment is occluded
by shadowing geometry.

4. Discussion and conclusions

This paper presented a new importance sampling strategy
that is based on the Floyd-Steinberg halftoning algorithm.
Halftoning trades off spatial resolution to color resolution. In
other words, it assumes that the image is relatively smooth.
From the point of view of importance sampling, it means
that the method is good if the scalar contribution function
is relatively smooth. The power of the method comes from
this property. When the decision is made whether or not we
sample a particular value, not only this point is evaluated,
but the information of the already generated samples is also
taken account. Comparing to other sophisticated importance
sampling methods, like importance resampling [BGH04],
this is the key difference and also the main advantage in
our method. Unlike in hierarchical thresholding [ARBJ03],
we do not enforce an expensive explicit stratification step,
but the algorithm delivers well distributed samples automat-
ically.
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