
EUROGRAPHICS 2009 / P. Alliez and M. Magnor Short Paper

A Dynamic Caching System for Rendering an Animated
Crowd in Real-Time

W. Lister, R. G. Laycock and A. M. Day

School of Computing Sciences, University of East Anglia, UK

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

We present a method to accelerate the rendering of large crowds of animated characters. Recent trends have seen
matrix-palette skinning become the prevalent approach due to its low memory overhead and fully dynamic ge-
ometry. However, the performance of skeletal animation remains modest in comparison to static rendering since
neither temporal nor intra-frame coherency can be exploited. We cast crowd rendering as a memory-management
problem and allocate a small geometry cache on the GPU within which animated characters can be stored. This
serves to augment matrix-palette skinning with baked geometry and allows animation frames to be re-used by
multi-pass rendering, between multiple agents and across multiple frames. Our method builds its cache dynam-
ically and adapts to the current simulation state through use of the page-replacement algorithms traditionally
employed by virtual-memory systems. In many cases this negates the need for skinning altogether and enables
thousands of characters to be rendered in real-time, each independently animated and without loss of fidelity.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Animation.

1. Introduction

As real-time virtual environments continue to strive towards
photorealism, their enrichment with crowds of high quality
and diverse characters becomes essential for the provision of
an immersive experience. Commonly applied to urban sim-
ulations [CLM05, DHOO05] and cultural heritage visual-
izations [dHCSMT05, RFD05] to populate otherwise sterile
worlds, the gaming industry has demonstrated that crowds
need not be confined to passive roles but can instead become
fundamental to the success of a game [Ubi07].

This paper considers the problem of how best to render
large crowds of animated characters. Linear-blend skinning
is a commonly applied technique and is favoured due to its
low memory requirements and fully dynamic geometry. In
this approach, each vertex of a mesh is bound to an animated
skeleton using a set of bone assignments. Vertices are trans-
formed independently by a weighted summation of the cor-
responding bone keyframe matrices and this lends itself well
to parallel implementation. In [Lee07], seven variants of the
basic GPU algorithm are identified. Of these, matrix-palette

skinning stores an animation library within a vertex texture
and when combined with instancing, is a powerful method
by which to render many thousands of characters.

Although matrix-palette skinning can be implemented
efficiently on both current-generation graphics hardware
[Dud07] and future architectures supporting a tessellation
pipeline [SBOT08], its performance remains modest when
compared to that of rendering static meshes. Our work ac-
celerates the current state-of-the-art by introducing a baked
geometry caching system.

Baked geometry has previously been used as a standalone
rendering technique when hardware limitations saw it im-
practical to skin an entire crowd in real-time. Therefore
the accepted approach was to avoid having to perform dy-
namic animation at all and Ulicny et al. [UdHCT04] de-
scribe how an animated character can be cached on the GPU
as a set of pre-transformed meshes which are played-back
during simulation. This method requires all keyframes to be
pre-computed and so memory constraints naturally serve to
limit locomotive diversity. However, for the small number

c© The Eurographics Association 2009.

http://www.eg.org
http://diglib.eg.org


W. Lister, R. G. Laycock and A. M. Day / A Dynamic Caching System for Rendering an Animated Crowd in Real-Time

of animations that can be baked, rendering is extremely ef-
ficient since the system has only to interpolate vertices. By
way of example, we implemented both baked geometry and
four-bone matrix-palette skinning as preliminary work and
found the former to run approximately twice as fast. Whilst
it is easy to envisage a hybrid system that incorporates both
methods, treating them as distinct techniques still constrains
characters rendered using the baked approach to a limited
selection of animations created offline.

2. Skinning a Crowd

Matrix-palette skinning is illustrated in Figure 1. The bone
transformations for each keyframe of a given animation are
stored as 3x4 matrices within a single slice of a texture ar-
ray. A vertex constructs its final transformation matrix by
blending those of its assigned bones; keyframe interpolation
is achieved using hardware texture filtering.

Figure 1: Matrix-palette skinning animation texture layout.

For a given animation, the horizontal texture coordinate at
normalised time t can be calculated using Equation 1 where
n is the number of keyframes in the target animation and w
is the width in texels of the texture array. All animations are
assumed to be regularly sampled but are not required to use
the same sampling frequency.

tex.u =
(n−1)t+0.5

w
(1)

Skinning an entire crowd of characters every frame is not
only expensive but also unnecessary. Given a target framer-
ate of 60 fps and a simple walk-cycle animation running at
7.5 keyframes per second, successive keyframes are interpo-
lated for eight rendered frames. Instead of skinning the inter-
polated keyframe, the same transformation can be achieved
by skinning those keyframes immediately preceding and fol-
lowing the current animation time and blending between
them. For the example given, this reduces eight expensive
skinning operations to two skinning and eight low-cost in-
terpolations, without loss of fidelity. A net performance gain

can be expected provided that baked keyframes remain valid
for long enough so as to offset the cost of their generation. A
similar philosophy is applied by a dynamic-impostor crowd
rendering system in [ABT00] and is the premise that under-
pins our technique.

3. Geometry Caching

We use matrix-palette skinning to populate and maintain a
cache of baked meshes from which characters are rendered
by interpolating pre-transformed keyframes. The vertices
baked by our system are determined solely by the current
state of the crowd simulation; only those actively required
by crowd members need exist within the cache. Furthermore,
cache size can be explicitly controlled and thereby provides
a mechanism by which to balance memory consumption and
computational performance.

A single cache is shared by all crowd members and this
enables locomotive coherencies within the crowd to be ex-
ploited. These can be categorised into two distinct types;
temporal coherency, whereby a single character interpolates
the same animation keyframes for several rendered frames
and intra-frame coherency, whereby multiple characters in-
terpolate the same keyframes within a single rendered frame.
There also exists another type of coherency, a hybrid of
those described, whereby the keyframes currently required
by a character have been recently used by others within the
crowd. Our system can exploit all three scenarios without
distinction and this allows baked animation frames to be re-
used by multi-pass rendering, between multiple agents and
across multiple frames.

We describe our method by way of an example which uses
a crowd of 14 characters, a single animation of 7 keyframes
and an available cache size of 4 meshes. The simulation be-
gins at time t and its current state is illustrated in Figure
2. The white numbers denote how many characters are cur-
rently interpolating the enclosing keyframes; we denote the
regions between successive keyframes as temporal bins.

Figure 2: Crowd simulation state at time t.

To ensure maximum utility of baked keyframes, the cache
is populated by first sorting temporal bins by size and then
adding their enclosing keyframes in descending order until
the cache is full. Thus, the set of keyframes used by bins 0
and 2 { 0.0, 0.2, 0.4, 0.6 } are rendered to the cache.

c© The Eurographics Association 2009.

26



W. Lister, R. G. Laycock and A. M. Day / A Dynamic Caching System for Rendering an Animated Crowd in Real-Time

Crowd members are subsequently filtered dependent upon
whether they can be rendered from the cache. Clearly, those
characters from bins 0 and 2 qualify as it was their keyframes
which were used in its construction. The characters in bin
1 also note the presence of their keyframes. However, the
character in bin 3 has only one baked keyframe available
and those in bin 4 have neither. Thus, for this frame, a to-
tal of 11 characters can be rendered by interpolating cached
keyframes and the remaining 3 use skinning. The frame has
a total cost of 7 skinnning operations (4 cache updates and 3
skinned characters) and 11 blending operations.

At time t + dt, the simulation state is as shown in Figure
3 and at this timestep, the set of keyframes belonging to bins
1 and 3 { 0.2, 0.4, 0.6, 0.8 } are required to exist within the
cache. Of these, { 0.2, 0.4, 0.6 } are already present; only
keyframe { 0.8 } needs to be baked and replaces keyframe
{ 0.0 }. As before, 11 characters can be rendered from the
cache and 3 use skinning. However, due to the exploitation
of temporal coherency, the total cost of this frame is reduced
to 4 skinning operations (1 cache update and 3 skinned char-
acters) and 11 blending operations.

Figure 3: Crowd simulation state at time t + dt.

3.1. Page-Replacement Algorithms

Given this mechanism for accessing and updating the cache,
the question remains of how to manage it effectively so as
to extract maximum performance. This is a well studied
problem within the field of virtual-memory systems and for
which there are many existing algorithms. Within the con-
text of this work, a baked mesh is analogous to a page of
memory and there are two factors which pertain to caching
efficiency; that of when a baked mesh was last used and that
of how frequently it is accessed.

The least-recent used (LRU) page-replacement algorithm
assigns a timestamp to each element within the cache and
is updated each time the element is accessed. Whenever a
new item is added to the cache, that with the oldest times-
tamp is replaced. By contrast, the not frequently used (NFU)
algorithm assigns a counter to each element and is incre-
mented each time the element is accessed. When replacing
a cached item, that with the lowest frequency is overwritten.
The incorporation of page-replacement algorithms enables
our system to perform a minimal number of cache updates
and adapt to the current simulation state transparently. The
performance of both is evaluated in the following section.

4. Performance Analysis

We implement the geometry cache as a vertex texture. Each
baked mesh is stored by a single row of texels and an in-
dex table is maintained by the CPU. Cache updates are per-
formed by binding the texture to a framebuffer object and
rendering animated vertices to the required row. Multiple
keyframes can be baked simultaneously using instancing.

The characters within our crowd share a consistent texture
parameterization and this enables rendering from the cache
to be initiated by instancing a set of indexed texture coor-
dinates. Each instance loads its source and target vertex at-
tributes and blends between them using linear interpolation.
The unified shader architecture of current-generation GPUs
ensures that vertex-texture fetch (VTF) is sufficiently fast so
as not to become a bottleneck when processing vertex data.
Assuming that meshes are optimized for post-transform ef-
ficiency and buffer locality [NVI04], vertices are spatially
close and benefit from texture caching. We incur minimal
overhead when rendering using this approach in comparison
to streaming static attributes directly from VBOs.

Figure 4 shows the effect of a variable cache size upon our
system and compares its rendering performance to that of
static meshes, baked geometry and matrix-palette skinning.
The presented results relate to a crowd size of 1,024 char-
acters using five animations; we observe the same trendline
across various crowd sizes.

Figure 4: A comparison of four rendering techniques as ap-
plied to a crowd of 1,024 characters.

The framerates attained by our technique increase almost
linearly as the cache size is increased. When the cache size
becomes sufficient to store all keyframes of the animations
in use (117 keyframes) our system emulates a baked renderer
since cache updates and skinning become unnecessary. We
never quite achieve the performance of baked geometry due
to the overhead of temporal binning.

We found negligible difference between the memory-
management algorithms tested. This is because we simulate
a worst-case scenario and initialise each character with a ran-
dom position in a different animation. This leads to the fre-

c© The Eurographics Association 2009.

27



W. Lister, R. G. Laycock and A. M. Day / A Dynamic Caching System for Rendering an Animated Crowd in Real-Time

quency and temporal keyframe distributions being broadly
uniform and imposes a lower-bound upon the coherencies
that can be exploited.

Once the geometry cache has been populated, relatively
few updates are required per frame in order to maintain it.
Given a generous cache size, the majority of a crowd can be
rendered directly from the cache at minimal cost. This saves
precious GPU cycles for those characters requiring specific
locomotive individualisation, such as motion blending, or
non-linear animation techniques.

To test the scalability of our system we render a textured
crowd of 10,000 characters and light the scene with per-pixel
lighting. Using a 2.4 Ghz Intel Core 2 Duo, 2 GB of mem-
ory and a Nvidia GeForce 8800 GTX we attain 5 fps using
matrix-palette skinning, 8 fps using dynamic caching with
a cache size of 64 meshes and 10 fps with a cache size of
128 meshes. The latter cache size is sufficient to store all of
the baked meshes required by the crowd. Each mesh is ap-
proximately 3,300 triangles and 2,100 vertices. This yields a
throughput of 330M textured and lit triangles per second and
the latter cache size requires 6.15 MB if vertices are assumed
to have position and normal attributes. Using the vertex com-
pression scheme described in [SBOT08], this can be reduced
to 4.10 MB whilst also including a tangent attribute.

5. Conclusions and Future Work

We have described a caching system which accelerates the
rendering of real-time crowds by exploiting both temporal
and intra-frame coherency. Our technique retains the mem-
ory efficiency, animation fidelity and versatility of skinning
whilst approaching the performance of rendering static ge-
ometry. In contrast to pure baked geometry systems, we an-
imate characters dynamically and operate a geometry cache
which is governed by a page-replacement policy. The system
adapts to the crowd simulation state and can be configured
to balance memory utilization and computational cost.

Rendering performance is tempered primarily by cache
size but we have yet to incorporate additional attributes such
as animation diversity and crowd size. Instead of defining
the memory available to our system heuristically, we would
prefer a formal relationship between these parameters. It is
likely that probabilistic analysis could then be applied and
used to determine an appropriate cache size, predict run-time
performance and author cache-aware crowds.

The technique can be further improved by incorporating
cache compression and the use of keyframe reduction tech-
niques to extend the longevity of baked meshes. Addition-
ally, our system assumes that all crowd members are geo-
metrically identical, future work will address this constraint.

6. Acknowledgments

This programme of research is supported by EPSRC grant
EP/E035639/1.

References
[ABT00] AUBEL A., BOULIC R., THALMANN D.: Real-time

display of virtual humans: Levels of detail and impostors. IEEE
Transactions on Circuits and Systems for Video Technology 10, 2
(2000), 207–217.

[CLM05] COIC J.-M., LOSCOS C., MEYER A.: Three lod for the
realistic and real-time rendering of crowds with dynamic light-
ing. Research Report, LIRIS, Lyon University, France (2005).

[dHCSMT05] DE HERAS CIECHOMSKI P., SCHERTENLEIB S.,
MAIM J., THALMANN D.: Reviving the roman odeon of aphro-
disias: Dynamic animation and variety control of crowds in vir-
tual heritage. In Proceedings of the 11th International Confer-
ence on Virtual Systems and Multimedia (2005).

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: a real-time geometry / im-
postor crowd rendering system. In I3D ’05: Proceedings of the
2005 symposium on Interactive 3D graphics and games (New
York, NY, USA, 2005), ACM, pp. 95–102.

[Dud07] DUDASH B.: Animated crowd rendering. In GPU Gems
3 (2007), Addison-Wesley, pp. 39–52.

[Lee07] LEE M.: Seven ways to skin a mesh: character skin-
ning revisited for modern gpus. Gamefest Unplugged (Europe)
(2007).

[NVI04] NVIDIA: http://www.developer.nvidia.com/.
NvTriStrip Library (2004).

[RFD05] RYDER G., FLACK P., DAY A. M.: A framework for
real-time virtual crowds in cultural heritage environments. In
VAST ’05: Short Papers Proceedings (2005), pp. 108–113.

[SBOT08] SHOPF J., BARCZAK J., OAT C., TATARCHUK N.:
March of the froblins: simulation and rendering massive crowds
of intelligent and detailed creatures on gpu. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 classes (2008), pp. 52–101.

[Ubi07] UBISOFT: Assassin’s creed (2007).

[UdHCT04] ULICNY B., DE HERAS CIECHOMSKI P., THAL-
MANN D.: Crowdbrush: Interactive authoring of real-time crowd
scenes. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2004), pp. 243–252.

c© The Eurographics Association 2009.

28


