
EUROGRAPHICS 2008 / K. Mania and E. Reinhard Short Papers

Mining Motifs from Human Motion
Jingjing Meng1, Junsong Yuan2, Mat Hans1 and Ying Wu2

1Applications and Software Research Center, Motorola Labs, Schaumburg, IL, USA
2Northwestern University, EECS Department, Evanston, IL, USA

Abstract
Mining frequently occurring temporal motion patterns (motion motifs) is important for understanding, organizing
and retrieving motion data. However, without any a priori knowledge of the motifs, such as their lengths, contents,
locations and total number, it remains a challenging problem due to the enormous computational cost involved
in analyzing huge motion databases. Moreover, since the same motion motif can exhibit different temporal and
spatial variations, it prevents directly applying existing data mining methods to motion data. In this paper, we
propose an efficient motif discovery method which can handle both spatial and temporal variations of motion
data. We translate the motif discovery problem into finding continuous paths in a matching trellis, where each
continuous path corresponds to an instance of a motif. A tree-growing method is introduced to search for the
continuous paths constrained by a branching factor, and to accommodate intra-pattern variations of motifs. By
using locality-sensitive hashing (LSH) to find the approximate matches and build the trellis, the overall complexity
of our algorithm is only sub-quadratic to the size of the database, and is of linear memory cost. Experimental
results on a data set of32,260 frames show that our method can effectively discover meaningful motion motifs
regardless of their spatial and temporal variations.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Animation H.2.8 [Data-
base Management]: Data mining

1. Introduction and related work

Motion motifs are recurring motion patterns that exhibit
representative spatio-temporal dynamics, such as typical
dance moves and martial art actions (e.g. Tae Kwon Do
kicks). Each motif consists of a collection of similar short
motion segments with varying speeds and spatial config-
urations. Finding these frequent patterns has many appli-
cations in computer animation, like annotating and orga-
nizing motion data into different categories to facilitate
motion query [MRC05] and synthesis from existing data
[KGP02] [AFO03]. However, as more motion databases be-
come available and their sizes increase, manually label-
ing motifs from long motion sequences becomes a time-
consuming, if not infeasible, task.

Previous work in searching similar motion clips from a
long sequence is of quadratic complexity of the database
size [LCR∗02] [KGP02], thus limiting the ability to handle
large motion datasets of thousands of frames. To reduce the
computation time, [KG04] divide the data set into different
categories and build a separate match web for each category.
However, this approach cannot be applied to motif mining
due to the lack ofa priori knowledge. Although there exists
many data mining methods for discrete data like texts and
gene sequences, they cannot be applied to motion data di-
rectly. Specifically, human motions are continuous data in a

high dimensional space. Hence the same motion pattern can
vary largely when performed by different people or at dif-
ferent speeds. It is difficult to handle all possible variations,
especially withouta priori knowledge of the pattern in our
mining problem. Some recent work [YKM∗07] try to dis-
cover motion data by first translating it into discrete symbols
before applying traditional data mining to the quantized mo-
tion data. However, the discrete translation introduces noise
due to quantization errors, and cannot distinguish slight dif-
ferences among motions under coarse quantization.

In this paper, we present an efficient method for motion
motif discovery, which is robust under spatio-temporal vari-
ations. Given a motion sequence ofN frames, instead of cal-
culating anN × N similarity matrix [LCR∗02] [KG04] to
searchsimilar motion segments, we extract a compactN×K
(K << N) trellis which only preserves the best matches of
each frame. By finding continuous paths on the trellis, we
get similar results to searching the match web [KG04], but
with a significant memory saving. We apply locality sensi-
tive hashing (LSH) [AI06] [RSH∗05] [YWM ∗07] to speed
upbuilding the trellis through approximate nearest neighbor
(NN) query. To handle the possible variations of motion pat-
terns (e.g. different speeds) as well as the inaccuracy brought
by approximate NN search, a branching factor is introduced
to find continuous paths in the trellis. The overall complexity
of our method is sub-quadratic to the database size.

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

Jingjing Meng, Junsong Yuan, Mat Hans & Ying Wu / Mining Motifsfrom Human Motion

Figure 1: Matching Trellis: each node denotes a frame in the database, labeled by its temporal index; the top row is a long motion sequence
formed by concatenating all motion clips in the database together. The column below a top-row node lists its best matches found in the database.
The colored solid paths indicates the continuous paths (in terms of temporal indices) found via our tree-growing algorithm. They are discovered
instances of motion motifs and match the motion segment in the top row. Dotted lines indicate invalid paths which are not long enough.

2. Algorithm description
2.1. Motion motif discovery
Given a motion database, where each frame is a skeletal pose
defined by its root position and joint orientations, our goal is
to discover frequently occurring motion patterns (i.e. motion
motifs). We illustrate our algorithm in Fig.1, and we explain
it in details in the following three steps. In the following, we
useN to denote the size of the database (i.e. total number
of frames);K is the average number of similar frames found
throughε-NN search; andB is the branching factor.

Step 1. Build matching trellis
To find the matching relations among motion frames (poses),
we build a compact matching trellis as in Fig.1. The col-
umn below each top-row frame lists its similar matches in
the database. The similarity between two frames (poses)fi
and f j is measured as the weighted Euclidean distance be-
tween the quaternion representation of each frame:

D(fi , f j) =
J

∑
k=1

wk
∥

∥qi,k−q j,k
∥

∥,

where‖·‖ denotes the Euclidean distance;wk is the weight
of joint k; qi,k ∈ S3 is the unit quaternion representation of
the orientation of jointk with respect to its parent joint in
frame i; J is the total number of joints in the skeletal rep-
resentation (J= 29 in our test set). As in [LCR∗02], wk is
set to 1 for important joints like the shoulders, elbows, hips,
knees, pelvis, lower back and upper back, whereaswk for
joints like the toes and wrists are set to 0.

It is worth noting that exhaustively calculating pair-
wise distance to build anN × N similarity matrix takes
O(N2) [KG04] [LCR∗02], which is computational expen-
sive whenN is large. In comparison, our trellis is a more
compact representation than the similarity matrix since it
only keeps the best matches for each frame. To build the
matching trellis efficiently, we use LSH [AI06] to perform
efficient approximateε-NN query for each frame. Essen-
tially, LSH provides a randomized solution for the high-
dimensionalε-NN query problem. Instead of searching for
the exactε-NN, LSH searches for the approximateε-NN,
and can achieve sub-linear query time. Hence the total cost

of building the trellis is less thanO(N2). We discuss in Sec-
tion 4 how the inaccurate retrieval results of LSH can be
compensated by introducing a branching factor. LSH has
been applied to other graphics applications before such as
performance animation [RSH∗05].

Step 2. Finding continuous paths through tree-growing
Given a matching trellis, finding all the continuous paths
is computationally expensive if exhaustively checking all
possible paths (O(KN)). Motivated by dynamic program-
ming, [YWM∗07] proposed an algorithm that reduces the
cost to O(NK2). Improving upon their method, our algo-
rithm achievesO(NK) by using one auxiliary array of size
N to accelerate each growing step.

To grow trees, we start from the 1stcolumn in the trel-
lis. A node i can grow if it can find another nodej : j ∈
[i, i +B−1] in the next column, wherei, j are the temporal
indices, andB is the branching factor that adapts the path
growing speed to the top row. As a tree grows,B establishes
the temporal correspondences between each growing path
and its counterpart in the top row, hence can handle tempo-
ral variations. A node can start a new tree if it is not in an
existing tree and satisfies the growing condition.

To accelerate tree growing, we use a message-passing
scheme, where each path is described by{Root,Depth}.
This message is stored at the current leaf nodes of the grow-
ing tree and will be passed to its descendants as the tree
grows. Fig.2 illustrates one growing step of our algorithm.
When growing from frame 312 to 313, we first check the
matching frames of 313 and update the auxiliary array ac-
cordingly. Next, we check each of frame 312’s matching
frames in the auxiliary array to see if it satisfies the grow-
ing condition. Take one matching frame of 312 for example,
since 927 finds all its next 3temporalneighbors by simply
checking the corresponding 3 cells in the auxiliary array, it
generates 3 new branches and passes the path message to the
3 descendants. To keep the tree structure, we ensure that each
node only has one ancestor. For instance, the binary value of
cell [927-929] are set to 0 after 927 grows, so when 312’s
next neighbor 929 checks cell [929-931], it can only branch

c© The Eurographics Association 2008.

Jingjing Meng, Junsong Yuan, Mat Hans & Ying Wu / Mining Motifsfrom Human Motion

to frame 931 since the binary value of 929 is 0. In each step,
we need to query on averageK frames and each query cost
B binary check. Thus the complexity of one step isO(KB)
and the total complexity of tree-growing isO(NKB).

A path dies if it cannot grow any further. We then check
its validity by its length, and output valid continuous paths to
the candidate path setP = {Pi : |Pi | ≥ λ}T

i=1, whereλ = 60
frames is the minimum valid length. For instance, in Fig.2,
frame 926 cannot grow any more, since frame 927 and 928
in the next column have both been taken by previous paths.
Since the length of the path ending at frame 926 is 926−
451= 75, and the length of the matching path in the top
row is 70, both longer than 60 frames, we output two paths:
{Root= 451,Depth= 75}and{Root= 242,Depth= 70}.

(a) (b) (c)

Figure 2: A tree-growing step from frame 312 to 313. Branching
factor B= 3. (a) Two column 312 and 313 in the matching trellis; (b)
Auxiliary array associated with frame 313; the first column is a bi-
nary vector indicating if a frame is matched with 312 (0 means not).
The second column contains the row index of each matching frame
in the trellis. e.g. 928 is the 3rd neighbor of 313 (c) The same auxil-
iary array after growing from 312. The colored pair of elements be-
side each frame is the path information{Root,Depth}to be passed
to the descendant node while growing. e.g. frame 927 belongs to a
path starting from frame 857. It updates{Root= 857,Depth= 65}
to {Root= 857,Depth= 66} and passes the message to its3 de-
scendant 927, 928 and 929. Three colors denote different path sta-
tus: live path (yellow), new path (purple) and dead path (green).

Step 3. Clustering paths
Given the candidate path setP, the final step is to cluster
them into motif groups. Since paths obtained fromStep 2
may share the same root(i.e. start frame), we first elimi-
nate this redundancy by sorting paths inP based on their
root index, and only keeping the longest path for each tree.
Given the resulting longest path setL = {Li}

T
i=1, whereT

is essentially the number of trees, we then merge anyLi ,
L j with significant overlaps (set to 3/4 times the length of
the shorter path). This gives us the set of all motif instances
I = {Ii}

M
i=1, whereM << N. To clusterIi ∈ I into different

motif groups, we measure the similarity between each pair
of instancesIi , I j by the number of similar frames they share.
This can be easily done by tracing back to the trellis. Finally,

based on theM×M similarity matrix, we apply normalized
cut [SM00] to cluster theM instances intoG groups as the
final motif setsC = {Ci}

G
i=1, whereCi = {Ii : Ii ∈ I}. Nor-

malized cut was originally used for image segmentation in
computer vision. Here we use it to cluster for motifs.

2.2. Efficiency and scalability
The efficiency of our algorithm with comparison to pre-
vious methods is summarized in Table1. The major cost
comes from building the trellis and tree-growing. Compar-
ing with the match web [KG04], which exhaustively com-
putes the distance between every pair of frames in anN×N
matrix, our matching trellis only stores the best matches of
each frame, hence reducing the memory cost fromO(N2) to
O(NK). The computational cost is also less than theirO(N2)
due to the fastε-NN query using LSH. In addition, we out-
perform [YWM∗07] in path-finding by using an auxiliary
array of lengthN for fast continuation check. Each step, in-
stead of checking the temporal indices of every pair of neigh-
bors of two consecutive frame (O(K2)), we only check the
auxiliary arrayB times for each neighbor, which is (O(KB))
with an additionalO(2K) operation incurred from clearing
and re-initializing the auxiliary array. Hence find continuous
paths takesO(NKB) (i.e. O(NK), sinceB is a small factor)
instead ofO(K2).

Table 1: Computational Cost Comparison

Method Trellis Build Tree-Growing Total
[KG04] O(N2) N/A O(N2)

[YWM ∗07] O(N1+ 1
α)∗ O(NK2) O(N1+ 1

α +NK2)

Ours O(N1+ 1
α) O(NK) O(N1+ 1

α +NK)
∗α > 1 is the approximation factor determined byε andp of LSH.

3. Experimental Results
We tested our method using motion data from Carnegie Mel-
lon University Graphics Lab mocap database. All experi-
ments were ran on a machine with 2G memory and 2GHz
processor. To test the effectiveness of our algorithm, we first
ran it on a small dataset of 7,690 frames created by con-
catenating 9 clips together. Three of the nine clips were the
same clip (434 frames) manually inserted, which served as
the ground truth. Another two sets of similar motion pat-
terns were identified visually by a person with animation ex-
pertise. Since human judgment can be inaccurate and sub-
jective, we used them as approximate ground truth and a
found motif was considered correct if it overlapped signif-
icantly with them. Without merging overlapped clips from
tree-growing, our algorithm found 52 motif instances, which
were clustered into 8 groups using normalized cut. The 3
manually inserted clips were identified accurately and clus-
tered into one group, along with 5 subsequences. Two other
clusters were matching subsequences of the 3 clips. Motion
segments similar to the two visually-identified motifs were
also found by our algorithm and clustered into another two
groups. Interestingly, a new set of motion patterns were dis-
covered as well, which even the animation expert failed to
identify. There were one questionable cluster, one wrong

c© The Eurographics Association 2008.

Jingjing Meng, Junsong Yuan, Mat Hans & Ying Wu / Mining Motifsfrom Human Motion

Figure 3: An example discovered motion motif: a typical Michael
Jackson-style dance move. Each row denotes an instance of the mo-
tif. Despite the spatio-temporal variations, we correctly discovered
these two instances and clustered them into the same motif. See more
results in the attached videos.

cluster, and a cluster containing mostly static frames with
similar poses.

To test the scalability of our algorithm, we further ran it on
a 32,260 frame dataset consisting of various types of human
motions: break dance,acrobatics, Indian dance,Michael
Jackson-style danceandsalsa. We totally relied on our min-
ing algorithm to discover the motion motifs without provid-
ing anya priori knowledge of the data. It took 118 seconds
to build a trellis of 32260× 1163, and 225 seconds to find
the continuous paths. By merging overlapped segments, we
obtained 166 motif instances, and clustered them into 50 mo-
tifs. The average, maximum and minimum lengths of the
motif instances were 206, 835 and 61 respectively. These
motifs captured many typical dance moves from different
types of dances. Instances within each cluster exhibited var-
ious spatial and temporal configurations. Due to the page
limit, here we only show one example discovered motifs
containing two instances of a typicalMichael Jackson-style
dance move in Fig.3.

4. Discussions
Branching factor B. By introducing branching factorB, we
can accommodate non-uniform temporal scaling by adap-
tively adjusting the length when growing the path. Also it
compensates the inaccuracy brought by mocap noise or the
approximate NN search of LSH. Suppose the correct re-
trieval probability of LSH isp, given branching factorB,
the probability of breaking a path at a given step is only
Probe = (1− p)B, when all theB descendants are miss de-
tected. Therefore the total error probability of breaking a
continuous path of lengthL is Probt = 1− (1− Probe)

L

when any of theL steps breaks. Hence givenp, increasing
B reduces the probability of breaking a path, but largeB in-
creases the computational cost of path growing (O(NKB)).
In our experiments, we setB = 5.

ε in ε-NN search. Since the average length of columns in the
trellis (K) is determined byε, in huge databases, smallerε is
preferred so theN×K trellis can be loaded into the mem-
ory. On the other hand, largerε reduces the chance of miss
retrieval in theε-NN query by LSH. Considering both re-
quirements, we setε to µ+ 2σ in this paper, whereµ andσ

are estimated mean and standard variance of the pair-wise
distance [BGRS99]. Specifically, for the 32,260 frame data
set,ε = 1.3,µ= 3.23, andσ = 0.94.

5. Conclusion
In this paper, we present a novel method to quickly and auto-
matically find recurring patterns from motion data. By using
LSH for fast similarity search and tree growing to find con-

tinuous paths, our method is efficient (O(N1+ 1
α)) and saves

memory cost fromO(N2) to O(NK) compared to [KG04].
Experiments on a 32,260 frame data set shows that our tree
growing method based on branching factors is capable of
handling spatio-temporal variations. Future work will in-
clude applying our motif mining method to motion retrieval,
and building motion graphs on complex motion datasets.

Acknowledgment
This work was supported in part by the National Science Foundation
Grants IIS-0347877 and IIS-0308222.

References

[AFO03] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.: Motion
synthesis from annotations.ACM Transactions on Graphics 22,
3 (July 2003), 402–408.

[AI06] A NDONI A., INDYK P.: Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. Inthe Sym-
posium on Foundations of Computer Science (FOCS’06)(2006).

[BGRS99] BEYER K., GOLDSTEIN J., RAMAKRISHNAN R.,
SHAFT U.: When is nearest neighbor meaningful? InProceed-
ings of the 7th International Conference on Database Theory
(1999), pp. 217–235.

[KG04] KOVAR L., GLEICHER M.: Automated extraction and
parameterization of motions in large data sets.ACM Transactions
on Graphics 23, 3 (Aug. 2004), 559–568.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion graphs.
ACM Transactions on Graphics 21, 3 (July 2002), 473–482.

[LCR∗02] LEE J., CHAI J., REITSMA P. S. A., HODGINS J. K.,
POLLARD N. S.: Interactive control of avatars animated with
human motion data.ACM Transactions on Graphics 21, 3 (July
2002), 491–500.

[MRC05] MULLER M., RODER T., CLAUSEN M.: Efficient
content-based retrieval of motion capture data.ACM Transac-
tions on Graphics 24, 3 (July 2005), 677–685.

[RSH∗05] REN L., SHAKHNAROVICH G., HODGINS J. K.,
PFISTER H., VIOLA P.: Learning silhouette features for control
of human motion. ACM Transactions on Graphics 24, 4 (Oct.
2005), 1303–1331.

[SM00] SHI J., MALIK J.: Normalized cuts and image segmenta-
tion. IEEE Trans. on Pattern Analysis and Machine Intelligence
(2000).

[YKM ∗07] YANKOV D., KEOGH E., MEDINA J., CHIU B.,
ZORDAN V.: Detecting motifs under uniform scaling. InProc.
SIGKDD ’07 (2007), pp. 844–853.

[YWM ∗07] YUAN J., WANG W., MENG J., WU Y., L I D.: Min-
ing repetitive clips through finding continuous paths. InProc.
ACM Multimedia ’07(2007), pp. 289–292.

c© The Eurographics Association 2008.

