
EUROGRAPHICS 2009 / P. Alliez and M. Magnor Short Paper

Real-time Volumetric Lighting in Participating Media

Balázs Tóth and Tamás Umenhoffer,

Budapest University of Technology and Economics, Hungary

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
Simulating light scattering in participating media, such as dust, fog or smoke, can greatly improve the overall
realism of the images. This volumetric effect has been well studied in the context of off-line rendering but is still
challenging for interactive applications. In this paper we present a GPU-based algorithm to compute volumetric
light-shafts generated by single scattering in participating media. The proposed method uses shadow maps to
account for shadowing and interleaved sampling to maintain high frame rates without sacrificing image quality.

1. Introduction

Volumetric scattering can greatly improve the overall real-
ism of rendered images. The main idea behind these simu-
lations is that the space between the visible surface and the
camera is filled with tiny particles that absorb and scatter
light photons colliding with them. The exact computation
of scattering is hard as taking into account multiple light
bounces between particles yields to a strong dependence be-
tween incoming and outgoing radiance at a particle. How-
ever in many cases multiple scattering does not contribute
too much to the overall appearance of the final image, and
computing single scattering (one light bounce only) can cap-
ture the main characteristics of light transport. We propose
a fast method to calculate single scattering in homogenous
media taking into account solid dynamic occluder objects
and dynamic light sources.

2. Previous work

Volumetric effects are well known in the context of off-line
rendering. Typical renderers use ray marching [KH84] for
illumination accumulation and some kind of Monte Carlo
quadrature [Rus94] or volumetric photon maps [JZJ08] to
account for scattering. These methods require expensive
computations, which restricts their application in interactive
systems.

As the performance of graphics processors (GPU) grows,
researchers have proposed new methods for interactive volu-
metric lighting effects. These techniques commonly fall into
two categories, they can be based either on shadow vol-
umes or on ray marching. Methods using shadow volumes

[BAM06, Jam03] identify the shadowed parts of the eye
rays via silhouette polygons extruded from the light source.
These shadow volumes are rendered in back to front order,
which has an additional sorting cost. Ray marching methods
accumulate scattering along eye rays by advancing on the
ray in small steps and updating the accumulated parameters
iteratively. In real-time rendering a slice based volume ren-
dering technique can be used to provide efficient per pixel
ray marching where shadowing of solid objects can be com-
puted with shadow mapping [DYN02,Mit04]. There also ex-
ist methods that combine shadow volumes and ray marching
to speed up the classical ray marching algorithm [WR08].
Finally, it is also possible to use an image-processing ra-
dial blur operator to visualize light-shafts. These techniques
work only if the light source is visible from the camera
[Mit07].

Our approach is based on ray marching and is imple-
mented in a single fragment shader as a post process. Solid
object shadows are handled via shadow maps.

3. Volumetric lighting in participating media

Let us consider a ray of equation~x(s) =~x0 +~ωs, defined by
origin~x0, direction~ω, and ray parameter s. The change of ra-
diance L(~x,~ω) along this ray in non-emissive homogeneous
participating media is expressed by the radiative transport
equation [SKSS08]:

dL(~x(s),~ω)
ds

=−τL(~x(s),~ω)+τa
∫

Ω′
L(~x(s),~ω′)P(~ω′,~ω) dω′.

where τ is the density describing the probability of colli-
sion in a unit distance, a is the albedo that equals to the

c© The Eurographics Association 2009.

http://www.eg.org
http://diglib.eg.org

Tóth, Umenhoffer / Real-time Volumetric Lighting in Participating Media

probability of scattering (i.e. not absorbing) after collision,
and P(~ω′,~ω) is the phase function describing the probability
density of the scattering direction.

This integro-differential equation is difficult to solve since
the unknown radiance appears in derivative, normal, and
integrated forms. Such equations can be solved by Monte
Carlo methods [SK08], but they are far too slow for real-time
applications. Thus, we completely ignore multiple scattering
and approximate the in-scattering integral assuming single
scattering only. Let us denote the in-scattering term by Li in
the following way:

τa
∫

Ω′
L(~x(s),~ω′)P(~ω′,~ω)dω′ ≈ Li(~x(s),~ω).

Due to the simplifying assumption, Li no longer depends on
unknown radiance L. The resulting differential equation

L(~x(s),~ω)
ds

=−τL(~x(s),~ω)+Li(s,~ω)

can be solved analytically (the correctness of the solution
can be proven by inserting it into the differential equation):

L(~x(s),~ω) = e−τsL(~x0,~ω)+
s∫

0

Li(~x(l),~ω)e−τ(s−l)dl.

The integral on the right hand side of the equation can be
approximated with a finite Riemann summation:

L(x(s),~ω)≈ L(~x0,~ω)e−τs +
N

∑
n=0

Li(~x(ln),~ω)e−τ(s−ln)∆l,

(1)
where the step size is ∆l = s/N, i.e. it is proportional to the
length of the ray and is inversely proportional to the number
of sample points.

We should note here that the consecutive samples of the
summation are independent which will be exploited during
interleaved sampling described in Section 4.1.

Using the same argument for the incident radiance show-
ing up in the in-scattering term, we get the following formula
for Li. If the scene has a single point light of power Φ, then
only one~ω′ direction needs to be taken into account, thus we
have:

Li(~x,~ω) = τa
Φ

4πd2 v(~x)e−τdP(~ωl ,~ω).

where d is the distance between the considered point and the
light source and ~ωl is the direction of the light source from
the sample point. Function v(~x) indicates the visibility of the
sample point from the light source. It returns zero for sam-
ple points that are in shadow and one for lit sample points
(Figure 1).

3.1. Scattering calculation with ray-marching

We can approximate the volumetric rendering equation with
a ray marching method that iteratively evaluates equation 1.

Figure 1: Taking into account solid geometry during ray
marching

Figure 2: Computation of the scattered component by ray-
marcing

The algorithm executes the following steps (Figure 2):

1. In every pixel it determines the visible surface point and
its reflected radiance that will be the boundary condition
for the volume radiance.

2. It iterates along the ray from the surface to the camera
making small steps. In a particular sample point on the
ray

• in-scattering term Li(x(ln),~ω) is computed,
• absorbtion factor e−τ(s−ln) from the sample point to

the eye is obtained, and
• their product is added to the accumulated radiance.

3. The accumulated radiance is stored in the pixel spear-
headed by the ray.

4. GPU Implementation

For the calculation of the illumination term Li(ln,~ω) we can
use shadow mapping. Depending on the type of the light
source we can generate either a normal 2D shadow map for
spot lights or a cube map for point lights.

c© The Eurographics Association 2009.

58

Tóth, Umenhoffer / Real-time Volumetric Lighting in Participating Media

For the accumulation of the radiance while ray marching
we can use the following shader code that regularly calls
shadow test function shadowMC to get visibility indicator
v:

L = L0 * exp(-s * tau);
for(float l = s - dl; l >= 0; l -= dl) {

x += viewDir * dl;
float v = shadowMC(shadowMap, x);
float d = length(x);
Lin = exp(-d * tau) * v * Phi/4/M_PI/d/d;
Li = Lin * tau * albedo * P(x, viewDir);
L += Li * exp(-l * tau) * dl;

}

This function initializes the radiance of the ray to the ra-
diance of the surface at the beginning (L0) multiplied by the
total absorbtion along the ray. Then the ray is marched by
making steps of size dl. Ray marching is executed in light’s
space, that is in a coordinate system where the light is in the
origin since this makes calculation simpler. In this space the
distance of point ~x from the light source is |~x| and the light
direction is also parallel with ~x. This direction is checked
by shadow test. Working in light’s space requires the trans-
formation of the viewing direction in this space. The trans-
formed viewing direction is denoted by viewDir.

Taking the view ray the sample point can be obtained by
a single addition (x). By calling the shadow test function,
we can determine whether or not the sample point is visible
from the light source, i.e. whether scattering may happen
here. Then the source power Phi is attenuated by the ab-
sorbtion resulting in incident radiance Lin. The incident ra-
diance is multiplied by the albedo and the phase function and
the result is accumulated to the ray radiance. Complicated
phase functions like the Henyey-Greenstein phase function
can be stored in a lookup table, and fetched by a single tex-
ture read.

The ray marching algorithm can be implemented as a post
processing method. The necessary inputs of the method are
the shadow map and a depth map taken from the camera
to identify visible surface points. As these maps are usually
present in the texture memory, the algorithm requires no ad-
ditional special rendering passes. If multiple lights should
be simulated, the post process can be run separately for each
light sources, and their contribution can be added together.

4.1. Interleaved sampling

In the method discussed so far, ray marching evaluates N
samples for every pixel, which would slow down rendering
if N is high. However, if the number of sample points N
is reduced, then smooth light-shaft boundaries are replaced
by abrupt changes. One way of attacking this problem with-
out sacrificing performance is the application of interleaved
sampling [KH01]. Interleaved sampling exploits the fact that
the volume lighting and the visible surfaces are similar at

neighboring pixels, thus the information gained at a particu-
lar pixel can be well used in its neighbors as well.

Let us consider the sum of N terms of equation 1. We di-
vide the screen into M×M pixel blocks, and the N terms
are distributed in them in a periodic way. That is, in a par-
ticular pixel we evaluate just N/M2 terms. If we assume that
the samples in the M×M pixel blocks are lying approxi-
mately on the same view ray — which is reasonable if the
visible surface points are close to each other — we can add
their contributions together to obtain a solution similar to
taking all N samples on the ray. This requires additional post
processing passes to add the pixel contributions in a block
together. As the addition filter is separable we can use an
addition once in a horizontal and once in a vertical direc-
tion instead of taking all the M×M samples in a single filter
operation.

5. Results

The method has been implemented in DirectX9 and tested on
an NVidia 8800GTX GPU. The scene consists of 66000 tri-
angles and is illuminated by a point light. Without volumet-
ric scattering the application renders 110 frames per second
at 800×600 resolution. With volumetric scattering but with-
out interleaved sampling the performance drops to 42 frames
per second. However, if we turn interleaved sampling on, the
performance goes back to 100 frames per second again.

6. Conclusions

This paper proposed a light-shaft rendering algorithm run-
ning on the GPU. The algorithm uses shadow mapping to
check whether or not a point in the participating media may
be directly illuminated by the light source. Executing ray
marching in light’s space, the program is particularly sim-
ple. We also proposed the application of interleaved sam-
pling that significantly increases the rendering speed while
maintaining high image quality.

Acknowledgement

This work has been supported by OTKA K-719922 (Hun-
gary), and by the Terratomo project.

References

[BAM06] BIRI V., ARQUES D., MICHELIN S.: Real time render-
ing of atmospheric scattering and volumetric shadows. Journal
of WSCG 14 (2006), 65–72.

[DYN02] DOBASHI Y., YAMAMOTO T., NISHITA T.: Interactive
rendering of atmospheric scattering effects using graphics hard-
ware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (2002), Eurographics Associ-
ation Aire-la-Ville, Switzerland, Switzerland, pp. 99–107.

[Jam03] JAMES R.: True Volumetric Shadows. Graphics Pro-
gramming Methods (2003).

c© The Eurographics Association 2009.

59

Tóth, Umenhoffer / Real-time Volumetric Lighting in Participating Media

Figure 3: Sample scene without volumetric scattering on the left side and with scattering on the right side.

[JZJ08] JAROSZ W., ZWICKER M., JENSEN H. W.: The beam
radiance estimate for volumetric photon mapping. In SIG-
GRAPH ’08: ACM SIGGRAPH 2008 classes (New York, NY,
USA, 2008), ACM, pp. 1–112.

[KH84] KAJIYA J. T., HERZEN B. P. V.: Ray tracing volume
densities. In SIGGRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive techniques
(New York, NY, USA, 1984), ACM, pp. 165–174.

[KH01] KELLER E., HEIDRICH W.: Interleaved sampling. In
Rendering Techniques 2001 (Proc. 12th Eurographics Workshop
on Rendering (2001), Springer, pp. 269–276.

[Mit04] MITCHELL J. L.: Light shaft rendering. In ShaderX3:
Advanced Rendering Techniques in DirectX and OpenGL, Engel
W., (Ed.). Charles River Media, Cambridge, MA, 2004.

[Mit07] MITCHELL K.: Volumetric light scattering as a post-

process. In GPU Gems 3, Nguyen H., (Ed.). Addison-Wesley,
2007.

[Rus94] RUSHMEIER H.: Rendering Participating Media: Prob-
lems and Solutions from Application Areas. In Proceedings of
the 5th Eurographics Workshop on Rendering (1994), pp. 35–56.

[SK08] SZIRMAY-KALOS L.: Monte-Carlo Methods in Global
Illumination — Photo-realistic Rendering with Randomization.
VDM, Verlag Dr. Müller, Saarbrücken, 2008.

[SKSS08] SZIRMAY-KALOS L., SZÉCSI L., SBERT M.: GPU-
Based Techniques for Global Illumination Effects. Morgan and
Claypool Publishers, San Rafael, USA, 2008.

[WR08] WYMAN C., RAMSEY S.: Interactive volumetric shad-
ows in participating media with single-scattering. In Proceed-
ings of the IEEE Symposium on Interactive Ray Tracing (2008),
pp. 87–92.

c© The Eurographics Association 2009.

60

