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Abstract
Given several motion capture sequences, of similar (but not identical) length, what is a good distance function? We
want to find similar sequences, to spot outliers, to create clusters, and to visualize the (large) set of motion capture
sequences at our disposal. We propose a set of new features for motion capture sequences. We experiment with
numerous variations (112 feature-sets in total, using variations of weights, logarithms, dimensionality reduction),
and we show that the appropriate combination leads to near-perfect classification on a database of 226 actions
with twelve different categories, and it enables visualization of the whole database as well as outlier detection.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Graphics data structures
and data types I.3.5 [Computer Graphics]: Physically based modeling H.2.8 [Database Management]: Data mining

1. Introduction

Motion capture data is often used to create human ani-
mations for video games, movies and other applications.
Large databases of motion now exist both on the web (see
http://mocap.cs.cmu.edu/, for example) and as pro-
prietary resources within entertainment companies. These
databases are not easily searchable. In this paper, we present
a distance function that represents the characteristics of the
actions in a motion capture sequence. This distance metric
is suitable for classifying motions, searching for similar mo-
tions, and for detecting some classes of outlying motions.

We would like a distance function that will satisfy two
requirements:speedand effectiveness. The distance func-
tion should be fast to compute, even on long motion cap-
ture sequences. Ideally, it should be independent (O(1)) on
the lengthNframe of the sequences. The distance function
should be also meaningful, so that it is useful for clustering,
classification, and anomaly detection (see Figure1), where
the usual distance functions for motion capture sequences do
not work well.

Specifically, we proposeFMDistance, a method which is
independenton the sequence length, and only depends onK,
the number of joint angles we track. Our idea is to calculate
the approximation of the total kinetic energy of each joint as
a preprocessing step, thus compressing each motion capture

sequence ofK ×Nframe numbers intoK numbers (and pos-
sibly, even fewer, if we do dimensionality reduction). The
proposed method is also effective, as we illustrate in Sec-
tion 4.

The rest of the paper is organized as follows: we first re-

Figure 1: Visualization of classification by three new fea-
tures. Notice thehomophily: similar motions cluster to-
gether; also notice that we can visually spot outliers, like
ballet dancing which has noisy capture frames, in the red
circle.
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view the related work in Section2; the proposed strategies
are presented in Section3; the experimental results are pre-
sented in Section4; and we conclude the paper in Section5.

2. Related work

To our knowledge, there is little work in computer graph-
ics that focuses on a distance function for expressing the
characteristics of a motion capture sequence. The work of
Ren et al. [RPE∗05], who explored methods for verifying
the naturalness of a motion capture sequence, is close to
our problem. Troje [Tro02] investigated gender classifica-
tion of walking motions by analyzing motion capture data.
Researchers in computer vision also proposed distance func-
tions for human activity classification [HJB∗05].

Many distance functions have been proposed for finding
candidates of "frame to frame" transition [KGP02] or in-
dexing for segmentation [KPZ∗04]. However, the distance
function in [KGP02] requires that the two motion capture se-
quences areexactlythe same length, and even then, both re-
quireK ×Nframe computations; Our proposed method does
not depend onNframeand is much simpler and faster (O(K)).

3. Proposed method

In this section, we describe details ofFMDistancefor the
classification of motion capture data.

3.1. Preprocessing step : Transformation from motion
capture data to kinetic energy-based parameters

We assume that motion capture data haveK DOF in to-
tal and a series of motion capture data for one action has
Nframe frames. Specifically, every frame has joint angles,
the root orientation and the root positions (coordinates
of the root). A set of motion capture data is denoted by

{~xi |i = 1, ...,Nframe}. Each frame~xi =
[

xi,1,xi,2, ...,xi,K
]T

represents a point inK dimensional space.

The main idea is to use the average of the approximate ki-
netic energy of each joint angle (or carefully selected groups
of joints), as features. This way, theK ×Nframe numbers of
a motion capture sequence are condensed into at mostK val-
ues as a preprocessing step, achieving our first goal, speed.
As we show in Section4, the second goal, effectiveness, is
also achieved.

We compute the approximate kinetic energy as the
sum of squares of velocities. Specifically, the velocity
of the root and the angular velocity of each joint,~vi =
[

vi,1,vi,2, ...,vi,K−1
]T

are calculated by the first derivatives:

~vi = ~xi+1−~xi
t f rame

wheret f rame is the period between frames. For
the root velocity, we calculate the velocity and the energy
across the plane from the x+ z position. Thus, the dimen-
sionality of~vi decreases by 1, toK − 1. We note that the
vertical velocity are included as one of parameters.

To compute the kinetic energy, we also need to consider
the moment of inertiamj of each joint, (and body mass, for
each position-coordinate). The kinetic energyEi, j of joint j
at timei is

Ei, j = mj × v2
i, j (1)

Although the moment of inertia varies depending on the
body part, we assume that they are constant with respect to
time.

3.2. Distance function for classification

We calculate the mean of the kinetic energy at each dimen-
sion (joint angle/position/orientation),j :

E j =
1

Nframe

Nf rame

∑
i=1

Ei, j (2)

The kinetic energy is bursty: some joints have a high ki-
netic energy while others do not. We propose to treat the
burstiness, by taking logarithms, specifically log(x+ 1) (to
handle the joints of zero energy). Thus:

ej = log
(

E j +1
)

(3)

The vector~e= [e1,e2, ...,eK−1]
T is our proposed feature

vector. Then, the distance between two motion capture se-
quencesN andM is the Euclidean distance of their feature
vectors~eN and ~eM .

3.3. Dimensionality reduction and visualization

The features described in the Section3.2 have more than
three dimensionality. For visualization, we have to reduce
the dimensionality to three. Although it is common to use
principal component analysis (PCA) ( [Jol86]) in order to
reduce dimensionality for classification, we propose a more
intuitive method.

The intuition is that different motions will exercise differ-
ent body parts: for example, "walking" will have a balance
between upper body and lower body, while "golf swing" will
have more energy on the upper body. We propose to capture
these differences with new features, namely, the ratior of
the approximate kinetic energy of groups of body parts.

First we sum up the average of the approximate kinetic
energy of the joint rotation in order to estimate the kinetic
energy of the whole body, upper body, lower body, limbs
and trunk.

Eparts = ∑
j∈parts

E j (4)

Then we take the ratio of the kinetic energy between sym-
metrical body parts. As in Equation (3), we also use the
log(x+1) transform:

eall =log(Etotal+1), ru/l =log
(

Eupper+1

Elower+1

)

, rl/t=log
(

Elimbs+1
Etrunk+1

)

(5)
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We propose to use the 3-d vector~β = [eall , ru/l , rl/t ]
T as a

feature vector of a motion capture sequence, and, again, we
use the corresponding Euclidean distance between two such
feature vectorsβNi, βMi .

4. Experimental results

In this section, we evaluate the effectiveness of our approach.

The motion capture data we use for the experiments is
http://mocap.cs.cmu.edu/. Figure 2 shows the human
figure, the number of DOF, and the value ofmj for each
joint. The value ofmj tries to reflect the moment of inertia:
hip joints get high values, shoulders get a bit smaller, knees
are next, elbows are next, etc.

Figure 2: Human figure model, DOFs and the distribution
of mj . It has 29 joints, 56 joint angles, three angles for the
root orientation and three position coordinates for the root

We used 226 sequences of motion capture data and they
are categorized into twelve actions described in Figure3.
We also carefully examined 112 feature-sets, from the cross
products of [{log, lin} × {original data, transformed data
from quaternion}× {weighted mj , constantmj } × {nor-
malized, unnormalized}× {seven feature-sets}].

Implementation details:The distance function for each
feature-set was the Euclidean distance. Before calculating
velocities, we followed standard practice and removed noise
with a linear low-pass filter spanning five frames. Finally,
when we normalized the data in order that they have zero
mean and unit standard deviation.

Effectiveness measure:To measure the effectiveness of
our feature-sets, we use the classification accuracy, and
specifically, a 1-nearest neighbor (1-NN) classifier. We
chose this classifier because its accuracy is directly related to
the effectiveness of the feature-set, and it needs no training.
Moreover, as we show next, it gives excellent classification
accuracy.

4.1. Accuracy of various feature-sets

We use the feature-sets described in Section3, as well
as some other,simpler feature-sets, for comparison. The
nomenclature for a feature set is as follows: For example,
61-LOG-consstands for 61 features, with the log transform,
and constant values for the moments/weightsmj . Similarly,
61-LIN-eststands for the same 61 features, without the log
transform, and with the estimated values of themj weights,
as shown in Figure2.

61-LOG Log of the mean of the approximate kinetic energy
for each joint angle. See Equation (3).

61-LIN (for comparison) Mean of the approximate kinetic
energy. See Equation (2).

31-LOG (for comparison) This feature-set contains the
root’s energy in the horizontal and vertical direction, as
well as and the approximate kinetic energy of each joint.

62-POS (for comparison) This feature-set consists of the
mean of~xi with respect to time.

Table1 shows the most interesting results of our experi-
ments.

features mj % error

61-LOG-cons constant 2.21%
61-LOG-est estimated 2.65%
61-LIN-cons constant 3.98%
61-LIN-est estimated 4.42%

31-LOG-cons constant 3.10%
31-LOG-est estimated 3.10%

62-POS N/A 5.75%

Table 1: Classification accuracy for several feature sets. The
winner, 61-LOG-cons, is in bold. Results of other methods
are worse, and omitted for space.

Table 1 shows that 61-LOG-cons is the best feature-set
for classifying motion capture data. The full table has 112
methods in total, but we omit the lower-performing meth-
ods, for space (see [OFH07]). We report the conclusions and
observations:

• Taking the logarithms (log(x+ 1)) always improves per-
formance. For example, see 61-LOG vs. 61-LIN.

• There is no clear winner with respect to the sets ofmj

weights. Both competitors ("cons", and "est") perform
about the same.

Figure 3 shows theconfusion matrixfor our best per-
former, the61-LOG-consfeature-set: Columns correspond
to the predicted labels, and rows to the actual label. In a
perfect classifier, the matrix would be diagonal. Notice that
61-LOG-consgives a near-diagonal matrix. The sequences it
confused were all "Walking" sequences, ("Walking", "Walk-
ing slowly", and "Walking on uneven terrain").

We also examine the effect of dimensionality reduction
by PCA. We did PCA on the61-LOG-consfeature-set, and
we observed that the classification accuracy was preserved,
as long as we retain the first 18 components (or more). This
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Figure 3: Confusion Matrix of condition 61-LOG-cons in
Table1. Notice that (a) it is near-diagonal and (b) the con-
fused motions are very similar (A01-A03), all being varia-
tions of walking motions.

is a pleasant surprise - we were expecting a small loss of
accuracy, after such a drastic dimensionality reduction (61
to 18).

4.2. Visualization

Here we show that, even with 3-d feature-sets, we can still
have a useful visualization. We use the following features for
experiments: the three features that we manually derived, as
shown in Equation (5) (3-MAN ), and the first three principal
components of PCA from the61-LOG-consfeature-set (3-
PCA).

3-MAN led to 11.50% classification error, outperforming
3-PCA(with 15.49%). This result was another pleasant sur-
prise: the human intuition behind3-MAN won over PCA,
which is mathematically optimal under the L2 norm.

Thus, we use the3-MANfeature set for visualization. Fig-
ure1 shows the scatter-plot of motion capture sequences in
this 3-d space. The scatter-plot leads to observations that
agree with our intuition, underlining the effectiveness of
our chosen feature-sets: (a) The trunk energy duringwalk-
ing on uneven terrainis higher than during a normal walk.
(b) Frame-climbingrequires roughly the same energy of all
body parts. (c) Trunk energy duringwalking on eneven ter-
rain is higher than during a normal walk. (d)Runningand
walkinghave similar proportions of energy (upper body vs.
lower body and limbs vs. trunk).

Moreover, the scatter-plot can help us spot outlier mo-
tions. For example, the points inside the red circle of Fig-
ure 1, correspond to actions with high energy; closer in-
spection shows that they are noisier, and the first deriva-
tives skyrocket. This is clear in their time-plots, which are

omitted for space (see [OFH07]). The offenders correspond
to ballet dancingmotions, labeled as #5-6 and #5-8 in
http://mocap.cs.cmu.edu/.

5. Conclusions

The goal of this paper is to find an effective and fast-to-
compute distance function between two unequal-length mo-
tion capture sequences. Our main contribution is that we
proposed a low-dimensionality feature-set for each motion
capture sequence. After extensive experiments on 112 pos-
sible variations, on a large real motion capture dataset, we
propose two methods, 61-LOG-cons (most accurate) and 3-
MAN (best for visualization). In all variations, the idea is to
consider the total approximate kinetic energy expended, by
each of the approximately 70 angles in the data. The result-
ing feature sets achieve the original design goals:

• Speed:Our proposed distance function isfast to com-
pute, independent of the duration of the motion capture
sequences.

• Effectiveness61-LOG-cons gives excellent classification
accuracy, and provides an excellent starting point for di-
mensionality reduction (with PCA, or 3-MAN), for visu-
alization, clustering, and outlier detection (see Figure1).

A promising direction for future work is to extend this
approach to subsequence search. Another direction is to also
consider the potential energy, in addition to the kinetic one.
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