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Volume data visualization using fractal interpolation surfaces
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Abstract
Visualization of medical or experimental data is often achieved by extracting an intermediate geometric represen-
tation of the data. One such popular method for extracting an isosurface from volume data is the Marching Cubes
(MC) algorithm, which creates a polygon mesh by sampling the data at the vertices of the cubes of a 3D grid. A
method that uses the vertex extraction phase of the MC algorithm and represents the data by fractal interpolation
surfaces (FISs) instead of a polygon mesh is presented. The proposed method is appropriate for isosurfaces that
are not locally flat, such as natural structures. Another advantage is that a coarser grid resolution can typically be
used, since FISs are particularly good at representing detailed, irregular or self-similar structures. Thus for many
cases the resulting isosurface is more accurate or more compact. The multiresolution extension of the method is
also straightforward. Experimental data verify the practical usefulness of the proposed method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations; I.3.7 [Computer Graphics]: Fractals

1. Introduction

The Marching Cubes (MC) algorithm ( [LC87]) is one of
the most popular algorithms for volume data visualization.
It extracts from the data an intermediate geometric repre-
sentation which is subsequently rendered. The intermediate
representation is a triangular mesh, extracted by intersect-
ing the cubes of a 3D grid with the isosurface implied by
the volume data. The MC algorithm has been widely and
effectively used in a diversity of applications, most notably
biomedical ones. A variety of enhancements or extensions
have been proposed; a comprehensive overview can be found
in [BW01]. For example, it has been shown that in the orig-
inal MC formulation, ambiguous cube configurations may
result into “holes” in the approximated surface. Various solu-
tions have been proposed to this issue, e.g. in [NH91] a con-
sistent triangulation strategy is suggested, while in [Che95]
and [LB03] an extended set of cube triangulation cases are
defined in order to resolve the ambiguities. Alternatives to
triangles as surface primitives have also been suggested. For
example, bicubic patches are used in [GN89], while triangu-
lar cubic Bezier patches are employed in [The02]; in [Nie04]
quad patches are used to model a surface dual to the isosur-
face. A multiresolution approach that reduces the number of
resulting triangles is suggested in [SZK95].

In this paper, we introduce an extension of the MC al-

gorithm that uses fractal interpolation surfaces, instead of
triangles, in order to model the isosurface locally. Our mo-
tivation is to create an algorithm that produces better results
for coarser grid resolutions, is suitable for irregular or self-
similar volume data and, moreover, has the ability to gen-
erate a variable number of output primitives for a fixed grid
resolution. The multiresolution extension of the proposed al-
gorithm is also straightforward.

2. Background

2.1. Marching Cubes

The MC algorithm assumes that the volume data are avail-
able as function values fi, j,k at the vertices (xi,y j,zk), i =
1, . . . , I, j = 1, . . . ,J and k = 1, . . . ,K of a rectangular 3D
grid. The vertices of each “cube” of the grid are labelled as
inside(including on) or outside the desired surface according
to their function value, typically by setting a threshold that
defines the respective isosurface. For each cube that inter-
sects the surface, the approximate intersection points are de-
termined by linear interpolation on the edges with opposite
labelled vertices. Subsequently, a set of triangles connecting
the intersection points is extracted, such that the topology of
the cube and the surface intersection is properly described.
Typically, 28 = 256 cases exist, but symmetry reduces them

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


P. Manousopoulos & V. Drakopoulos & T. Theoharis / Volume data visualization using fractal interpolation surfaces

A B

C

E F

G

Figure 1: Domains for fractal interpolation surfaces over
triangular lattices.

to 15 distinct ones, which can be conveniently implemented
in a tabular form.

2.2. Fractal Interpolation Surfaces on Triangular
Domains

Fractal interpolation surfaces (see [GH93] for a detailed dis-
cussion) are based on the theory of iterated function sys-
tems (IFSs). An IFS, denoted by {X ;wn,n = 1,2, . . . ,N},
consists of a complete metric space (X ,ρ), e.g. (Rn, || · ||),
and a finite set of continuous mappings wn:X → X , n =
1,2, . . . ,N. If wn are contractions, then the IFS is termed
hyperbolic and the transformation W :H (X)→H (X) with
W (B) = ∪N

n=1wn(B), where H (X) denotes the space of
nonempty compact subsets of X , has a unique fixed point
A∞ =W (A∞) = limn→∞W n(B), for every B ∈H (X), which
is called the attractor of the IFS.

Let us represent the given set of interpolation points as
{(xi,yi,zi = z(xi,yi)) ∈ R

3 : i = 0,1, . . . ,M}. These points
define a triangular lattice on the xy-plane. For example, the
triangular domain ABC in Fig. 1 is partitioned into subtrian-
gles, such as EFG. Let N be the number of triangles of such
a triangulation; e.g. in Fig. 1, N=9. Moreover, we assume
that the interpolation points corresponding to the vertices of
the subtriangles that lie on the domain triangle boundary are
coplanar, in order for the resulting surface to be continuous.
Let {R3;wn,n = 1,2, . . . ,N} be an IFS with affine transfor-
mations
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such that each transformation maps the triangular domain to
a single subtriangle, e.g. in Fig. 1 ABC is mapped to EFG.
This is achieved by having each transformation map the ver-
tices of one triangle to the respective ones of the other, e.g.
A → E,B → F and C → G. These conditions along with the
coplanar boundary constraint, result in the equations
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for every n = 1,2, . . . ,N, where (x0,y0,z0), (x1,y1,z1),
(x2,y2,z2) are the vertices of domain triangle (e.g. ABC)
and (xn

0,y
n
0,z

n
0), (xn

1,y
n
1,z

n
1), (xn

2,y
n
2,z

n
2) the vertices of the n-

th subtriangle (e.g. EFG). The sn are free parameters of the
transformations satisfying |sn|< 1. It is known (see [GH93])
that the attractor G =

⋃N
n=1 wn(G) of the aforementioned IFS

is the graph of a continuous function that passes through the
interpolation points (xi,yi,zi), i = 0,1, . . . ,M. This function
is called fractal interpolation surface (FIS) corresponding to
these points.

3. Marching Cubes using fractal interpolation surfaces

We introduce an extension of the MC algorithm using FISs,
called Fractal Marching Cubes (FMC) hereafter. The FMC
algorithm uses the vertex extraction phase of MC, but subse-
quently uses FISs, instead of triangles, in order to model the
isosurface locally. The FISs are constructed so as to capture
the detail of the, not necessarilly locally flat, isosurface. The
FMC algorithm is outlined as follows:

For each cube in the 3D grid that intersects the isosurface :

1. Determine the MC triangles.
2. For each triangle :

a. Calculate the triangle centroid and displace it along
the triangle normal in order to achieve the isosurface
value.

b. Transform the triangle such that it lies on the xy-plane.
Let this transformation be T . Apply T to the displaced
centroid as well.

c. Create the IFS of the FIS for the four triangle points
(three vertices and displaced centroid) as shown in
Fig. 2.

d. Generate the attractor of the IFS as a set of triangles
using the Deterministic Iteration Algorithm.

e. Apply T−1 to the generated triangles.

The labelling of the cube vertices as inside or outside and
the determination of the (potential) intersection points are
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Figure 2: The triangular lattice for constructing a fractal
interpolation surface construction inside a cube.

Figure 3: An approximated fractal interpolation surface us-
ing the DIA with n=2.

performed as in the MC algorithm. In Step 1. the set of tri-
angles in the cube is extracted using the MC configurations.
Note that an approach such as [NH91] should be adopted in
order to avoid “holes” in the resulting surface. In Step 2.a.,
the triangle centroid is displaced along the triangle normal
in order to achieve the isosurface value, calculated by trilin-
ear interpolation. In this way, we use information from the
cube interior and not only from its edges as in the MC case.
Note that the centroid selection is the simplest possible; we
can select any number of points in the triangle interior and
properly displace them in order to construct the FIS. In Step
2.b., we transform the triangle so that it lies on the xy-plane;
the transformation should be invertible, consisting only of
rotations and translations. This is done in order for the FIS
to be based on the plane defined by the triangle and not on
the default xy-plane. The latter would result into aliasing ef-
fects, since all FISs would have the same vertical orienta-
tion. In Step 2.c., the affine transformations of the IFS for
the FIS interpolating the triangle vertices and centroid are
calculated. The free parameters sn are set to a fixed value
in (0,1) and can be chosen according to the desired rough-
ness of the isosurface, as well as to constrain it inside the
cube. In Step 2.d., the FIS is generated as a set of triangles
so that it can be efficiently rendered for visualization. The
Deterministic Iteration Algorithm (DIA) for constructing an
IFS attractor is employed. We start with the initial triangle,
which is transformed by all affine transformations, resulting
into N(= 3 in our case) subtriangles. These are again trans-
formed by all affine transformations, resulting into N subtri-
angles each, and so on. At the n-th step of the algorithm Nn

triangles are produced; an example is given in Fig. 3. By set-
ting n = 0, the FMC reduces to the original MC. The value of
n can be adjusted by the user in order to control the detail of
the resulting surface; it can also be variable across the cubes
in order to avoid an excessive number of triangles. The steps
2.c. and 2.d. are similar to a subdivision procedure. However,

the formulation using FISs provides an automated applica-
tion of any subdivision pattern and can be extended by using
starting shapes other than the triangle for the DIA. In Step
2.e., the inverse transformation to that of Step 2.b. is applied
to the generated triangles, in order to restore them inside the
cube. The multiresolution extension of the FMC algorithm
is straightforward. Indeed, one may chose different numbers
of points in the interior of each triangle for calculating the
FISs and, moreover, different numbers of iterations in the
DIA for generating them. These may be chosen according to
local surface properties, in order to allow variable levels of
detail.

4. Results

We have used volume data from the CT of a cadaver
head. The data set is part of the “University of North
Carolina Volume Rendering Test Data Set”, courtesy of
North Carolina Memorial Hospital, and is available at
http://graphics.stanford.edu/data/voldata/. The data consist
of 113 slices, each of resolution 256× 256, defining a rect-
angular voxel grid with X:Y:Z aspect ratio equal to 1:1:2
for each voxel. In Figures 4–6, the results of CT visualiza-
tion using the MC and FMC algorithms are presented. The
data have been visualized at grid resolutions of 64×64×26,
128× 128 × 52 and 256× 256× 113. For the FMC algo-
rithm, the number of DIA iterations was set to one. As can
been seen in the figures, both algorithms produce better re-
sults for higher grid resolutions. However, this is more ev-
ident for the MC algorithm, where the differences between
the various resolutions are greater, while for the FMC algo-
rithm the decrease in the grid resolution is less crucial. For a
fixed grid resolution, the FMC algorithm produces visually
better results than the MC algorithm, especially at coarser
grid resolutions. But even at the highest grid resolution, the
FMC algorithm captures more accurately the local surface
detail, as can be seen in the figures. Therefore, we conclude
that the use of FISs as adopted in the FMC algorithm, can
enhance the results by modelling more accurately the topol-
ogy of the cube and the surface intersection.

5. Conclusions and Further Work

We have presented a novel extension to the popular MC al-
gorithm. The FMC algorithm employs the vertex extraction
phase of MC, but subsequently uses FISs in order to model
the topology of the cube and the surface intersection. Results
indicate that the FMC algorithm can achieve better results
than the MC algorithm at the same grid resolution. There-
fore, it can be especially useful when lower resolution vol-
ume data are available or prefered for efficiency, but is also
capable of describing more accurately the local surface de-
tail for higher resolutions. Moreover, the FMC algorithm is
appropriate for surfaces that exhibit self-similarity or irregu-
larity, properties which are inherently modeled by the FISs.
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Figure 4: (left) CT visualization of tissue using the MC algo-
rithm and grid resolution 64×64×26. (right) CT visualiza-
tion of tissue using the FMC algorithm and grid resolution
64×64×26.

Figure 5: (left) CT visualization of tissue using the MC al-
gorithm and grid resolution 128×128×52. (right) CT visu-
alization of tissue using the FMC algorithm and grid resolu-
tion 128×128×52.

Figure 6: (left) CT visualization of tissue using the MC al-
gorithm and grid resolution 256×256×113. (right) CT vi-
sualization of tissue using the FMC algorithm and grid res-
olution 256×256×113.

The number of output primitives generated by the FMC al-
gorithm is variable for a fixed grid resolution, thus providing
the ability to adjust the balance between performance and ac-
curacy. Its multiresolution extension is also straightforward,
by adjusting the interpolation points of each constructed FIS
and the number of steps in the DIA. Further work will focus
on the multiresolution extension of FMC, such that the opti-
mal (i.e. following the surface detail) internal triangle points
(Step 2.a. of FMC) and iterations of DIA (Step 2.d. of FMC)
are automatically determined, and the use of recurrent FISs
which are expected to produce even better results.
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