
EUROGRAPHICS 2009 / P. Alliez and M. Magnor Short Paper

Continuous Search & Replace in Vector Graphics

J. Loviscach

Fachbereich Ingenieurwissenschaften und Mathematik, Fachhochschule Bielefeld (University of Applied Sciences), Germany

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
Many types of vector graphics comprise large numbers of almost identical partial shapes such as serifs in typeface
design, ornaments in illustrations, and stylistic elements in icon design. As of today, later design changes of
such shapes require the user to edit every instance on its own. Standard features of vector graphics software
help with the automated replacement of stand-alone graphical objects, but do not cover partial shapes. Hence, a
geometric search & replace function is needed, which is exacerbated by the circumstance that the repeated shapes’
construction from curve segments tends to vary from instance to instance, which requires a continuous approach
that does not rely on a fixed division of a path into segments. This paper presents a geometric search & replace
function that addresses these issues, possesses adjustable tolerance against orientation and size changes between
the search pattern shape and the retrieved shapes, and is integrated with a standard vector graphics program.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics Editors

1. Introduction

Most current vector graphics software allows reusing shapes
in the spirit of a link in a file system: Editing one instance
will change all of its copies, provided that a special cloning
function—such as creating a “symbol” in Adobe Illustra-
tor or a “clone” in Inkscape—has been applied to create the
duplicates. Identical shapes generated without this function
are not recognized. On top of that, parts of paths cannot be
searched for and replaced. This is particularly vexing for or-
naments that occur within other paths. This paper presents a
method to address these issues. As repetitions may occur in
orientations and at scales different from those of the original
shape, the method is built to be invariant to such changes,
see Figure 1. However, the user can limit by how many an-
gular degrees the original shape may be rotated left or right
and by which factor it may be shrunken or enlarged.

Graphical search & replace has been demonstrated be-
fore [KB88], but was limited to subpaths that span entire
segments of a path. The method presented here also covers
subpaths that start and end anywhere on a curve, hence the
name “continuous graphical search & replace.” This requires
an entirely different approach, which is inevitable for many
practical applications, as geometrically similar instances of
a subshape may possess highly different internal structures
in terms of (Bézier) segments, see Figure 2.

Search for: Search in:

Replace by: Result:

Figure 1: Typefaces—extravagant or not—contain many or-
naments to which search & replace is applicable.

The overall approach is the following: The user inputs
a collection of open or closed vector shapes in with the
search & replace process has to be conducted, one open path
that acts as search pattern, and one open path that the found
subpaths are to be replaced with, appropriately sized and ori-
entated. A feature extraction algorithm that identifies salient
points is applied to the search pattern and all paths that are
subject to the search. These salient points are applied to es-
timate the size and orientation in a partial matching test. A
final test for matching is based on rendering and compar-

c© The Eurographics Association 2009.

http://www.eg.org
http://diglib.eg.org

J. Loviscach / Continuous Search & Replace

1
2

3

4

5

6
7

8

9

10

11

12

13
14

15

16

17

18

19

20

1 2

3

4 5
6

7
8 9

10

1112

13

Search for: Search in:

Replace by: Result:

Figure 2: The internal structure of the paths used for match-
ing may differ highly; the geometry may differ slightly (num-
bered points indicate Bézier segments).

ing fat curves. Up to here, the found matches range from
one feature point to another; then, the matching regions are
extended to arbitrary points along the paths. At this stage,
the replacement takes place. Since a matching subpath may
start and end anywhere on a path, the path is split appropri-
ately before splicing in the replacement, which is rotated and
scaled according to the original subpath.

This paper is structured as follows: Section 2 discusses
related work, Section 3 describes the geometric features that
are employed for the matching process, which is detailed in
Section 4. Section 5 covers the replacement of the retrieved
similar subpaths. The prototype is treated in Section 6. Sec-
tion 7 concludes this paper, outlining future work.

2. Related work

Kurlander has addressed graphical search & replace in a
number of works [KB88, KF92], treating an integer number
of segments of a path. This allows straightforward methods
to normalize the shapes in terms of position, size, and orien-
tation. Seemingly, the topic has not been taken up any more
after these works. In a work of similar age, Herz and Her-
sch [HH93] sketch how one could find repeated parts in type-
face characters by an approach that resembles a vector quan-
tization of partial shapes. In a follow-up work [HHGH98],
they propose to assemble typeface characters from compo-
nents such as serifs whose parameters have been determined
by automated measurement. More recently, Hertzmann et
al. [HOCS02] looked into “curve analogies,” a method to
built curves from examples through techniques that resem-
ble those applied in texture synthesis. Including only transla-

tion and rotation, their method can employ different methods
than proposed here.

Several methods have been introduced to identify salient
points on curves, see e. g. Fischler and Wolf [FW94]. Mori
et al. [MBM05] define “Shape Contexts” that store a finger-
print of the curve’s local behavior in a histogram. Manay et
al. [MHC∗06] define integral invariants to regularize a no-
tion related to curvature. Both works target shapes derived
from bitmap images which typically are rough from noise.
This is different from typical “designed” shapes found in
vector graphics to be addressed here.

Shape matching has gained wide attention in 3D object
retrieval [TV08], which employs methods that only superfi-
cially resemble those of 2D shape retrieval [VH01]. Pauly et
al. [PMW∗08] propose methods to find regular transforma-
tion patterns in 3D data; the problem presented in this paper
lacks the repetitiveness of the transformations.

3. Feature extraction

Since trying to matching any point on one path to any other
point on every other path is not viable, one has to reduce
the matching problem to a finite number of tests. Follow-
ing a general approach in shape matching, salient points are
sought. The computation of these must be invariant under
similarity transformations and reparameterization. In addi-
tion, it must be robust against small changes in shape.

Curves in hand-made vector graphics rarely contain
strong noise, as this would require to manually create a huge
number of curve segments. The method proposed in this pa-
per caters for this application. It is known [FW94,MHC∗06]
that general curves are too rough to look for differential fea-
tures such as inflection points or points with maximum cur-
vature. However, in initial experiments also typical curves of
vector graphics turned out to be not amenable to such meth-
ods. The number of inflection points is astonishing low, and
using the points with maximum curvature was also ruled out,
as these tended not to be robust, even with different kinds of
smoothing including a Gaussian or a bilateral filter applied
to the turning curve (that is, the mapping from arc length
to tangent direction) and including constructing an approx-
imate osculating circle from three points on the curve. One
basic issue that standard vector graphics pose are discontinu-
ities (often visually imperceptible) of the curvature between
one Bézier segment and the next.

Given the problems with curvature, the proposed algo-
rithm uses the turning curve directly. First, jumps are found
that exceed 10◦. The corresponding points on the curve are
immediately considered salient. Next, the (continuous or al-
most continuous) evolution of the turning curve between
these jumps is considered. This is approximated by a poly-
line that may only deviate up to 20◦ from the turning curve.
This polyline is built from the coarse to the fine scale: It

c© The Eurographics Association 2009.

18

J. Loviscach / Continuous Search & Replace

is recursively subdivided at the location of the maximum er-
ror. This can be considered a piecewise approximation of the
curve by circular arcs, as non-horizontal line segments in the
turning curve correspond to circular arcs in the actual curve.

Not these points of subdivision are employed as salient
points. Rather, the points midway between them (in terms of
arc length) are used. As turned out in experiments, the points
of subdivision lie a relatively horizontal parts of the turning
curve, that is: in regions of low curvature. The regions of
high curvature—that is: fast changes of the direction—fall
between these points, see Figure 3. To exclude relatively flat
regions, all parts of the polyline that do not cover an angle of
at least 45◦ are discarded. For a collection of examples see
Figure 4. Note that all computations handle the wrap-around
needed for closed paths. In addition, types of curves other
than Bézier could be handled with the same algorithm.

0

1

2

3

4

5

6

7

1000 1500 2000 2500 3000Position

Direction (Angle)

Figure 3: The turning curve (black) is approximated by a
polyline (gray, breaks indicated by white arrows). The mid-
points of linear segments that cover more than 45◦ on the
vertical axis serve as feature points. Note that the horizontal
axis is given in 100 steps per Bézier segment, whereas the
polyline is computed in terms of arc length.

Figure 4: The computed salient points reliably indicate high
curvature with little algorithmic tweaking and only two un-
critical parameters (examples from well-known typefaces).

4. Matching

In principle, one could use dynamic programming to de-
termine a error-tolerant correspondence between the feature
points on the (sub-)path that is to be searched for and the
path that is currently being examined for an occurrence, see
e. g. [MHC∗06]. Given the low number of feature points be-
ing considered and aiming at a high reliability, this paper
proposes a different approach:

Starting from the ordered list of feature points xi along a
subpath, the algorithm computes vectors and numbers char-
acterizing the position p, size s, and orientation angle φ of
the subpath traced by these points:

p = ∑
i

wixi, s2 = ∑
i

wix2
i −|p|2,

φ = atan2

(
∑

i
wihi(xi−p)

)
,

where wi is an appropriate weighting function with ∑i wi =
1, and hi increases from −1 for the first feature point to 1
for the last one, growing linearly with the arc length cov-
ered. The motivation behind these quantities is as follows: p
generalizes the centroid, s2 the variance, and φ can be con-
sidered the direction of a generalized first moment.

To be robust against missing or added feature points, the
weights wi involve the arc length between the feature points:
Every one of them is weighted by the half of the arc length
between it and the previous feature point on the curve (if
present) and half of the arc length to the subsequent one (if
present). These weights are normalized by dividing by the
total arc length between the first and the last feature point in
the subpath that is considered. Based on the n feature points
of the search pattern, this computation is executed in an ex-
haustive manner on all m = n− 3 through n + 3 consecu-
tive feature points anywhere on a path in the collection to be
searched through. The number n typically cannot be matched
exactly as some feature points may be missing or be added
due to small variations in the shapes.

The values for the size and orientation of the subpaths
from the vector graphic are compared with the ones of the
curve that is searched for. A subpath is rejected at this stage
if the ratio of the sizes or the difference of the angles is out-
side of the range specified by the user. Otherwise, the Bézier
curves forming the subpath are transformed to match the
position, scale, and orientation of the path that is searched
for. To determine whether the curves actually coincide, the
transformed path is rendered as a fat curve into a bitmap of
200×200 pixels. The algorithm then checks if the path that
is searched for is covered by this fat curve, see Fig. 5. The
pixel positions that make up the path that is searched for are
collected once, on startup. In the end, a list of validated in-
stances of the search pattern is produced, together with the
necessary similarity transformations.

c© The Eurographics Association 2009.

19

J. Loviscach / Continuous Search & Replace

Figure 5: A possible match is validated by drawing the
transformed path as a fat curve (gray). This has to contain
all pixels of the path forming the search pattern (black).

5. Replacement

The replacement step of the algorithm works on the list pro-
vided by the matching step. First, it cleans up overlaps of
instances, which may occur if the salient feature points lie
too close. Any number of non-overlapping instances per path
will be kept intact, however. For instance, the three serifs of
a lowercase “m” can be replaced in one run.

Up to this stage, only the positions of the first and the last
feature point of the search pattern on the path are known.
Now the algorithm finds the points on the path closest to
the appropriately transformed start point and end point of
the search pattern. The path’s segments are split here; the
transformed segments of the search pattern are spliced in.

6. Prototype and results

The proposed method has been implemented as an ex-
tension for the Open Source vector illustration software
Inkscape 0.46 (http://www.inkscape.org/) using
Microsoft .NET. The user creates a path to be searched for
and a path to replace it with as the two topmost items in the
document and then invokes the extension. Inkscape passes
the document as an SVG file (http://www.w3.org/
Graphics/SVG/) to the external program, which eventu-
ally returns its result as another SVG file.

An illustration of nearly 900 paths (more than 600 charac-
ters of different typefaces) comprising about 40,000 Bézier
segments in total requires nearly three minutes for the
search & replace process on an 800 MHz notebook computer
with a search pattern of 37 Bézier segments. The largest part
of this time—more than two minutes—is spent on the match-
ing phase, in particular the rendering into bitmaps.

7. Conclusion and outlook

This paper has presented a method to search for and re-
place parts of curves at arbitrary positions. It draws upon

techniques ranging from finding salient points to comparing
bitmap images. The method can act as a drastic time-saver
for tasks that occur in graphics design. Nonetheless, a “live”
preview would be helpful to indicate beforehand which parts
of an illustration are changed in which way. This requires a
speedup, for which there are many avenues: Several shapes
can be handled in parallel on a multi-core processor; the
validation through a bitmap can be executed with extreme
performance on the graphics card, possibly using a stencil
buffer and the pixel counters intended for occlusion culling;
some parts of the algorithm could benefit from hashing, dy-
namic programming, and precomputation, e. g. of distance
fields; the salient points can continuously be computed in the
background while the user is editing the graphics document.
Not only the speed but also the result can be improved: The
bitmap test (see Figure 5) only checks for a tolerance zone;
it could be improved by a later test that takes the order of the
curve’s points into account (Fréchet distance, see [SR02]);
the insertion of the transformed pattern into the path needs
to be fine-tuned for perfect transitions.

References
[FW94] FISCHLER M. A., WOLF H. C.: Locating perceptually

salient points on planar curves. IEEE Trans. Pattern Anal. Mach.
Intell. 16, 2 (1994), 113–129.

[HH93] HERTZ J., HERSCH R. D.: Analysing character shapes
by string matching techniques. Electronic Publishing 6 (1993),
261–272.

[HHGH98] HERTZ J., HU C., GONCZAROWSKI J., HERSCH
R. D.: A window-based method for automatic typographic pa-
rameter extraction. In Proc. EP ’98/RIDT ’98 (1998), pp. 44–54.

[HOCS02] HERTZMANN A., OLIVER N., CURLESS B., SEITZ
S. M.: Curve analogies. In Proc. Eurographics Workshop on
Rendering ’02 (2002), pp. 233–245.

[KB88] KURLANDER D., BIER E. A.: Graphical search and re-
place. Computer Graphics 22 (1988), 113–120.

[KF92] KURLANDER D., FEINER S.: Interactive constraint-
based search and replace. In Proc. CHI ’92 (1992), pp. 609–618.

[MBM05] MORI M.-G., BELONGIE M.-S., MALIK S. M.-J.:
Efficient shape matching using shape contexts. IEEE Trans. Pat-
tern Anal. Mach. Intell. 27, 11 (2005), 1832–1837.

[MHC∗06] MANAY S., HONG B.-W., CREMERS D., YEZZI
A. J., SOATTO S.: Integral invariants for shape matching. IEEE
Trans. Pattern Anal. Mach. Intell. 28, 10 (2006), 1602–1618.

[PMW∗08] PAULY M., MITRA N. J., WALLNER J., POTTMANN
H., GUIBAS L. J.: Discovering structural regularity in 3D geom-
etry. ACM TOG 27, 3, Article 43 (2008).

[SR02] SAFONOVA A., ROSSIGNAC J.: Compressed piecewise-
circular approximations of 3D curves. Georgia Institute of Tech-
nology, GIT-GVU-01-05, 2002.

[TV08] TANGELDER J. W., VELTKAMP R. C.: A survey of con-
tent based 3D shape retrieval methods. Multimedia Tools Appl.
39, 3 (2008), 441–471.

[VH01] VELTKAMP R. C., HAGEDOORN M.: State of the art
in shape matching. In Principles of visual information retrieval,
Lew M. S., (Ed.). Springer, London, UK, 2001, pp. 87–119.

c© The Eurographics Association 2009.

20

http://www.inkscape.org/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/

